Добірка наукової літератури з теми "Navigation of robotic devices"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Navigation of robotic devices".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Navigation of robotic devices"

1

Stone, Richard T., Ann Bisantz, James Llinas, and Victor Paquet. "Improving Tele-robotic Navigation through Augmented Reality Devices." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 53, no. 18 (October 2009): 1432–36. http://dx.doi.org/10.1177/154193120905301856.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

PANCALDI, Lucio, and Mahmut Selman SAKAR. "Flow Driven Robotic Navigation of Endovascular Microscopic Devices." Abstracts of the international conference on advanced mechatronics : toward evolutionary fusion of IT and mechatronics : ICAM 2021.7 (2021): OS1–5. http://dx.doi.org/10.1299/jsmeicam.2021.7.os1-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Menon, S. R., S. G. Kapoor, and R. B. Blackmon. "Navigation planning for mobile robotic devices in modular warehouses." International Journal of Advanced Manufacturing Technology 3, no. 4 (August 1988): 47–62. http://dx.doi.org/10.1007/bf02601833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hersh, Marion A., and Michael A. Johnson. "A Robotic Guide for Blind People. Part 1. A Multi-National Survey of the Attitudes, Requirements and Preferences of Potential End-Users." Applied Bionics and Biomechanics 7, no. 4 (2010): 277–88. http://dx.doi.org/10.1155/2010/252609.

Повний текст джерела
Анотація:
This paper reports the results of a multi-national survey in several different countries on the attitudes, requirements and preferences of blind and visually impaired people for a robotic guide. The survey is introduced by a brief overview of existing work on robotic travel aids and other mobile robotic devices. The questionnaire comprises three sections on personal information about respondents, existing use of mobility and navigation devices and the functions and other features of a robotic guide. The survey found that respondents were very interested in the robotic guide having a number of different functions and being useful in a wide range of circumstances. They considered the robot's appearance to be very important but did not like any of the proposed designs. From their comments, respondents wanted the robot to be discreet and inconspicuous, small, light weight and portable, easy to use, robust to damage, require minimal maintenance, have a long life and a long battery life.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Krieg, Sandro M., and Bernhard Meyer. "First experience with the jump-starting robotic assistance device Cirq." Neurosurgical Focus 45, videosuppl1 (July 2018): V3. http://dx.doi.org/10.3171/2018.7.focusvid.18108.

Повний текст джерела
Анотація:
Since spinal navigation became applicable, including robotic assistance into standard navigational setups seems reasonable. A newly released modular robotic assistance for drill stabilization (Cirq, Brainlab) was used in a 74-year-old man undergoing dynamic stabilization of L3–4 via navigated transfascial pedicle screws. The authors demonstrate the second worldwide surgery with this device and the second case performed in their department. They provide insight in its applicability to estimate its further potential in spinal robotics. Although being just the first step of this universal platform, the authors already see clinical benefit by its ease of use and drill support.The video can be found here: https://youtu.be/oN2ZiHFRFkU.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kamburugamuve, Supun, Leif Christiansen, and Geoffrey Fox. "A Framework for Real Time Processing of Sensor Data in the Cloud." Journal of Sensors 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/468047.

Повний текст джерела
Анотація:
We describe IoTCloud, a platform to connect smart devices to cloud services for real time data processing and control. A device connected to IoTCloud can communicate with real time data analysis frameworks deployed in the cloud via messaging. The platform design is scalable in connecting devices as well as transferring and processing data. With IoTCloud, a user can develop real time data processing algorithms in an abstract framework without concern for the underlying details of how the data is distributed and transferred. For this platform, we primarily consider real time robotics applications such as autonomous robot navigation, where there are strict requirements on processing latency and demand for scalable processing. To demonstrate the effectiveness of the system, a robotic application is developed on top of the framework. The system and the robotics application characteristics are measured to show that data processing in central servers is feasible for real time sensor applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gopesh, Tilvawala, Jessica H. Wen, David Santiago-Dieppa, Bernard Yan, J. Scott Pannell, Alexander Khalessi, Alexander Norbash, and James Friend. "Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders." Science Robotics 6, no. 57 (August 18, 2021): eabf0601. http://dx.doi.org/10.1126/scirobotics.abf0601.

Повний текст джерела
Анотація:
Catheters used for endovascular navigation in interventional procedures lack dexterity at the distal tip. Neurointerventionists, in particular, encounter challenges in up to 25% of aneurysm cases largely due to the inability to steer and navigate the tip of the microcatheters through tortuous vasculature to access aneurysms. We overcome this problem with submillimeter diameter, hydraulically actuated hyperelastic polymer devices at the distal tip of microcatheters to enable active steerability. Controlled by hand, the devices offer complete 3D orientation of the tip. Using saline as a working fluid, we demonstrate guidewire-free navigation, access, and coil deployment in vivo, offering safety, ease of use, and design flexibility absent in other approaches to endovascular intervention. We demonstrate the ability of our device to navigate through vessels and to deliver embolization coils to the cerebral vessels in a live porcine model. This indicates the potential for microhydraulic soft robotics to solve difficult access and treatment problems in endovascular intervention.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shabayek, Abd El Rahman, Olivier Morel, and David Fofi. "Polarization-based Robot Orientation and Navigation." International Journal of Systems Biology and Biomedical Technologies 3, no. 1 (January 2015): 73–89. http://dx.doi.org/10.4018/ijsbbt.2015010104.

