Добірка наукової літератури з теми "Navier Stoke"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Navier Stoke".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Navier Stoke"
Cai, Jiaxi, Yihan Wang, and Shuonan Yu. "The Recent Progress and the State-of-art Applications of Navier Stokes Equation." Highlights in Science, Engineering and Technology 12 (August 26, 2022): 114–20. http://dx.doi.org/10.54097/hset.v12i.1413.
Повний текст джерелаHuan, Diem Dang. "Stability of stochastic 2D Navier-Stokes equations with memory and Poisson jumps." Open Journal of Mathematical Sciences 4, no. 1 (November 30, 2020): 417–29. http://dx.doi.org/10.30538/oms2020.0131.
Повний текст джерелаYanti, Rahma. "Pengaruh Posisi Bukaan terhadap Penghawaan Alami pada Rumah Balai Padang." Gorontalo Journal of Infrastructure and Science Engineering 2, no. 1 (April 1, 2019): 10. http://dx.doi.org/10.32662/gojise.v2i1.525.
Повний текст джерелаAlmady, Wasif. "Analytical Solution for Boltzmann Collision Operator for the1-D Diffusion equation." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 1514–17. http://dx.doi.org/10.22214/ijraset.2021.38189.
Повний текст джерелаLévy, T., and E. Sanchez-Palencia. "Einstein-like approximation for homogenization with small concentration. II—Navier-Stoke equation." Nonlinear Analysis: Theory, Methods & Applications 9, no. 11 (November 1985): 1255–68. http://dx.doi.org/10.1016/0362-546x(85)90034-3.
Повний текст джерелаZhu, Bao Li, Hui Pen Wu, and Tian Hang Xiao. "Study of Aerodynamic Interactions of Dual Flapping Airfoils in Tandem Configurations." Applied Mechanics and Materials 160 (March 2012): 301–6. http://dx.doi.org/10.4028/www.scientific.net/amm.160.301.
Повний текст джерелаBasuki, Imam, and Fredy Susanto. "Aliran Fluida Laminer Pada Pipa Non Horizontal." JEECAE (Journal of Electrical, Electronics, Control, and Automotive Engineering) 4, no. 2 (December 3, 2019): 301–5. http://dx.doi.org/10.32486/jeecae.v4i2.435.
Повний текст джерелаIbthisham, A. Mohd, Srithar Rajoo, Amer Nordin Darus, Mazlan Abdul Wahid, Mohsin Mohd Sies, and Aminuddin Saat. "Simulation of Corrected Mass Flow and Non-Adiabatic Efficiency on a Turbocharger." Applied Mechanics and Materials 388 (August 2013): 23–28. http://dx.doi.org/10.4028/www.scientific.net/amm.388.23.
Повний текст джерелаTasri. "Simple Improvement of Momentum Interpolation Equation for Navier-Stoke Equation Solver on Unstructured Grid." Journal of Mathematics and Statistics 6, no. 3 (August 1, 2010): 265–70. http://dx.doi.org/10.3844/jmssp.2010.265.270.
Повний текст джерелаMORINISHI, Koji. "A Preliminary Study of the Boltzmann/Navier-Stoke Hybrid Method for Micro Flow Simulation." Proceedings of The Computational Mechanics Conference 2004.17 (2004): 81–82. http://dx.doi.org/10.1299/jsmecmd.2004.17.81.
Повний текст джерелаДисертації з теми "Navier Stoke"
Maidana, Manuel Augusto. "Desarrollo de un modelo numérico 3D en elementos finitos para las ecuaciones de Navier-Stokes : aplicaciones oceanográficas." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/457520.
Повний текст джерелаIn this thesis finite element model was developed, named HELIKE, for the numerical simulation of the three-dimensional, turbulent, non-hydrostatic, free-surface flows like those arising in the study of the motion of water in coastal regions. The kinematic free-surface equation is used to compute the surface elevation, without resorting to vertical averages. The model developed here incorporates surface wind stress, bottom friction, Coriolis acceleration, the baroclinic term to take account the density gradients, and it is applicable to irregular bottom topographies. A pressure stabilization technique is employed to stabilize the finite element solution. Numerical results confirm the accuracy, robustness and applicability of the proposed method.
Ghosh, Amrita. "Naviers-Stokes equations with Navier boundary condition." Thesis, Pau, 2018. http://www.theses.fr/2018PAUU3021/document.
