Добірка наукової літератури з теми "Network data representation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Network data representation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Network data representation"
R.Tamilarasu and G. Soundarya Devi. "Improvising Connection In 5g By Means Of Particle Swarm Optimization Techniques." South Asian Journal of Engineering and Technology 14, no. 2 (April 30, 2024): 1–6. http://dx.doi.org/10.26524/sajet.2023.14.2.
Повний текст джерелаYe, Zhonglin, Haixing Zhao, Ke Zhang, Yu Zhu, and Zhaoyang Wang. "An Optimized Network Representation Learning Algorithm Using Multi-Relational Data." Mathematics 7, no. 5 (May 21, 2019): 460. http://dx.doi.org/10.3390/math7050460.
Повний текст джерелаArmenta, Marco, and Pierre-Marc Jodoin. "The Representation Theory of Neural Networks." Mathematics 9, no. 24 (December 13, 2021): 3216. http://dx.doi.org/10.3390/math9243216.
Повний текст джерелаAristizábal Q, Luz Angela, and Nicolás Toro G. "Multilayer Representation and Multiscale Analysis on Data Networks." International journal of Computer Networks & Communications 13, no. 3 (May 31, 2021): 41–55. http://dx.doi.org/10.5121/ijcnc.2021.13303.
Повний текст джерелаNguyễn, Tuấn, Nguyen Hai Hao, Dang Le Dinh Trang, Nguyen Van Tuan, and Cao Van Loi. "Robust anomaly detection methods for contamination network data." Journal of Military Science and Technology, no. 79 (May 19, 2022): 41–51. http://dx.doi.org/10.54939/1859-1043.j.mst.79.2022.41-51.
Повний текст джерелаDu, Xin, Yulong Pei, Wouter Duivesteijn, and Mykola Pechenizkiy. "Fairness in Network Representation by Latent Structural Heterogeneity in Observational Data." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 3809–16. http://dx.doi.org/10.1609/aaai.v34i04.5792.
Повний текст джерелаDongming Chen, Dongming Chen, Mingshuo Nie Dongming Chen, Jiarui Yan Mingshuo Nie, Jiangnan Meng Jiarui Yan, and Dongqi Wang Jiangnan Meng. "Network Representation Learning Algorithm Based on Community Folding." 網際網路技術學刊 23, no. 2 (March 2022): 415–23. http://dx.doi.org/10.53106/160792642022032302020.
Повний текст джерелаZhang, Xiaoxian, Jianpei Zhang, and Jing Yang. "Large-scale dynamic social data representation for structure feature learning." Journal of Intelligent & Fuzzy Systems 39, no. 4 (October 21, 2020): 5253–62. http://dx.doi.org/10.3233/jifs-189010.
Повний текст джерелаKapoor, Maya, Michael Napolitano, Jonathan Quance, Thomas Moyer, and Siddharth Krishnan. "Detecting VoIP Data Streams: Approaches Using Hidden Representation Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (June 26, 2023): 15519–27. http://dx.doi.org/10.1609/aaai.v37i13.26840.
Повний текст джерелаGiannarakis, Nick, Alexandra Silva, and David Walker. "ProbNV: probabilistic verification of network control planes." Proceedings of the ACM on Programming Languages 5, ICFP (August 22, 2021): 1–30. http://dx.doi.org/10.1145/3473595.
Повний текст джерелаДисертації з теми "Network data representation"
Lim, Chong-U. "Modeling player self-representation in multiplayer online games using social network data." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82409.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 101-105).
Game players express values related to self-expression through various means such as avatar customization, gameplay style, and interactions with other players. Multiplayer online games are now often integrated with social networks that provide social contexts in which player-to-player interactions take place, such as conversation and trading of virtual items. Building upon a theoretical framework based in machine learning and cognitive science, I present results from a novel approach to modeling and analyzing player values in terms of both preferences in avatar customization and patterns in social network use. To facilitate this work, I developed the Steam-Player- Preference Analyzer (Steam-PPA) system, which performs advanced data collection on publicly available social networking profile information. The primary contribution of this thesis is the AIR Toolkit Status Performance Classifier (AIR-SPC), which uses machine learning techniques including k-means clustering, natural language processing (NLP), and support vector machines (SVM) to perform inference on the data. As an initial case study, I use Steam-PPA to collect gameplay and avatar customization information from players in the popular, and commercially successful, multi-player first-person-shooter game Team Fortress 2 (TF2). Next, I use AIR-SPC to analyze the information from profiles on the social network Steam. The upshot is that I use social networking information to predict the likelihood of players customizing their profile in several ways associated with the monetary values of their avatars. In this manner I have developed a computational model of aspects of players' digital social identity capable of predicting specific values in terms of preferences exhibited within a virtual game-world.
by Chong-U Lim.