Повний текст джерела
Анотація:
From insects in your garden to creatures in the sea, inspiration can be drawn from nature to design a whole new class of smart robotic devices. These smart machines may move like living creatures. They can be launched toward a specific target for a pre-defined task. Bio-inspiration is developing to meet the needs of many challenges particularly in machine vision. Some species in the animal kingdom like cephalopods, crustaceans and insects are distinguished with their visual capabilities which are strongly improved by means of polarization. This work surveys the most recent research in the area of bio-inspired polarization based robot orientation and navigation. Firstly, the authors will briefly discuss the polarization based orientation and navigation behavior in the animal kingdom. Secondly, a comprehensive cover of its mapping into robotics navigation and orientation estimation will be given. Finally, the future research directions will be discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Perez, Elisa, Carlos Soria, Oscar Nasisi, Teodiano Freire Bastos, and Vicente Mut. "Robotic wheelchair controlled through a vision-based interface." Robotica 30, no. 5 (August 8, 2011): 691–708. http://dx.doi.org/10.1017/s0263574711000919.

Повний текст джерела
Анотація:
SUMMARYIn this work, a vision-based control interface for commanding a robotic wheelchair is presented. The interface estimates the orientation angles of the user's head and it translates these parameters in command of maneuvers for different devices. The performance of the proposed interface is evaluated both in static experiments as well as when it is applied in commanding the robotic wheelchair. The interface calculates the orientation angles and it translates the parameters as the reference inputs to the robotic wheelchair. Control architecture based on the dynamic model of the wheelchair is implemented in order to achieve safety navigation. Experimental results of the interface performance and the wheelchair navigation are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Duke, Jennifer D., and Janani Reisenauer. "Review: Technology and Techniques for Robotic-assisted Bronchoscopy." Journal of Lung Health and Diseases 6, no. 1 (April 6, 2022): 1–5. http://dx.doi.org/10.29245/2689-999x/2022/1.1179.

Повний текст джерела
Анотація:
With recent advancements in robotic bronchoscopy for peripheral pulmonary nodule biopsy, there has been notable improvements in reach, stability, and precision. Since 2017, the United States Food and Drug Administration (FDA) has approved two robotic devices, the Ion™ Endoluminal System (“Ion”) (Intuitive Surgical©, Sunnyvale, CA, USA) and the Monarch robotic system (Auris Health Inc, Redwood City, CA), for peripheral navigation and biopsy of lung lesions. We review these two robotic bronchoscopy systems and the literature that supports their use.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Navigation of robotic devices"

1

Синєгуб, Олександр Олександрович. "Інтелектуальна система прийняття рішень роботизованого пристрою в розумному домі". Master's thesis, КПІ Ім. Ігоря Сiкорського, 2019. https://ela.kpi.ua/handle/123456789/31707.

Повний текст джерела
Анотація:
Дипломний проект на тему: “Інтелектуальна система прийняття рішень роботизованого пристрою в розмуному домі” містить 80 сторінок тексту, рисунків - 21, таблиць - 10, використаних джерел - 15 та 7 додатків. Актуальність теми дипломного проекту продиктована тим, що в останні роки люди все більше і більше роблять свої будинки “розумними”. Це пояснюється тим, що системи такого будинку дозволяють заощаджувати час, підвищувати рівень комфорту та безпеки користувача. Проте, разом з інтеграцією роботизованих систем і пристроїв виникає питання безпеки їх функціональності в середовищі де вони працюють. Зокрема, виникає проблема безпечного переміщення мобільних пристроїв на території “розумного будинку”, де вони можуть заподіяти шкоди як собі, так і майну власників, не кажучи вже про здоров’я самих користувачів.
 Також основною проблемою нині існуючих роботизованих пристроїв, що пересуваються без допомоги людини є навігація. Зокрема, ця проблема у будинку несе більш серйозних характер, через постійну зміну певних об’єктів у середовищі, наприклад меблів. Рішенням цих проблем може бути інтелектуальна система прийняття рішень для забезпечення безпечного переміщення роботизованого пристрою в РД, що буде прокладати безпечний маршрут. Метою даного проекту є забезпечення безпечного переміщення мобільного роботизованого пристрою в інтелектуальному домі. Об’єкт: Методи і засоби визначення місцеположення та можливих траєкторій переміщення роботизованих пристроїв в умовах обмеження приміщень і наявності перешкод. Предмет: Алгоритми визначення місцезнаходження і прокладання безпечних маршрутів для роботизованих пристроїв і систем при їх переміщенні в РД..
The diploma project on the theme: "The system for monitoring the safe movement of robotized devices and systems in the SH" contains 80 pages of text, drawings - 21 , tables - 10 , sources - 15 and 7 attachments. The urgency of the topic of the project is dictated by the fact that in recent years people increasingly make their homes "smart". This is due to the fact that the systems of this building can save time, increase the level of comfort and increase the safety of the user.
 However, along with the integration of robotized systems and devices, there is a question of the safety of their functionality in the environment where they work. In particular, there is a problem of the safe movement of mobile devices in the "smart house", where they can cause damage to themselves and property of owners, not to mention the health of the users themselves. A solution to these problems may be a single monitoring system for the safe movement of robotic devices in the SH, which will monitor the positions of robots, lay a safe route and report it.
 The purpose of this project is to develop a monitoring system to ensure the safe movement of robots in the smart house. Object - methods and means of determining the location and possible path of moving robotic devices and systems of different types in conditions of space constraints and the presence of obstacles.
 Subject - algorithms for monitoring location and laying safe routes for robotic devices and systems in SH.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kirimlioglu, Serdar. "Multisensor Dead Reckoning Navigation On A Tracked Vehicle Using Kalman Filter." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614939/index.pdf.