Повний текст джерелаMy PhD thesis title is "Navier-Stokes equations with Navier boundary condition" where I have considered the motion of an incompressible, viscous, Newtonian fluid in a bounded do- main in R3. The fluid flow is described by the well-known Navier-Stokes equations, given by thefollowing system 1 )t − L1u + (u ⋅ ∇)u + ∇n = 0, div u = 01u ⋅ n = 0, 2[(IDu)n]r + aur = 0 in Q × (0, T )on Γ × (0, T ) (0.1) 11lu(0) = u0 in Qin a bounded domain Q ⊂ R3 with boundary Γ, possibly not connected, of class C1,1. The initialvelocity u0 and the (scalar) friction coefficient a are given functions. The unit outward normal and tangent vectors on Γ are denoted by n and r respectively and IDu = 1 (∇u + ∇uT ) is the rate of strain tensor. The functions u and n describe respectively the velocity2 and the pressure of a fluid in Q satisfying the boundary condition (0.1.2).This boundary condition, first proposed by H. Navier in 1823, has been studied extensively in recent years, among many reasons due to its contrast with the no-slip Dirichlet boundary condition: it offers more freedom and are likely to provide a physically acceptable solution at least to some of the paradoxical phenomenons, resulting from the no-slip condition, for example, D’Alembert’s paradox or no-collision paradox.My PhD work consists of three parts. primarily I have discussed the Lp -theory of well-posedness of the problem (0.1), in particular existence, uniqueness of weak and strong solutions in W 1,p (Q) and W 2,p (Q) for all p ∈ (1, ∞) considering minimal regularity on the friction coefficienta. Here a is a function, not merely a constant which reflects various properties of the fluid and/or of the boundary. Moreover, I have deduced estimates showing explicitly the dependence of u on a which enables us to analyze the behavior of the solution with respect to the friction coefficient.Using this fact that the solutions are bounded with respect to a, we have shown the solution of the Navier-Stokes equations with Navier boundary condition converges strongly to a solution of the Navier-Stokes equations with Dirichlet boundary condition corresponding to the sameinitial data in the energy space as a → ∞. The similar results have also been deduced for thestationary case.The last chapter is concerned with estimates for a Laplace-Robin problem: the following second order elliptic operator in divergence form in a bounded domain Q ⊂ Rn of class C1, withthe Robin boundary condition has been considered1div(A∇)u = divf + F in Q, 11 )u + u = f ⋅ n + g on Γ. (0.2) 2The coefficient matrix A is symmetric and belongs to V MO(R3). Also a is a function belonging to some Lq -space. Apart from proving existence, uniqueness of weak and strong solutions, we obtain the bound on u, uniform in a for a sufficiently large, in the Lp -norm. We have separately studied the two cases: the interior estimate and the boundary estimate to make the main idea clear in the simple set up
GALLANA, LUCA. "Statistical analysis of inhomogeneous fluctuation fields. Scalar transport in shearless turbulent mixing, effects of stratification, solar wind and solar wind-interstellar medium interaction." Doctoral thesis, Politecnico di Torino, 2016. http://hdl.handle.net/11583/2653026.
Повний текст джерелаCai, Zhemin. "A High-order Discontinuous Galerkin Method for Simulating Incompressible Fluid-Thermal-Structural Problems." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20961.
Повний текст джерелаBORDIGNON, ALEX LAIER. "NAVIER-STOKES EM GPU." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8928@1.
Повний текст джерелаNesse trabalho, mostramos como simular um fluido em duas dimensões em um domÃnio com fronteiras arbitrárias. Nosso trabalho é baseado no esquema stable fluids desenvolvido por Joe Stam. A implementação é feita na GPU (Graphics Processing Unit), permitindo velocidade de interação com o fluido. Fazemos uso da linguagem Cg (C for Graphics), desenvolvida pela companhia NVidia. Nossas principais contribuições são o tratamento das múltiplas fronteiras, onde aplicamos interpolação bilinear para atingir melhores resultados, armazenamento das condições de fronteira usa apenas um canal de textura, e o uso de confinamento de vorticidade.
In this work we show how to simulate fluids in two dimensions in a domain with arbitrary bondaries. Our work is based on the stable fluid scheme developed by Jo Stam. The implementation is done in GPU (Graphics Processinfg Unit), thus allowing fluid interaction speed. We use the language Cg (C for Graphics) developed by the company Nvídia. Our main contributions are the treatment of domains with multiple boundaries, where we apply bilinear interpolation to obtain better results, the storage of the bondaty conditions in a unique texturre channel, and the use of vorticity confinement.
Rejaiba, Ahmed. "Equations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3050/document.