S.M.
Lee, John Boaz T. "Deep Learning on Graph-structured Data." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/570.
Повний текст джерелаAzorin, Raphael. "Traffic representations for network measurements." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS141.
Повний текст джерелаMeasurements are essential to operate and manage computer networks, as they are critical to analyze performance and establish diagnosis. In particular, per-flow monitoring consists in computing metrics that characterize the individual data streams traversing the network. To develop relevant traffic representations, operators need to select suitable flow characteristics and carefully relate their cost of extraction with their expressiveness for the downstream tasks considered. In this thesis, we propose novel methodologies to extract appropriate traffic representations. In particular, we posit that Machine Learning can enhance measurement systems, thanks to its ability to learn patterns from data, in order to provide predictions of pertinent traffic characteristics.The first contribution of this thesis is a framework for sketch-based measurements systems to exploit the skewed nature of network traffic. Specifically, we propose a novel data structure representation that leverages sketches' under-utilization, reducing per-flow measurements memory footprint by storing only relevant counters. The second contribution is a Machine Learning-assisted monitoring system that integrates a lightweight traffic classifier. In particular, we segregate large and small flows in the data plane, before processing them separately with dedicated data structures for various use cases. The last contributions address the design of a unified Deep Learning measurement pipeline that extracts rich representations from traffic data for network analysis. We first draw from recent advances in sequence modeling to learn representations from both numerical and categorical traffic data. These representations serve as input to solve complex networking tasks such as clickstream identification and mobile terminal movement prediction in WLAN. Finally, we present an empirical study of task affinity to assess when two tasks would benefit from being learned together
SURANO, FRANCESCO VINCENZO. "Unveiling human interactions : approaches and techniques toward the discovery and representation of interactions in networks." Doctoral thesis, Politecnico di Torino, 2023. https://hdl.handle.net/11583/2975708.
Повний текст джерелаWoodbury, Nathan Scott. "Representation and Reconstruction of Linear, Time-Invariant Networks." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7402.
Повний текст джерелаMartignano, Anna. "Real-time Anomaly Detection on Financial Data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281832.
Повний текст джерелаDetta arbete presenterar en undersökning av tillämpningar av Network Representation Learning (NRL) inom den finansiella industrin. Metoder inom NRL möjliggör datadriven kondensering av grafstrukturer till lågdimensionella och lätthanterliga vektorer.Dessa vektorer kan sedan användas i andra maskininlärningsuppgifter. Närmare bestämt, kan metoder inom NRL underlätta hantering av och informantionsutvinning ur beräkningsintensiva och storskaliga grafer inom den finansiella sektorn, till exempel avvikelsehantering bland finansiella transaktioner. Arbetet med data av denna typ försvåras av det faktum att transaktionsgrafer är dynamiska och i konstant förändring. Utöver detta kan noderna, dvs transaktionspunkterna, vara vitt skilda eller med andra ord härstamma från olika fördelningar.I detta arbete har Graph Convolutional Network (ConvGNN) ansetts till den mest lämpliga lösningen för nämnda tillämpningar riktade mot upptäckt av avvikelser i transaktioner. GraphSAGE har använts som utgångspunkt för experimenten i två olika varianter: en dynamisk version där vikterna uppdateras allteftersom nya transaktionssekvenser matas in, och en variant avsedd särskilt för bipartita (tvådelade) grafer. Dessa varianter har utvärderats genom användning av faktiska datamängder med avvikelsehantering som slutmål.
GARBARINO, DAVIDE. "Acknowledging the structured nature of real-world data with graphs embeddings and probabilistic inference methods." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1092453.
Повний текст джерелаRANDAZZO, VINCENZO. "Novel neural approaches to data topology analysis and telemedicine." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2850610.
Повний текст джерелаLucke, Helmut. "On the representation of temporal data for connectionist word recognition." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239520.
Повний текст джерелаCori, Marcel. "Modèles pour la représentation et l'interrogation de données textuelles et de connaissances." Paris 7, 1987. http://www.theses.fr/1987PA077047.
Повний текст джерелаКниги з теми "Network data representation"
service), SpringerLink (Online, ed. Guide to Computer Network Security. 2nd ed. London: Springer London, 2013.
Знайти повний текст джерелаHill, Richard. Guide to Cloud Computing: Principles and Practice. London: Springer London, 2013.