Повний текст джерела
Анотація:
The aim of this thesis is to write a multisensor navigation algorithm and to design a test setup. After doing these, test the algorithm by using the test setup. In navigation, dead reckoning is a procedure to calculate the position from initial position with some measured inputs. These measurements do not include absolute position data. Using only an inertial measurement unit is an example for dead reckoning navigation. Calculating position and velocity with the inertial measurement unit is highly erroneous because, this calculation requires integration of acceleration data. Integration means accumulation of errors as time goes. For example, a constant acceleration error of 0.1 m/s^2 on 1 m/s^2 of acceleration will lead to 10% of position error in only 5 seconds. In addition to this, wrong calculation of attitude is going to blow the accumulated position errors. However, solving the navigation equations while knowing the initial position and the IMU readings is possible, the IMU is not used solely in practice. In literature, there are studies about this topic and in these studies
some other sensors aid the navigation calculations. The aiding or fusion of sensors is accomplished via Kalman filter. In this thesis, a navigation algorithm and a sensor fusion algorithm were written. The sensor fusion algorithm is based on estimation of IMU errors by use of a Kalman filter. The design of Kalman filter is possible after deriving the mathematical model of error propagation of mechanization equations. For the sensor fusion, an IMU, two incremental encoders and a digital compass were utilized. The digital compass outputs the orientation data directly (without integration). In order to find the position, encoder data is calculated in dead reckoning sense. The sensor triplet aids the IMU which calculates position data by integrations. In order to mount these four sensors, an unmanned tracked vehicle prototype was manufactured. For data acquisition, an xPC&ndash
Target system was set. After planning the test procedure, the tests were performed. In the tests, different paths for different sensor fusion algorithms were experimented. The results were recorded in a computer and a number of figures were plotted in order to analyze the results. The results illustrate the benefit of sensor fusion and how much feedback sensor fusion is better than feed forward sensor fusion.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moore, Justin C. "Robotic navigation of smooth contours." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40449.

Повний текст джерела
Анотація:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
Includes bibliographical references (leaf 10).
The goal of this work is to develop a method for robotic navigation of smooth contours depending on the current and desired locations and orientations. Efficient trajectory generation is an essential capability for many autonomous mobile robots, operating in a variety of situations such as military, medical, and home environments. In this thesis, we propose a method that is based on fitting a spline curve that passes from the initial position and orientation of the robot to a goal position and orientation. The spline is continually recomputed as the robot moves through space. This yields a simple and inefficient method for robot navigation. The method has been implemented and tested in simulation using Matlab and good performance has been demonstrated. Future work should perform experiments with this method on a real robot and should introduce obstacle detection and avoidance.
by Justin C. Moore.
S.B.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mills, Euclid Weatley. "Mobile robotic design : robotic colour and accelerometer sensor." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4436.

Повний текст джерела
Анотація:
This thesis investigates the problem of sensors used with mobile robots. Firstly, a colour sensor is considered, for its ability to detect objects having the three primary colours Red, Green and Blue (RGB). Secondly, an accelerometer was investigated, from which velocity was derived from the raw data using numerical integration. The purpose of the design and development of the sensors was to use them for robotic navigation and collision avoidance. This report presents the results of experiments carried out on the colour sensor and the accelerometer. A discussion of the results and some conclusions are also presented. It proved feasible to achieve the goal of detecting colours successfully but only for a limited distance. The accelerometer proved reliable but is not yet being applied in real time. Both the colour sensor and the accelerometer proved to be inexpensive. Some recommendations are made to improve both the colour sensor and the accelerometer sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hsieh, Pin-Chun. "Autonomous robotic wheelchair with collision-avoidance navigation." Texas A&M University, 2008. http://hdl.handle.net/1969.1/86037.

Повний текст джерела
Анотація:
The objective of this research is to demonstrate a robotic wheelchair moving in an unknown environment with collision-avoidance navigation. A real-time path-planning algorithm was implemented by detecting the range to obstacles and by tracking specific light sources used as beacons. Infrared sensors were used for range sensing, and light-sensitive resistors were used to track the lights. To optimize the motion trajectory, it was necessary to modify the original motor controllers of the electrical wheelchair so that it could turn in a minimum turning radius of 28.75 cm around its middle point of axle. Then, with these kinematics, the real-time path planning algorithm of the robotic wheelchair is simplified. In combination with the newly developed wireless Internet-connection capability, the robotic wheelchair will be able to navigate in an unknown environment. The experimental results presented in this thesis include the performance of the control system, the motion trajectory of the two driving wheels turning in a minimum radius, and the motion trajectory of the real-time path-planning in a real-life testing environment. These experimental results verified that the robotic wheelchair could move successfully in an unknown environment with collision-avoidance navigation.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vieira, Miguel Castro Miguéis. "VLC based position etimation for robotic navigation." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/21666.