Повний текст джерелаThis thesis is devoted to the study of the Stokes equations and Navier-Stokes equations with Navier boundary conditions in a bounded domain of . The work contains three chapters: In the first chapter, we consider the stationary Stokes equations with Navier boundary condition. We show the existence, uniqueness and regularity of the solution in the Hilbert case and in the -theory. We prove also the case of very weak solutions. In the second chapter, we focus on the Navier-Stokes equations with the Navier boundary condition. We show the existence of the weak solution in , with by a fixed point theorem over the Oseen equation. We show also the existence of the strong solution in . In chapter three, we study the evolution Stokes problem with Navier boundary condition. For this, we apply the analytic semi-groups theory, which plays a crucial role in the study of existence and uniqueness of solution in the case of the homogeneous evolution problem. We treat the case of non-homogeneous problem through imaginary powers of the Stokes operator
Cannone, Marco. "Ondelettes, paraproduits et Navier-Stokes." Paris 9, 1994. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1994PA090016.
Повний текст джерелаMallinger, François. "Couplage adaptatif Boltzmann Navier-Stokes." Paris 9, 1996. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1996PA090042.
Повний текст джерелаWe study external flows for semirarefied régimes at high mach number. We propose a domain décomposition strategy coupling Boltzmann and Navier-Stokes models. The coupling is done by boundary conditions. The Boltzmann and Navier-Stokes computational domains are defined automatically thanks to a critérium analysing the validity of the numerical Navier-Stokes solution. We propose therefore an adaptative coupling algorithm taking into account both the automatic définition of the computation domains and a time marching algorithm to couple the models. The whole strategy results from the transition between the microscopie model (Boltzmann) and the macroscopie model (Navier-Stokes). In order to generalize this adaptative coupling, we study this connection for diatomic gases. Finally, we justify the coupled problem from a mathematical view point
Landmann, Björn. "A parallel discontinuous Galerkin code for the Navier-Stokes and Reynolds-averaged Navier-Stokes equations." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-35199.
Повний текст джерелаLandmann, Björn. "A parallel discontinuous Galerkin code for the Navier-Stokes and Reynolds averaged Navier-Stokes equations." München Verl. Dr. Hut, 2007. http://d-nb.info/988422433/04.
Повний текст джерелаКниги з теми "Navier Stoke"
E, Jorgenson Philip C., and United States. National Aeronautics and Space Administration., eds. A mixed volume grid approach for the Euler and Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1996.
Знайти повний текст джерелаE, Jorgenson Philip C., and United States. National Aeronautics and Space Administration., eds. A mixed volume grid approach for the Euler and Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1996.
Знайти повний текст джерелаŁukaszewicz, Grzegorz, and Piotr Kalita. Navier–Stokes Equations. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27760-8.
Повний текст джерелаKollmann, Wolfgang. Navier-Stokes Turbulence. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7.
Повний текст джерелаConstantin, P. Navier-Stokes equations. Chicago: University of Chicago Press, 1988.
Знайти повний текст джерелаRamm, Alexander G. The Navier-Stokes Problem. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-02431-3.
Повний текст джерелаPlotnikov, Pavel, and Jan Sokołowski. Compressible Navier-Stokes Equations. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0367-0.
Повний текст джерелаSohr, Hermann. The Navier-Stokes Equations. Basel: Springer Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-0551-3.
Повний текст джерелаSohr, Hermann. The Navier-Stokes Equations. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8255-2.
Повний текст джерелаZeytounian, Radyadour Kh. Navier-Stokes-Fourier Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20746-4.
Повний текст джерелаЧастини книг з теми "Navier Stoke"
Di Pietro, Daniele Antonio, and Jérôme Droniou. "Navier–Stokes." In The Hybrid High-Order Method for Polytopal Meshes, 421–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37203-3_9.
Повний текст джерелаDebussche, Arnaud, Berenger Hug, and Etienne Mémin. "Modeling Under Location Uncertainty: A Convergent Large-Scale Representation of the Navier-Stokes Equations." In Mathematics of Planet Earth, 15–26. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18988-3_2.
Повний текст джерелаKollmann, Wolfgang. "Navier–Stokes Equations." In Navier-Stokes Turbulence, 17–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_2.
Повний текст джерелаKollmann, Wolfgang. "Introduction." In Navier-Stokes Turbulence, 1–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_1.
Повний текст джерелаKollmann, Wolfgang. "Solution of Hopf-Type Equations in the Spatial Description." In Navier-Stokes Turbulence, 163–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_10.