Знайти повний текст джерелаVarlamov, Oleg. Mivar databases and rules. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1508665.
Повний текст джерелаLaszlo, Berke, Murthy P. L. N, and United States. National Aeronautics and Space Administration., eds. Material data representation of hysteresis loops for Hastelloy X using artificial neural networks. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаLaszlo, Berke, Murthy P. L. N, and United States. National Aeronautics and Space Administration., eds. Material data representation of hysteresis loops for Hastelloy X using artificial neural networks. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаBrath, Richard Karl. Effective information visualization guidelines and metrics for 3D interactive representations of business data. [Toronto]: Brath, 1999.
Знайти повний текст джерелаS, Drew Mark, ed. Fundamentals of multimedia. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.
Знайти повний текст джерелаRiaño, David. Knowledge Representation for Health-Care: ECAI 2010 Workshop KR4HC 2010, Lisbon, Portugal, August 17, 2010, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Знайти повний текст джерелаDiagrams 2010 (2010 Portland, Or.). Diagrammatic representation and inference: 6th international conference, Diagrams 2010, Portland, OR, USA, August 9-11, 2010 : proceedings. Berlin: Springer, 2010.
Знайти повний текст джерелаGerhard, Friedrich, Gottlob Georg, Katzenbeisser Stefan, Turán György, and SpringerLink (Online service), eds. SOFSEM 2012: Theory and Practice of Computer Science: 38th Conference on Current Trends in Theory and Practice of Computer Science, Špindlerův Mlýn, Czech Republic, January 21-27, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Знайти повний текст джерелаЧастини книг з теми "Network data representation"
Gaudel, Bijay, Donghai Guan, Weiwei Yuan, Deepanjal Shrestha, Bing Chen, and Yaofeng Tu. "Graph Representation Learning Using Attention Network." In Big Data, 137–47. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0705-9_10.
Повний текст джерелаSchestakov, Stefan, Paul Heinemeyer, and Elena Demidova. "Road Network Representation Learning with Vehicle Trajectories." In Advances in Knowledge Discovery and Data Mining, 57–69. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33383-5_5.
Повний текст джерелаWang, Binglei, Tong Xu, Hao Wang, Yanmin Chen, Le Zhang, Lintao Fang, Guiquan Liu, and Enhong Chen. "Author Contributed Representation for Scholarly Network." In Web and Big Data, 558–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60259-8_41.
Повний текст джерелаZhang, Si, Yinglong Xia, Yan Zhu, and Hanghang Tong. "Representation Learning on Dynamic Network of Networks." In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), 298–306. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2023. http://dx.doi.org/10.1137/1.9781611977653.ch34.
Повний текст джерелаZhang, Yan, Zhao Zhang, Zheng Zhang, Mingbo Zhao, Li Zhang, Zhengjun Zha, and Meng Wang. "Deep Self-representative Concept Factorization Network for Representation Learning." In Proceedings of the 2020 SIAM International Conference on Data Mining, 361–69. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2020. http://dx.doi.org/10.1137/1.9781611976236.41.
Повний текст джерелаScheider, Simon, and Werner Kuhn. "Road Networks and Their Incomplete Representation by Network Data Models." In Geographic Information Science, 290–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87473-7_19.
Повний текст джерелаZhang, Shaowei, Zhao Li, Xin Wang, Zirui Chen, and WenBin Guo. "TKGAT: Temporal Knowledge Graph Representation Learning Using Attention Network." In Advanced Data Mining and Applications, 46–61. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46664-9_4.
Повний текст джерелаSkabek, Krzysztof, and Łukasz Ząbik. "Network Transmission of 3D Mesh Data Using Progressive Representation." In Computer Networks, 325–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02671-3_38.
Повний текст джерелаChen, Weizheng, Jinpeng Wang, Zhuoxuan Jiang, Yan Zhang, and Xiaoming Li. "Hierarchical Mixed Neural Network for Joint Representation Learning of Social-Attribute Network." In Advances in Knowledge Discovery and Data Mining, 238–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57454-7_19.
Повний текст джерелаAnuradha, T., Arun Tigadi, M. Ravikumar, Paparao Nalajala, S. Hemavathi, and Manoranjan Dash. "Feature Extraction and Representation Learning via Deep Neural Network." In Computer Networks, Big Data and IoT, 551–64. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0898-9_44.
Повний текст джерелаТези доповідей конференцій з теми "Network data representation"
Luo, Xuexiong, Jia Wu, Chuan Zhou, Xiankun Zhang, and Yuan Wang. "Deep Semantic Network Representation." In 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020. http://dx.doi.org/10.1109/icdm50108.2020.00141.
Повний текст джерелаGao, Li, Hong Yang, Chuan Zhou, Jia Wu, Shirui Pan, and Yue Hu. "Active Discriminative Network Representation Learning." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/296.
Повний текст джерелаHansen, Brian, Leya Breanna Baltaxe-Admony, Sri Kurniawan, and Angus G. Forbes. "Exploring Sonic Parameter Mapping for Network Data Structures." In ICAD 2019: The 25th International Conference on Auditory Display. Newcastle upon Tyne, United Kingdom: Department of Computer and Information Sciences, Northumbria University, 2019. http://dx.doi.org/10.21785/icad2019.055.
Повний текст джерелаZhang, Xiangliang. "Mining Streaming and Temporal Data: from Representation to Knowledge." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/821.
Повний текст джерелаHou, Mingliang, Jing Ren, Falih Febrinanto, Ahsan Shehzad, and Feng Xia. "Cross Network Representation Matching with Outliers." In 2021 International Conference on Data Mining Workshops (ICDMW). IEEE, 2021. http://dx.doi.org/10.1109/icdmw53433.2021.00124.
Повний текст джерелаBandyopadhyay, Sambaran, Manasvi Aggarwal, and M. Narasimha Murty. "Self-supervised Hierarchical Graph Neural Network for Graph Representation." In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9377860.
Повний текст джерелаYu, Yanlei, Zhiwu Lu, Jiajun Liu, Guoping Zhao, and Ji-rong Wen. "RUM: Network Representation Learning Using Motifs." In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019. http://dx.doi.org/10.1109/icde.2019.00125.
Повний текст джерелаZhang, Chuxu, Meng Jiang, Xiangliang Zhang, Yanfang Ye, and Nitesh V. Chawla. "Multi-modal Network Representation Learning." In KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3394486.3406475.
Повний текст джерелаYang, Hong, Shirui Pan, Ling Chen, Chuan Zhou, and Peng Zhang. "Low-Bit Quantization for Attributed Network Representation Learning." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/562.
Повний текст джерелаGuan, Zhanming, Bin Wu, Bai Wang, and Hezi Liu. "Personality2vec: Network Representation Learning for Personality." In 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC). IEEE, 2020. http://dx.doi.org/10.1109/dsc50466.2020.00013.
Повний текст джерелаЗвіти організацій з теми "Network data representation"
Haynes, T., and D. Noveck, eds. Network File System (NFS) Version 4 External Data Representation Standard (XDR) Description. RFC Editor, March 2015. http://dx.doi.org/10.17487/rfc7531.
Повний текст джерелаShepler, S., M. Eisler, and D. Noveck, eds. Network File System (NFS) Version 4 Minor Version 1 External Data Representation Standard (XDR) Description. RFC Editor, January 2010. http://dx.doi.org/10.17487/rfc5662.
Повний текст джерелаHaynes, T. Network File System (NFS) Version 4 Minor Version 2 External Data Representation Standard (XDR) Description. RFC Editor, November 2016. http://dx.doi.org/10.17487/rfc7863.
Повний текст джерелаZanoni, Wladimir, Jimena Romero, Nicolás Chuquimarca, and Emmanuel Abuelafia. Dealing with Hard-to-Reach Populations in Panel Data: Respondent-Driven Survey (RDS) and Attrition. Inter-American Development Bank, October 2023. http://dx.doi.org/10.18235/0005194.
Повний текст джерелаHenderson, Tim, Mincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Chihuahuan Desert Inventory & Monitoring Network. National Park Service, April 2021. http://dx.doi.org/10.36967/nrr-2285306.
Повний текст джерелаHenderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Northern Colorado Plateau Inventory & Monitoring Network. National Park Service, April 2021. http://dx.doi.org/10.36967/nrr-2285337.
Повний текст джерелаHenderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Klamath Inventory & Monitoring Network. National Park Service, July 2021. http://dx.doi.org/10.36967/nrr-2286915.
Повний текст джерелаHenderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Mojave Desert Inventory & Monitoring Network. National Park Service, December 2021. http://dx.doi.org/10.36967/nrr-2289952.
Повний текст джерелаHenderson, Tim, Vincet Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: North Coast and Cascades Inventory & Monitoring Network. National Park Service, March 2022. http://dx.doi.org/10.36967/nrr-2293013.
Повний текст джерелаHenderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Central Alaska Inventory & Monitoring Network. National Park Service, May 2022. http://dx.doi.org/10.36967/nrr-2293381.
Повний текст джерела