Повний текст джерела
Анотація:
Mestrado em Engenharia Eletrónica e Telecomunicações
Resumo não disponível
The widespread use of LED as arti cial illumination lead to the development of indoor positioning systems using visible light. On this work we gathered information on strategies and sensors used in visible light positioning (VLP). As such, we propose to estimate a robots position based on visible light communication (VLC) using a prototype developed in previous works. The work was divided in four stages. Initially, we veri ed that the prototype used was suitable to estimate its position. In order to overcome the prototype's limitations, a simulation environment was developed, where similar structures were tested. This allowed the comparison between the results obtained using the prototype and those from the simulator. At last, a noise model was implemented on the simulator to verify its in uence on the position estimation. The results show the viability of implementing VLP using a simple sensor based on a set of photo-diodes placed over a hemispherical dome, yielding a low-cost solution for VLP. When comparing the results obtained with the prototype and the simulator, we veri ed that the response is identical. With the implementation of the noise model, the results show an error of a few centimetres. We concluded that the photo-diodes eld of view is important when the position is estimated. The sensors eld of view should be big enough to intercept others in order to prevent blind spots but not too big since it would lead to errors because all sensors would receive signal.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gurunathan, Mohan 1975. "Guidance, navigation and control of a robotic fish." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50052.

Повний текст джерела
Анотація:
Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.
Includes bibliographical references (p. 70).
by Mohan Grurnathan.
S.B.and M.Eng.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bordallo, Micó Alejandro. "Intention prediction for interactive navigation in distributed robotic systems." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28802.

Повний текст джерела
Анотація:
Modern applications of mobile robots require them to have the ability to safely and effectively navigate in human environments. New challenges arise when these robots must plan their motion in a human-aware fashion. Current methods addressing this problem have focused mainly on the activity forecasting aspect, aiming at improving predictions without considering the active nature of the interaction, i.e. the robot’s effect on the environment and consequent issues such as reciprocity. Furthermore, many methods rely on computationally expensive offline training of predictive models that may not be well suited to rapidly evolving dynamic environments. This thesis presents a novel approach for enabling autonomous robots to navigate socially in environments with humans. Following formulations of the inverse planning problem, agents reason about the intentions of other agents and make predictions about their future interactive motion. A technique is proposed to implement counterfactual reasoning over a parametrised set of light-weight reciprocal motion models, thus making it more tractable to maintain beliefs over the future trajectories of other agents towards plausible goals. The speed of inference and the effectiveness of the algorithms is demonstrated via physical robot experiments, where computationally constrained robots navigate amongst humans in a distributed multi-sensor setup, able to infer other agents’ intentions as fast as 100ms after the first observation. While intention inference is a key aspect of successful human-robot interaction, executing any task requires planning that takes into account the predicted goals and trajectories of other agents, e.g., pedestrians. It is well known that robots demonstrate unwanted behaviours, such as freezing or becoming sluggishly responsive, when placed in dynamic and cluttered environments, due to the way in which safety margins according to simple heuristics end up covering the entire feasible space of motion. The presented approach makes more refined predictions about future movement, which enables robots to find collision-free paths quickly and efficiently. This thesis describes a novel technique for generating "interactive costmaps", a representation of the planner’s costs and rewards across time and space, providing an autonomous robot with the information required to navigate socially given the estimate of other agents’ intentions. This multi-layered costmap deters the robot from obstructing while encouraging social navigation respectful of other agents’ activity. Results show that this approach minimises collisions and near-collisions, minimises travel times for agents, and importantly offers the same computational cost as the most common costmap alternatives for navigation. A key part of the practical deployment of such technologies is their ease of implementation and configuration. Since every use case and environment is different and distinct, the presented methods use online adaptation to learn parameters of the navigating agents during runtime. Furthermore, this thesis includes a novel technique for allocating tasks in distributed robotics systems, where a tool is provided to maximise the performance on any distributed setup by automatic parameter tuning. All of these methods are implemented in ROS and distributed as open-source. The ultimate aim is to provide an accessible and efficient framework that may be seamlessly deployed on modern robots, enabling widespread use of intention prediction for interactive navigation in distributed robotic systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gagne-Roussel, Dave. "Vision-based navigation and control of a robotic vehicle." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27361.

Повний текст джерела
Анотація:
A recurrent problem in mobile robotics is the difficulty to accurately estimate a robot's localization. The ability to successfully estimate the localization of a mobile robot is highly dependent on the type of sensory data used to infer its pose. Traditionally, this has been achieved with odometry and the integration of wheel encoders signals. A major drawback of this approach, however, is the inability to provide an accurate estimate of the heading orientation; a significant cause of odometry drift leading to navigation failure. Accordingly, there is a need for improved localization methods, and vision-based estimation holds promise for this purpose. This research proposes an alternative solution to pure odometry localization. To that end a visual pose estimation algorithm which combines robotic vision and odometry is proposed. The method utilizes scene image vanishing points for recovering the orientation of a mobile robot in a two-dimensional space. To assess the performance of the visual pose estimation algorithm on an operational prototype robotic vehicle developed in the course of the current research, an original pose tracking controller using the geometrical properties of Cardinal splines is implemented. The visual pose estimation algorithm is validated experimentally and compared against six sensory fusion schemes. The results show that the localization accuracy can be improved by one order of magnitude when compared to pure wheel encoder odometry. With regards to motion control, the pose tracking controller is also evaluated for the case of rectilinear trajectories. Future work on large-scale navigation strategies will be developed based on these ideas.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Verstaevel, Nicolas. "Self-organization of robotic devices through demonstrations." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30060/document.