Повний текст джерелаKollmann, Wolfgang. "Finite-Dimensional Characteristic Functions, Pdfs and Cdfs Based on the Dirac Distribution." In Navier-Stokes Turbulence, 179–201. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_11.
Повний текст джерелаKollmann, Wolfgang. "Properties and Construction of Mappings." In Navier-Stokes Turbulence, 203–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_12.
Повний текст джерелаKollmann, Wolfgang. "$$\mathcal{M}_1(1)$$: Single Scalar in Homogeneous Turbulence." In Navier-Stokes Turbulence, 217–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_13.
Повний текст джерелаKollmann, Wolfgang. "$$\mathcal{M}_1(N)$$: Mappings for Velocity–Scalar and Position–Scalar Pdfs." In Navier-Stokes Turbulence, 249–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_14.
Повний текст джерелаKollmann, Wolfgang. "Integral Transforms and Spectra." In Navier-Stokes Turbulence, 269–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_15.
Повний текст джерелаТези доповідей конференцій з теми "Navier Stoke"
Clark, William S., and Kenneth C. Hall. "A Time-Linearized Navier-Stokes Analysis of Stall Flutter." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-383.
Повний текст джерелаOyama, Akira, Meng-Sing Liou, and Shigeru Obayashi. "Transonic Axial-Flow Blade Shape Optimization Using Evolutionary Algorithm and Three-Dimensional Navier-Stoke Solver." In 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-5642.
Повний текст джерелаKorneev, Svyatoslav, and Simona Onori. "Modeling the Transport Dynamics in Gasoline Particulate Filters." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9160.
Повний текст джерелаDuque, Earl P. N., Michael D. Burklund, and Wayne Johnson. "Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment." In ASME 2003 Wind Energy Symposium. ASMEDC, 2003. http://dx.doi.org/10.1115/wind2003-355.
Повний текст джерелаGolliard, Joachim, Néstor González-Díez, Stefan Belfroid, Güneş Nakiboğlu, and Avraham Hirschberg. "U-RANS Model for the Prediction of the Acoustic Sound Power Generated in a Whistling Corrugated Pipe." In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97385.
Повний текст джерелаLee, Sungsu, Hak-Sun Kim, Kwang-Hyun Nam, Jae Ik Hong, and Seung Hyun Chun. "Computational and Experimental Study of Effects of Guide Vanes and Tip Clearances on Performances of Axial Flow Fans." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56288.
Повний текст джерелаRahman, M. A., T. Heidrick, and B. Fleck. "Computational Analysis of Effective Microfluidic Mixing Utilizing Surface Heterogeneity Effects." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98564.
Повний текст джерелаWolf, Jörg. "A direct proof of the Caffarelli-Kohn-Nirenberg theorem." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-34.
Повний текст джерелаWrzosek, Dariusz. "Chemotaxis models with a threshold cell density." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-35.
Повний текст джерелаArkhipova, Arina. "New a priori estimates for nondiagonal strongly nonlinear parabolic systems." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-1.
Повний текст джерелаЗвіти організацій з теми "Navier Stoke"
Dartevelle, Sebastian. From model conception to verification and validation, a global approach to multiphase Navier-Stoke models with an emphasis on volcanic explosive phenomenology. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/948564.
Повний текст джерелаMartin, Daniel, and Phillip Colella. Incompressible Navier-Stokes with particles algorithm designdocument. Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/926455.
Повний текст джерелаSrinivasan, G. R., and W. J. McCroskey. Navier-Stokes Calculations of Hovering Rotor Flowfields,. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada184784.
Повний текст джерелаMurman, Earll M. Adaptive Navier-Stokes Calculations for Vortical Flows. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada266236.
Повний текст джерелаReed, Helen L. Navier-Stokes Simulation of Boundary-Layer Transition. Fort Belvoir, VA: Defense Technical Information Center, May 1990. http://dx.doi.org/10.21236/ada226351.
Повний текст джерелаNewman, Christopher K. Exponential integrators for the incompressible Navier-Stokes equations. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/975250.
Повний текст джерелаSelvam, R. P., and Zu-Qing Qu. Adaptive Navier Stokes Flow Solver for Aerospace Structures. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada424479.
Повний текст джерелаKilic, M. S., G. B. Jacobs, J. S> Hesthaven, and G. Haller. Reduced Navier-Stokes Equations Near a Flow Boundary. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada458888.
Повний текст джерелаNguyen, Phuc N. Use of Navier-Stokes Analysis in Section Design. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada242074.
Повний текст джерелаElman, Howard, and David Silvester. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada599710.
Повний текст джерела