Повний текст джерела
Анотація:
La théorie des AMAS (Adaptive Multi-Agent Systems) propose de résoudre des problèmes complexes par auto-organisation pour lesquels aucune solution algorithmique n'est connue. Le comportement auto-organisateur des agents coopératifs permet au système de s'adapter à un environnement dynamique pour maintenir le système dans un état de fonctionnement adéquat. Dans cette thèse, cette approche a été appliquée au contrôle dans les systèmes ambiants, et plus particulièrement à la robotique de service. En effet, la robotique de service tend de plus en plus à s'intégrer à des environnements ambiants, on parle alors de robotique ambiante. Les systèmes ambiants présentent des caractéristiques, telles que l'ouverture et l'hétérogénéité, qui rendent la tâche de contrôle particulièrement complexe. Cette complexité est accrue si l'on prend en compte les besoins spécifiques, changeants et parfois contradictoires des utilisateurs. Les travaux de cette thèse proposent d'utiliser les principes de l'auto-organisation, pour concevoir un système multi-agent capable d'apprendre en temps réel à contrôler un système à partir des démonstrations faites par un tuteur. C'est l'apprentissage par démonstration. En observant l'activité de l'utilisateur et en apprenant le contexte dans lequel l'utilisateur agit, le système apprend une politique de contrôle pour satisfaire les utilisateurs. Nous proposons un nouveau paradigme de conception des systèmes robotiques sous le nom d'Extreme Sensitive Robotics. L'idée de base de ce paradigme est de distribuer le contrôle au sein des différentes fonctionnalités qui composent un système et de doter chacune de ces fonctionnalités de la capacité à s'adapter de manière autonome à son environnement. Pour évaluer l'apport de ce paradigme, nous avons conçu ALEX (Adaptive Learner by EXperiments), un système multi-agent adaptatif dont la fonction est d'apprendre, en milieux ambiants, à contrôler un dispositif robotique à partir de démonstrations. L'approche par AMAS permet la conception de logiciels à fonctionnalités émergentes. La solution à un problème émerge des interactions coopératives entre un ensemble d'agents autonomes, chaque agent ne possédant qu'une vue partielle de l'environnement. L'application de cette approche nous conduit à isoler les différents agents impliqués dans le problème du contrôle et à décrire leurs comportements locaux. Ensuite, nous identifions un ensemble de situations de non coopération susceptibles de nuire à leurs comportements et proposons un ensemble de mécanismes pour résoudre et anticiper ces situations. Les différentes expérimentations ont montré la capacité du système à apprendre en temps réel à partir de l'observation de l'activité de l'utilisateur et ont mis en évidence les apports, les limitations et les perspectives offertes par notre approche à la problématique du contrôle de systèmes ambiants
The AMAS (Adaptive Multi-Agent Systems) theory proposes to solve complex problems for which there is no known algorithmic solution by self-organization. The self-organizing behaviour of the cooperative agents enables the system to self-adapt to a dynamical environment to maintain the system in a functionality adequate state. In this thesis, we apply the theory to the problematic of control in ambient systems, and more particularly to service robotics. Service robotics is more and more taking part in ambient environment, we talk of ambient robotics. Ambient systems have challenging characteristics, such as openness and heterogeneity, which make the task of control particularly complex. This complexity is increased if we take into account the specific, changing and often contradictory needs of users. This thesis proposes to use the principle of self-organization to design a multi-agent system with the ability to learn in real-time to control a robotic device from demonstrations made by a tutor. We then talk of learning from demonstrations. By observing the activity of the users, and learning the context in which they act, the system learns a control policy allowing to satisfy users. Firstly, we propose a new paradigm to design robotic systems under the name Extreme Sensitive Robotics. The main proposal of this paradigm is to distribute the control inside the different functionalities which compose a system, and to give to each functionality the capacity to self-adapt to its environment. To evaluate the benefits of this paradigm, we designed ALEX (Adaptive Learner by Experiments), an Adaptive Multi-Agent System which learns to control a robotic device from demonstrations. The AMAS approach enables the design of software with emergent functionalities. The solution to a problem emerges from the cooperative interactions between a set of autonomous agents, each agent having only a partial perception of its environment. The application of this approach implies to isolate the different agents involved in the problem of control and to describe their local behaviour. Then, we identify a set of non-cooperative situations susceptible to disturb their normal behaviour, and propose a set of cooperation mechanisms to handle them. The different experimentations have shown the capacity of our system to learn in realtime from the observation of the activity of the user and have enable to highlight the benefits, limitations and perspectives offered by our approach to the problematic of control in ambient systems
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Navigation of robotic devices"

1

Rose, David. Robotic Devices for the Transit Environment. Washington, D.C.: Transportation Research Board, 2003. http://dx.doi.org/10.17226/24720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Robotic navigation and mapping with radar. Boston: Artech House, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ranade, Sanjay. Jukebox and robotic libraries for computer mass storage. Westport: Meckler, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Konermann, Werner, and Rolf Haaker, eds. Navigation und Robotic in der Gelenk- und Wirbelsäulenchirurgie. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55784-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Golnaraghi, Mohammed Fari. Chaotic dynamics and control of nonlinear and flexible arm robotic devices. [Ithaca, N. Y.]: Cornell University, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Borg, Jonathan M. An industrial robotic system for moving object interception using ideal proportional navigation guidance. Ottawa: National Library of Canada, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dahiya, Ravinder S. Robotic Tactile Sensing: Technologies and System. Dordrecht: Springer Netherlands, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bayoud, Fadi Atef. Development of a robotic mobile mapping system by vision-aided inertial navigation: A geomatics approach. Zürich: Institut für Geodäsie und Photogrammetrie, Eidgenössische Technische Hochschule Zürich, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Development of a robotic mobile mapping system by vision-aided inertial navigation: A geomatics approach. Zürich: Institut für Geodäsie und Photogrammetrie, Eidgenössische Technische Hochschule Zürich, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lyndon B. Johnson Space Center. 21st Aerospace Mechanisms Symposium: Proceedings of a symposium cosponsored by National Aeronautics and Space Administration, the California Institute of Technology, and Lockheed Missiles and Space Company, Inc., and hosted by Lyndon B. Johnson Space Center, April 29 - May 1, 1987. Houston, Tex: Lyndon B. Johnson Space Center, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Navigation of robotic devices"

1

Lopez-Fernandez, Jacobo, Roberto Iglesias, Carlos V. Regueiro, and Fernando E. Casado. "Inertial Navigation with Mobile Devices: A Robust Step Count Model." In ROBOT 2017: Third Iberian Robotics Conference, 666–78. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70833-1_54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Urdiales, Cristina. "A Dummy’s Guide to Assistive Navigation Devices." In Collaborative Assistive Robot for Mobility Enhancement (CARMEN), 19–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24902-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Venkatesan, Aradhana M., and Bradford J. Wood. "Advanced Tools and Devices: Navigation Technologies, Automation, and Robotics in Percutaneous Interventions." In Percutaneous Image-Guided Biopsy, 73–83. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8217-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Turennout, P., and G. Honderd. "Navigation of a Mobile Robot." In Robotic Systems, 415–22. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2526-0_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Antsev, Georgy V., and Valentine A. Sarychev. "Homing Devices." In Aerospace Navigation Systems, 202–43. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119163060.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Witek, Tadeusz D., Matthew S. Vercauteren, and Inderpal S. Sarkaria. "Instrumentation, Energy Devices, Staplers." In Robotic Surgery, 285–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-53594-0_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lindsay, Bruce D., and Oussama Wazni. "Magnetic and Robotic Navigation." In Cardiac Imaging in Electrophysiology, 305–20. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84882-486-7_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Poon, James, and Jaime Valls Miro. "A Multi-modal Utility to Assist Powered Mobility Device Navigation Tasks." In Social Robotics, 300–309. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11973-1_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lobo, Jorge, Lino Marques, Jorge Dias, Urbano Nunes, and Aníbal T. de Almeida. "Sensors for mobile robot navigation." In Autonomous Robotic Systems, 50–81. London: Springer London, 1998. http://dx.doi.org/10.1007/bfb0030799.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Frappier, G., P. Lemarquand, and T. Bogaert. "Navigation and Perception Approach of Panorama Project." In Robotic Systems, 391–98. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2526-0_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Navigation of robotic devices"

1

ur-Rehman Muhammad, Saif, Tamer Rabie, and Saleh Suleiman. "A novel wireless mesh network for indoor robotic navigation." In 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA). IEEE, 2016. http://dx.doi.org/10.1109/icedsa.2016.7818485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ko, David, Nalaka Kahawatte, and Harry H. Cheng. "Controlling Modular Reconfigurable Robots With Handheld Smart Devices." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48415.

Повний текст джерела
Анотація:
Highly reconfigurable modular robots face unique teleoperation challenges due to their geometry, configurability, high number of degrees of freedom and complexity. Current methodology for controlling reconfigurable modular robots typically use gait tables to control the modules. Gait tables are static data structures and do not readily support realtime teleoperation. Teleoperation techniques for traditional wheeled, flying, or submerged robots typically use a set of joysticks to control the robots. However, these traditional methods of robot teleoperation are not suitable for reconfigurable modular robotic systems which may have dozens of controllable degrees of freedom. This research shows that modern cell phones serve as highly effective control platforms for modular robots because of their programmability, flexibility, wireless communication capabilities, and increased processing power. As a result of this research, a versatile Graphical User Interface, a set of libraries and tools have been developed which even a novice robotics enthusiast can use to easily program their mobile phones to control their hobby project. These libraries will be beneficial in any situation where it is effective for the operator to use an off-the-shelf, relatively inexpensive, hand-held mobile phone as a remote controller rather than a considerably heavy and bulky remote controllers which are popular today. Several usage examples and experiments are presented which demonstrate the controller’s ability to effectively control a modular robot to perform a series of complex gaits and poses, as well as navigating a module through an obstacle course.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sousa, Frederico Luiz Martins de, Natália F. de C. Meira, Ricardo Augusto Rabelo Oliveira, and Mateus Coelho Silva. "Deep-Learning-Based Visual Odometry Models for Mobile Robotics." In Anais Estendidos do Simpósio Brasileiro de Engenharia de Sistemas Computacionais. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/sbesc_estendido.2021.18504.

Повний текст джерела
Анотація:
Odometry is a common problem in navigation systems where there is a need to estimate the position of the vehicle or carrier in the environment. To perform autonomous tasks, robotic or intelligent devices need to be aware of their position in the environment. There are many strategies to solve an odometry problem. This work explores a visual odometry solution with a deep neural network to infer the robotic vehicle's position in a known and mapped environment. The first robot, equipped with a LIDAR, IMU, and camera, maps the environment through a SLAM technique to perform this task. The data gathered by this first robot is used as ground truth to train the neural network, and later, other robots with only one camera can locate themselves in the environment. We also propose a validation and evaluation of the neural network.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mahmud, Mufti, David Hawellek, and Alessandra Bertoldo. "EEG based brain-machine interface for navigation of robotic device." In EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2010). IEEE, 2010. http://dx.doi.org/10.1109/biorob.2010.5627015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Guo, Shuxiang, Mingyang Qin, Nan Xiao, Yuan Wang, Weili Peng, and Xianqiang Bao. "High precise haptic device for the robotic catheter navigation system." In 2016 IEEE International Conference on Mechatronics and Automation. IEEE, 2016. http://dx.doi.org/10.1109/icma.2016.7558963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jin, Lingqiu, He Zhang, and Cang Ye. "A Wearable Robotic Device for Assistive Navigation and Object Manipulation." In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021. http://dx.doi.org/10.1109/iros51168.2021.9636126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Crassidis, Agamemnon, Wayne W. Walter, Douglas A. Carr, and Erin Long. "An Intelligent Robotic System Platform for Autonomous Mapping and Sensor Data Gathering of Non-GPS Friendly Environments." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79140.

Повний текст джерела
Анотація:
This paper presents results of a novel intelligent robotic system using a re-configurable platform for autonomous mapping and sensor data gathering of non-Global Positioning System (GPS) friendly, unknown and hazardous enclosed environments such as caves, underground and underwater tunnel networks, building floors, and spaces within a collapsed building rubble field. The work developed here forms a basis for a swarm of mini/micro robotic vehicles capable of autonomous routing and control with a self-contained navigation system that does not rely on GPS information. A robotic prototype capable of autonomously mapping a floor plan (such as hallways within a building) has been developed. The robot navigates autonomously without the use of GPS and gathers absolute position information developing a 2-dimensional map of the hallway network using a novel Mini Inertial Measurement/Navigation System (MIMNS) developed at RIT. Also, enhancements to the MIMNS unit are presented for estimating attitude orientation of the robot using an accelerometer based device allowing for non-flat plane mapping using the MIMNS unit. The paper presents the concepts of the robot hardware and software, results of a 2-dimensional mapping of a flat plane, and introduces simulation results of an accelerometer based attitude orientation device.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sun, Yu, Haiyun Chen, Zhongliang Jiang, Peng Gao, Ying Hu, and Peng Zhang. "Respiratory Compensation System in Spinal Surgery." In 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3307.

Повний текст джерела
Анотація:
The traditional spinal surgery is often conducted by hand operation with the help of navigation system which is combined with medical image. Although a veteran surgeon has a good adaptability during surgeries, it will tend to decrease along with the increase in surgery time which causes fatigues and leads to low qualities. Many surgical robots have been developed to assist surgeons in operation, and some of them approved by doctors or researchers are DaVinci (Intuitive Surgical, America) [1], Renaissance (Mazor Robotics, Israel), etc. These robot systems have enhanced the accuracy of operation; however, the adaptabilities are still weakened at the same time. During the pedicle screw drilling, surgeons can well adapt to the spine movements mainly caused by respiration, while it is difficult for these robots to adapt to the movements, indicating that the accuracy might drop in the actual application. Respiratory compensation system is aimed to keep the region of operation stable or reduce the amplitude of fluctuation [2]. The rests of paper introduced the respiratory compensation system and its control algorithm based on infrared tracking data, and experiments were conducted to analyze the accuracy and stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chami, Mohammad, and Holger Voos. "A MATLAB-Based Application Development Using a 3D PMD Camera for a Mobile Robot." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47873.

Повний текст джерела
Анотація:
Three-dimensional sensing is a vital field in mobile robotic applications. This work proposes an application of a Time-of-Flight 3D Photonic Mixer Device (PMD) camera for the navigation of an Omni-directional mobile robot. The 3D PMD camera enables real time distance detection as well as the capturing of grayscale images. In our framework, the application of the 3D PMD camera is aimed at solving the problem of environmental perception in mobile robotics. In this paper, we present the development of a MATLAB-based kit for the control of an Omni-directional mobile robot supported by a data acquisition board. The communication interface of the camera, used to close the system’s control loop, has been also developed. We further present results of different experiments including online obstacle detection and avoidance. In addition, an adaptive pose determination for the robot is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Briot, Se´bastien, Ce´dric Baradat, Sylvain Gue´gan, and Vigen Arakelian. "Contribution to the Mechanical Behavior Improvement of the Robotic Navigation Device Surgiscope®." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35067.

Повний текст джерела
Анотація:
This paper proposes a new solution to the problem of torque minimization of the medical device SurgiScope® by connecting to the initial structure a secondary mechanical system, which generates a vertical constant force on the platform of the robotized device. The conditions for optimization are formulated by the minimization of the root-mean-square values of the input torques of the studied device. The positioning errors of the unbalanced and balanced robots are provided. A significant reduction of these errors is achieved by using the suggested balancing mechanism. The efficiency of the developed approach is illustrated by numerical simulations. Experimental validation of the obtained optimization is illustrated by a prototype developed in the National Institute of Applied Sciences of Rennes in collaboration with the “Intelligent Surgical Instruments & Systems” (ISIS) Company.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Navigation of robotic devices"

1

Pizlo, Zygmunt, and Longin J. Latecki. Robotic Navigation Emulating Human Performance. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada566161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lennon, Craig, Barry Bodt, Marshal Childers, Jean Oh, Arne Suppe, Luis Navarro-Serment, Robert Dean, Terrence Keegan, Chip Diberardino, and Menglong Zhu. An Integrated Assessment of Progress in Robotic Perception and Semantic Navigation. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada621666.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Redden, Elizabeth S., Rodger A. Pettitt, Christian B. Carstens, Linda R. Elliott, and Dave Rudnick. Scaling Robotic Displays: Visual and Multimodal Options for Navigation by Dismounted Soldiers. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada494188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lei, Kai, LiMing Liu, Xin Chen, JiangMing Luo, Qing Feng, Liu Yang, and Lin Guo. Comparative efficacy of Robotic-assisted, Navigation-assisted, Patient-specific-instrumentation-assisted, and conventional techniques in Total Knee Arthroplasty: Protocol for a network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, June 2020. http://dx.doi.org/10.37766/inplasy2020.6.0018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Burks, Thomas F., Victor Alchanatis, and Warren Dixon. Enhancement of Sensing Technologies for Selective Tree Fruit Identification and Targeting in Robotic Harvesting Systems. United States Department of Agriculture, October 2009. http://dx.doi.org/10.32747/2009.7591739.bard.

Повний текст джерела
Анотація:
The proposed project aims to enhance tree fruit identification and targeting for robotic harvesting through the selection of appropriate sensor technology, sensor fusion, and visual servo-control approaches. These technologies will be applicable for apple, orange and grapefruit harvest, although specific sensor wavelengths may vary. The primary challenges are fruit occlusion, light variability, peel color variation with maturity, range to target, and computational requirements of image processing algorithms. There are four major development tasks in original three-year proposed study. First, spectral characteristics in the VIS/NIR (0.4-1.0 micron) will be used in conjunction with thermal data to provide accurate and robust detection of fruit in the tree canopy. Hyper-spectral image pairs will be combined to provide automatic stereo matching for accurate 3D position. Secondly, VIS/NIR/FIR (0.4-15.0 micron) spectral sensor technology will be evaluated for potential in-field on-the-tree grading of surface defect, maturity and size for selective fruit harvest. Thirdly, new adaptive Lyapunov-basedHBVS (homography-based visual servo) methods to compensate for camera uncertainty, distortion effects, and provide range to target from a single camera will be developed, simulated, and implemented on a camera testbed to prove concept. HBVS methods coupled with imagespace navigation will be implemented to provide robust target tracking. And finally, harvesting test will be conducted on the developed technologies using the University of Florida harvesting manipulator test bed. During the course of the project it was determined that the second objective was overly ambitious for the project period and effort was directed toward the other objectives. The results reflect the synergistic efforts of the three principals. The USA team has focused on citrus based approaches while the Israeli counterpart has focused on apples. The USA team has improved visual servo control through the use of a statistical-based range estimate and homography. The results have been promising as long as the target is visible. In addition, the USA team has developed improved fruit detection algorithms that are robust under light variation and can localize fruit centers for partially occluded fruit. Additionally, algorithms have been developed to fuse thermal and visible spectrum image prior to segmentation in order to evaluate the potential improvements in fruit detection. Lastly, the USA team has developed a multispectral detection approach which demonstrated fruit detection levels above 90% of non-occluded fruit. The Israel team has focused on image registration and statistical based fruit detection with post-segmentation fusion. The results of all programs have shown significant progress with increased levels of fruit detection over prior art.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Velázquez López, Noé. Working Paper PUEAA No. 7. Development of a farm robot (Voltan). Universidad Nacional Autónoma de México, Programa Universitario de Estudios sobre Asia y África, 2022. http://dx.doi.org/10.22201/pueaa.005r.2022.

Повний текст джерела
Анотація:
Over the last century, agriculture has evolved from a labor-intensive industry to one that uses mechanized, high-powered production systems. The introduction of robotic technology in agriculture could be a new step towards labor productivity. By mimicking or extending human skills, robots overcome critical human limitations, including the ability to operate in harsh agricultural environments. In this context, in 2014 the development of the first agricultural robot in Mexico (“Voltan”) began at Chapingo Autonomous University. The research’s objective was to develop an autonomous multitasking vehicle for agricultural work. As a result of this development, a novel suspension system was created. In addition, autonomous navigation between crop rows was achieved through computer vision, allowing crop monitoring, fertilizer application and, in general, pest and disease control.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Semerikov, Serhiy O., Mykhailo M. Mintii, and Iryna S. Mintii. Review of the course "Development of Virtual and Augmented Reality Software" for STEM teachers: implementation results and improvement potentials. [б. в.], 2021. http://dx.doi.org/10.31812/123456789/4591.

Повний текст джерела
Анотація:
The research provides a review of applying the virtual reality (VR) and augmented reality (AR) technology to education. There are analysed VR and AR tools applied to the course “Development of VR and AR software” for STEM teachers and specified efficiency of mutual application of the environment Unity to visual design, the programming environment (e.g. Visual Studio) and the VR and AR platforms (e.g. Vuforia). JavaScript language and the A-Frame, AR.js, Three.js, ARToolKit and 8th Wall libraries are selected as programming tools. The designed course includes the following modules: development of VR tools (VR and Game Engines; physical interactions and camera; 3D interface and positioning; 3D user interaction; VR navigation and introduction) and development of AR tools (set up AR tools in Unity 3D; development of a project for a photograph; development of training materials with Vuforia; development for promising devices). The course lasts 16 weeks and contains the task content and patterns of performance. It is ascertained that the course enhances development of competences of designing and using innovative learning tools. There are provided the survey of the course participants concerning their expectations and the course results. Reduced amounts of independent work, increased classroom hours, detailed methodological recommendations and increased number of practical problems associated with STEM subjects are mentioned as the course potentials to be implemented.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії