Добірка наукової літератури з теми "Nanomaterials - Catalytic Applications"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nanomaterials - Catalytic Applications".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nanomaterials - Catalytic Applications"

1

Duan, Sibin, Zhe Du, Hongsheng Fan, and Rongming Wang. "Nanostructure Optimization of Platinum-Based Nanomaterials for Catalytic Applications." Nanomaterials 8, no. 11 (November 17, 2018): 949. http://dx.doi.org/10.3390/nano8110949.

Повний текст джерела
Анотація:
Platinum-based nanomaterials have attracted much interest for their promising potentials in fields of energy-related and environmental catalysis. Designing and controlling the surface/interface structure of platinum-based nanomaterials at the atomic scale and understanding the structure-property relationship have great significance for optimizing the performances in practical catalytic applications. In this review, the strategies to obtain platinum-based catalysts with fantastic activity and great stability by composition regulation, shape control, three-dimension structure construction, and anchoring onto supports, are presented in detail. Moreover, the structure-property relationship of platinum-based nanomaterials are also exhibited, and a brief outlook are given on the challenges and possible solutions in future development of platinum-based nanomaterials towards catalytic reactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nasrollahzadeh, Mahmoud, Mohaddeseh Sajjadi, Siavash Iravani, and Rajender S. Varma. "Trimetallic Nanoparticles: Greener Synthesis and Their Applications." Nanomaterials 10, no. 9 (September 9, 2020): 1784. http://dx.doi.org/10.3390/nano10091784.

Повний текст джерела
Анотація:
Nanoparticles (NPs) and multifunctional nano-sized materials have significant applications in diverse fields, namely catalysis, sensors, optics, solar energy conversion, cancer therapy/diagnosis, and bioimaging. Trimetallic NPs have found unique catalytic, active food packaging, biomedical, antimicrobial, and sensing applications; they preserve an ever-superior level of catalytic activities and selectivity compared to monometallic and bimetallic nanomaterials. Due to these important applications, a variety of preparation routes, including hydrothermal, microemulsion, selective catalytic reduction, co-precipitation, and microwave-assisted methodologies have been reported for the syntheses of these nanomaterials. As the fabrication of nanomaterials using physicochemical methods often have hazardous and toxic impacts on the environment, there is a vital need to design innovative and well-organized eco-friendly, sustainable, and greener synthetic protocols for their assembly, by applying safer, renewable, and inexpensive materials. In this review, noteworthy recent advancements relating to the applications of trimetallic NPs and nanocomposites comprising these NPs are underscored as well as their eco-friendly and sustainable synthetic preparative options.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Min, Shengyi, Qiao Yu, Jiaquan Ye, Pengfei Hao, Jiayu Ning, Zhiqiang Hu, and Yu Chong. "Nanomaterials with Glucose Oxidase-Mimicking Activity for Biomedical Applications." Molecules 28, no. 12 (June 7, 2023): 4615. http://dx.doi.org/10.3390/molecules28124615.

Повний текст джерела
Анотація:
Glucose oxidase (GOD) is an oxidoreductase that catalyzes the aerobic oxidation of glucose into hydrogen peroxide (H2O2) and gluconic acid, which has been widely used in industrial raw materials production, biosensors and cancer treatment. However, natural GOD bears intrinsic disadvantages, such as poor stability and a complex purification process, which undoubtedly restricts its biomedical applications. Fortunately, several artificial nanomaterials have been recently discovered with a GOD-like activity and their catalytic efficiency toward glucose oxidation can be finely optimized for diverse biomedical applications in biosensing and disease treatments. In view of the notable progress of GOD-mimicking nanozymes, this review systematically summarizes the representative GOD-mimicking nanomaterials for the first time and depicts their proposed catalytic mechanisms. We then introduce the efficient modulation strategy to improve the catalytic activity of existing GOD-mimicking nanomaterials. Finally, the potential biomedical applications in glucose detection, DNA bioanalysis and cancer treatment are highlighted. We believe that the development of nanomaterials with a GOD-like activity will expand the application range of GOD-based systems and lead to new opportunities of GOD-mimicking nanomaterials for various biomedical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Hualin, Yu Zhou, and Juewen Liu. "Porphyrin metalation catalyzed by DNAzymes and nanozymes." Inorganic Chemistry Frontiers 8, no. 9 (2021): 2183–99. http://dx.doi.org/10.1039/d1qi00105a.

Повний текст джерела
Анотація:
In this review, DNA and nanomaterial based catalysts for porphyrin metalation reactions are summarized, including the selection of DNAzymes, choice of nanomaterials, their catalytic mechanisms, and applications of the reactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Qiao, and Yadong Yin. "Nanomaterials engineering and applications in catalysis." Pure and Applied Chemistry 86, no. 1 (January 22, 2014): 53–69. http://dx.doi.org/10.1515/pac-2014-5000.

Повний текст джерела
Анотація:
Abstract Heterogeneous catalysis utilizing metal particles plays an essential role in the industrial applications. Design and fabrication of highly active catalysts in an efficient and cost-effective way is thus an important topic. The emergence of nanotechnology provides an excellent opportunity for developing new catalysts. In this critical review, we present our efforts and perspective on the recent advances in engineering nanomaterials for catalysis, including synthesis, stabilization, and catalytic applications of nanoparticles. We first briefly summarize the advanced colloidal synthesis of metal nanoparticles using Ag nanoplates as the model system, and then discuss the strategies for stabilization of metal nanoparticles using both chemical and physical approaches. And finally, for practical applications, we have designed and synthesized a highly efficient, stable, and cost-effective TiO2-based photocatalyst by combining both non-metal doping and noble metal decoration.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yu, Feng, and Lanbo Di. "Plasma for Energy and Catalytic Nanomaterials." Nanomaterials 10, no. 2 (February 15, 2020): 333. http://dx.doi.org/10.3390/nano10020333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Massaro, Marina, Renato Noto, and Serena Riela. "Halloysite Nanotubes: Smart Nanomaterials in Catalysis." Catalysts 12, no. 2 (January 25, 2022): 149. http://dx.doi.org/10.3390/catal12020149.

Повний текст джерела
Анотація:
The use of clay minerals as catalyst is renowned since ancient times. Among the different clays used for catalytic purposes, halloysite nanotubes (HNTs) represent valuable resources for industrial applications. This special tubular clay possesses high stability and biocompatibility, resistance against organic solvents, and most importantly be available in large amounts at a low cost. Therefore, HNTs can be efficiently used as catalysts themselves or supports for metal nanoparticles in several catalytic processes. This review reports a comprehensive overview of the relevant advances in the use of halloysite in catalysis, focusing the attention on the last five years.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Jiaqing, and Hongwei Gu. "Novel Metal Nanomaterials and Their Catalytic Applications." Molecules 20, no. 9 (September 17, 2015): 17070–92. http://dx.doi.org/10.3390/molecules200917070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shaik, Mohammed Rafi, Syed Farooq Adil, and Mujeeb Khan. "Novel Nanomaterials for Catalytic and Biological Applications." Crystals 13, no. 3 (March 1, 2023): 427. http://dx.doi.org/10.3390/cryst13030427.

Повний текст джерела
Анотація:
Currently, nanotechnology has become an integral part of science and technology and has played a crucial role in the development of a variety of technological advancements in different industries [...]
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pal, Nabanita, Debabrata Chakraborty, Eun-Bum Cho, and Jeong Gil Seo. "Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials." Nanomaterials 13, no. 15 (July 26, 2023): 2184. http://dx.doi.org/10.3390/nano13152184.

Повний текст джерела
Анотація:
Nanoscopic materials have demonstrated a versatile role in almost every emerging field of research. Nanomaterials have come to be one of the most important fields of advanced research today due to its controllable particle size in the nanoscale range, capacity to adopt diverse forms and morphologies, high surface area, and involvement of transition and non-transition metals. With the introduction of porosity, nanomaterials have become a more promising candidate than their bulk counterparts in catalysis, biomedicine, drug delivery, and other areas. This review intends to compile a self-contained set of papers related to new synthesis methods and versatile applications of porous nanomaterials that can give a realistic picture of current state-of-the-art research, especially for catalysis and sensor area. Especially, we cover various surface functionalization strategies by improving accessibility and mass transfer limitation of catalytic applications for wide variety of materials, including organic and inorganic materials (metals/metal oxides) with covalent porous organic (COFs) and inorganic (silica/carbon) frameworks, constituting solid backgrounds on porous materials.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Nanomaterials - Catalytic Applications"

1

Zhang, Rui. "Transition-metal-based composite and hybrid nanomaterials for catalytic applications." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19224.

Повний текст джерела
Анотація:
In der Entwicklung von Technologien für die nachhaltige Erzeugung, Speicherung und Umwandlung von Energie werden Hochleistungskatalysatoren benötigt. Im Rahmen dieser Arbeit werden verschiedene Übergangsmetall-basierte Katalysatoren, namentlich TiO2/Kohlenstoff-Komposite, anorganisch-organische Hybridsysteme auf Basis von NiFe Phosphonaten sowie Ni Phosphide, synthetisiert, charakterisiert und hinsichtlich ihrer photo- und elektrokatalytischen Eigenschaften untersucht. Es wird gezeigt, dass die Grenzflächeneigenschaften der TiO2/C-Komposite signifikant durch die Gestaltung des Heizvorgangs während der Synthese beeinflusst werden. Insbesondere der Einsatz von Mikrowellenstrahlung vermag die Synthese von Kohlenstoff-basierten Materialien positiv zu beeinflussen. Schnelles Erwärmen führt zu stärkeren Wechselwirkungen zwischen Nanopartikeln und Kohlenstoff, einheitlicheren Beschichtungen und kleineren Partikeln mit schmaleren Partikelgrößenverteilungen, wodurch die photokatalytische Aktivität verbessert wird. Schichtartige, hybride NiFe-Phenylphosphonat-Materialien werden ausgehend in Benzylalkohol dargestellt und ihre Aktivität in der OER im basischen Milieu untersucht. Die Hybridpartikel werden in-situ in NiFe-Hydroxid Nanoschichten umgewandelt. Röntgenspektroskopische Untersuchungen deuten auf eine induzierte, teilweise verzerrte Koordinationsumgebung der Metallzentren im Katalysator hin. Die Kombination der synergistischen Effekte zwischen Ni und Fe mit den strukturellen Eigenschaften des Hybridmaterials ermöglicht einen effizienten Katalysator. Weiterhin werden Nickel-Phosphide durch die thermische Behandlung der Phenyl- oder Methylphosphonate des Nickels, welche Schichtstrukturen aufweisen, in H2(5%)/Ar-Atmosphäre synthetisiert. Ni12P5, Ni12P5-Ni2P und Ni2P Nanopartikel, die mit einer dünnen Schicht aus Kohlenstoffmaterial beschichtet sind, werden erhalten. Ni12P5-Ni2P und Ni2P Nanopartikel katalysieren die Wasserstoffentwicklungsreaktion (HER) im Sauren effektiv.
High-performance catalysts play a key role in the development of technologies for sustainable production, storage, and conversion of energy. In this thesis, transition-metal-based catalysts, including TiO2/carbon composites, hybrid organic-inorganic NiFe phosphonates, and Ni phosphides are synthesized, characterized, and investigated in photocatalytic or electrocatalytic reactions. TiO2 is frequently combined with carbon materials, such as reduced graphene oxide (rGO), to produce composites with improved properties. TiO2 is more efficiently stabilized at the surface of rGO than amorphous carbon. Rapid heating of the reaction mixture results in a stronger coupling between the nanoparticles and carbon, more uniform coatings, and smaller particles with narrower size distributions. The more efficient attachment of the oxide leads to better photocatalytic performance. Layered hybrid NiFe-phenylphosphonate compounds are synthesized in benzyl alcohol, and their oxygen evolution reaction (OER) performance in alkaline medium is investigated. The hybrid particles transformed in situ into NiFe hydroxide nanosheets. X-ray absorption spectroscopy measurements suggest the metal sites in the active catalyst inherited partly the distorted coordination. The combination of the synergistic effect between Ni and Fe with the structural properties of the hybrid results in an efficient catalyst that generates a current density of 10 mA cm-2 at an overpotential of 240 mV. Moreover, nickel phosphides are synthesized through thermal treatment under H2(5%)/Ar of layered nickel phenyl- or methylphosphonates that act as single-source precursors. Ni12P5, Ni12P5-Ni2P and Ni2P nanoparticles coated with a thin shell of carbonaceous material are produced. Ni12P5-Ni2P and Ni2P NPs efficiently catalyze the hydrogen evolution reaction (HER) in acidic medium. Co2P and CoP NPs are also synthesized following this method.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Papa, Letizia. "Synthesis of hybrid nanosheets of graphene oxide, titania and gold and palladium nanoparticles for catalytic applications." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/46/46136/tde-19062017-083751/.

Повний текст джерела
Анотація:
Nanocatalysis has emerged in the last decades as an interface between homogeneous and heterogeneous catalysis, offering simple solutions to problems that conventional materials have not been able to solve. In fact, nanocatalyst design permits to obtain structures with high superficial area, reactivity and stability, and at the same time presenting good selectivity and facility of separation from reaction mixtures. In this work, we prepared hybrid structures comprising gold, palladium and silver nanoparticles (Au, Pd and Ag NPs), titanate nanosheets (TixO2), graphene oxide (GO), and partially reduced graphene oxide (prGO). We focused on bi- and tri-components hybrids, namely TixO2, M/(pr)GO and M/TixO2/(pr)GO (M = Au, Pd or Ag) and developed facile, versatile and environment-friendly preparation methods with an emphasis on control over physicochemical features such as size, shape and composition. In order to exploit the catalytic applications, we employed the reduction of 4-nitrophenol as a model reaction, followed by visible-light assisted oxidation of p-aminothiophenol (PATP). With these tests, we unraveled metal-support interactions and cooperative effects that render hybrid structures superior to their individual counterparts.
A nanocatálise surgiu nas últimas décadas como uma interface entre catálise homogênea e heterogênea, oferecendo soluções simples a problemas que os materiais convencionais não conseguiram resolver. De fato, o design de nanocatalisadores permite obter estruturas com grande área superficial, reatividade e estabilidade, e ao mesmo tempo apresentando boa seletividade e facilidade de separação de misturas reacionais. Neste trabalho apresentamos a preparação de estruturas híbridas compostas por nanopartículas de ouro, paládio e prata (Au, Pd e Ag NPs), nanofolhas de titanato (TixO2), óxido de grafeno (GO) e óxido de grafeno parcialmente reduzido (prGO). Focamos em híbridos do tipo M/TixO2, M/(pr)GO e M/TixO2/(pr)GO (M = Au, Pd ou Ag) e desenvolvemos métodos de preparação simples, versáteis e ambientalmente amigáveis, com ênfase no controle sobre tamanho, forma e composição. Para explorar as potencialidades catalíticas utilizamos a redução do 4-nitrofenol como reação modelo, e em seguida a oxidação assistida por luz do p-aminotiofenol (PATP). Com esses testes, investigamos interações metal-suporte e efeitos cooperativos que tornam as estruturas hibridas superiores a cada um dos materiais que as compõem.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Godfrey, Ian. "Synthesis, structure and catalytic applications of monometallic and bimetallic gold-silver nanomaterials." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10040860/.

Повний текст джерела
Анотація:
This thesis consists of a structural investigation of a range of gold and silver nanomaterials and associated core-shell structures, using X-ray absorption spectroscopy (XAS) as the primary tool; other techniques, including UV-Vis spectroscopy and transmission electron microscopy (TEM), were also used, demonstrating the wider applicability of XAS and other methods to nanomaterials. Dilute, gold/silver core@shell colloids with nominal Au@Ag and Au@Ag@Au structures were prepared and then characterised by extended X-ray absorption fine structure (EXAFS) and TEM. Au@Ag and Au@Ag/Au structures, respectively, were assigned to each sample. Combining EXAFS and energy-dispersive X-ray spectroscopy (EDS) results for Au@Ag@Au, the presence of a concentration gradient through the shells, arising from interfacial alloying, is suggested. This extends the conclusions made from TEM alone. The reduction of AgNO3 by Na3C6H5O7 to produce pure Ag and Au@Ag colloids was investigated using Ag K-edge X-ray absorption near-edge structure (XANES). This was found to be a first order process, which is consistent with the unimolecular decomposition proposed in the literature. The seeded reaction had a reduced rate constant which was attributed to the presence of Cl− ions, leftover from HAuCl4, forming AgCl. Similar studies on Au colloids were attempted at the Au L3-edge, but beam induced reduction was found to be the dominant effect. Finally, a suite of metal-oxide supported gold and silver samples were prepared by impregnation and characterised by XAS. Electron donation from the support to the gold was observed. The stability of oxidised gold on the supports increased with metal cation electropositivity, following the trend MgO > TiO2 > Al2O3 > SiO2. Additionally, in the case of MgO, gold hydroxide was formed and found to be stable up to at least 300 °C, before its decomposition to gold metal. The opposite trend was observed for silver, and this was attributed to the formation of metal-surface bonds.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Qazzazie, Dureid [Verfasser], and Gerald A. [Akademischer Betreuer] Urban. "Research and development of novel hybrid nanomaterials for use as catalytic electrodes in fuel cell applications." Freiburg : Universität, 2017. http://d-nb.info/1144828961/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Krawiec, Piotr. "Nanostructured Porous High Surface Area Ceramics for Catalytic Applications." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1170181622265-56905.

Повний текст джерела
Анотація:
In the present work new methods were developed for preparation of novel nanosized and nanostructured ceramic materials. Ordered mesoporous silica SBA-15 was found to be useful as a hard template for the nanocasting of silicon carbide and allowed the preparation of high temperature stable mesoporous silicon carbide ceramics. Chemical vapor infiltration of SBA-15 with dimethyldichlorosilane at elevated temperatures yields SiC/SBA-15 nanocomposites. The subsequent HF treatment of those composites resulted in silica removal and preparation of mesoporous silicon carbide with surface areas between 410 and 830 m2g-1 and high mesopore volume (up to 0.9 cm3g-1). The pore size (between 3 and 7nm in diameter) and surface area of mesoporous silicon carbide were controlled by adjusting the infiltration conditions (time, atmosphere). The mesoporous silicon carbide prepared via this method showed high structural thermal stability at 1300 oC, exceeding that of the SBA-15 template. However, the ordering on the mesoscopic scale was low. Nevertheless, highly ordered mesoporous silicon carbide materials were obtained via polymer melt infiltration in SBA-15. The low molecular weight polycarbosilane used as a preceramic precursor was converted at 1300 oC to silicon carbide inside the SBA-15, and after subsequent silica removal by HF, a highly ordered mesoporous material was obtained. Ordered mesoporous silicon carbide prepared by the methods reported here, may be an interesting material as a support due to its high temperature stability, chemical inertness, high thermal conductivity and semiconductor properties. In contrast to the nanocasting approach, based on the complete pore filling, also a new in-situ procedure for the preparation of finely dispersed metal and metal oxide particles inside ordered mesoporous silica was developed. A swelling agent (toluene) was used to deliver a hydrophobic platinum precursor into the surfactant micelles before addition of silica source. Such an in-situ method resulted in very high platinum incorporation (80-100%), not achieved for any other in-situ preparation procedures. Additionally, the presence of platinum allowed to decrease the template removal temperatures. Moreover, the method was also extended to other metal or metal oxide/ordered mesoporous silica systems. This may be especially interesting for the preparation of ordered mesoporous materials with low melting points, where typically the structure collapses during the high temperature calcinations process. The in-situ synthesized V2O5/MCM-41 materials were used to prepare VN/MCM-41 composites via nitridation in ammonia at 800oC. This method allowed to prepare highly dispersed, X-ray amorphous vanadium nitride species, with high activity in the propane dehydrogenation. Compared to nitridation of supported vanadium oxide prepared via the ex-situ procedure, in-situ synthesized materials showed similar catalytic activity, in spite of having significantly lower vanadium loading. As an alternative for the preparation of supported nitride materials, a novel preparation procedure of bulk not supported nanocrystalline vanadium nitride with high surface area was presented. Instead of pure oxide powder (which was typically used in the preparation of high surface area vanadium nitride catalysts), a macroporous amine intercalated V2O5 was used as the starting material. The obtained nitride consisted of small crystallites and had a surface area up to 198 m2g-1. Moreover, this foam-derived VN showed significantly improved activity as a catalyst in propane dehydrogenation. This novel preparation method could also be extended to other systems such as ternary VMoxNy nitrides.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Rui [Verfasser], Nicola [Gutachter] Pinna, and Yan [Gutachter] Lu. "Transition-metal-based composite and hybrid nanomaterials for catalytic applications / Rui Zhang ; Gutachter: Nicola Pinna, Yan Lu." Berlin : Humboldt-Universitaet zu Berlin, 2018. http://d-nb.info/1175995266/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Krawiec, Piotr. "Nanostructured Porous High Surface Area Ceramics for Catalytic Applications." Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A24989.

Повний текст джерела
Анотація:
In the present work new methods were developed for preparation of novel nanosized and nanostructured ceramic materials. Ordered mesoporous silica SBA-15 was found to be useful as a hard template for the nanocasting of silicon carbide and allowed the preparation of high temperature stable mesoporous silicon carbide ceramics. Chemical vapor infiltration of SBA-15 with dimethyldichlorosilane at elevated temperatures yields SiC/SBA-15 nanocomposites. The subsequent HF treatment of those composites resulted in silica removal and preparation of mesoporous silicon carbide with surface areas between 410 and 830 m2g-1 and high mesopore volume (up to 0.9 cm3g-1). The pore size (between 3 and 7nm in diameter) and surface area of mesoporous silicon carbide were controlled by adjusting the infiltration conditions (time, atmosphere). The mesoporous silicon carbide prepared via this method showed high structural thermal stability at 1300 oC, exceeding that of the SBA-15 template. However, the ordering on the mesoscopic scale was low. Nevertheless, highly ordered mesoporous silicon carbide materials were obtained via polymer melt infiltration in SBA-15. The low molecular weight polycarbosilane used as a preceramic precursor was converted at 1300 oC to silicon carbide inside the SBA-15, and after subsequent silica removal by HF, a highly ordered mesoporous material was obtained. Ordered mesoporous silicon carbide prepared by the methods reported here, may be an interesting material as a support due to its high temperature stability, chemical inertness, high thermal conductivity and semiconductor properties. In contrast to the nanocasting approach, based on the complete pore filling, also a new in-situ procedure for the preparation of finely dispersed metal and metal oxide particles inside ordered mesoporous silica was developed. A swelling agent (toluene) was used to deliver a hydrophobic platinum precursor into the surfactant micelles before addition of silica source. Such an in-situ method resulted in very high platinum incorporation (80-100%), not achieved for any other in-situ preparation procedures. Additionally, the presence of platinum allowed to decrease the template removal temperatures. Moreover, the method was also extended to other metal or metal oxide/ordered mesoporous silica systems. This may be especially interesting for the preparation of ordered mesoporous materials with low melting points, where typically the structure collapses during the high temperature calcinations process. The in-situ synthesized V2O5/MCM-41 materials were used to prepare VN/MCM-41 composites via nitridation in ammonia at 800oC. This method allowed to prepare highly dispersed, X-ray amorphous vanadium nitride species, with high activity in the propane dehydrogenation. Compared to nitridation of supported vanadium oxide prepared via the ex-situ procedure, in-situ synthesized materials showed similar catalytic activity, in spite of having significantly lower vanadium loading. As an alternative for the preparation of supported nitride materials, a novel preparation procedure of bulk not supported nanocrystalline vanadium nitride with high surface area was presented. Instead of pure oxide powder (which was typically used in the preparation of high surface area vanadium nitride catalysts), a macroporous amine intercalated V2O5 was used as the starting material. The obtained nitride consisted of small crystallites and had a surface area up to 198 m2g-1. Moreover, this foam-derived VN showed significantly improved activity as a catalyst in propane dehydrogenation. This novel preparation method could also be extended to other systems such as ternary VMoxNy nitrides.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Koneti, Siddardha. "In situ and 3D environmental transmission electron microscopy of Pd-Al2O3 nano catalysts : Fast tomography with applications to other catalytic systems in operando conditions and to electron beam sensitive nanomaterials." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI123/document.

Повний текст джерела
Анотація:
Au début du XXIème siècle, la Microscopie Electronique à Transmission en mode Environnemental (ETEM) est devenue l’une des techniques les plus fiables de caractérisation de nanomatériaux dans des conditions simulant leur vie réelle. L’ETEM est maintenant en mesure de suivre l’évolution dynamique des nanomatériaux dans des conditions variables comme l’exposition à des températures élevées, l’observation en milieux liquide ou gazeux à diverses pressions. Parmi différents domaines de recherche et développement concernés, la catalyse peut bénéficier de manière significative des avancées permises par la microscopie électronique environnementale. Cette thèse, dédiée au développement de l’ETEM au laboratoire MATEIS, a commencé avec l’étude du système catalytique Pd-alumine. Les nanoparticules de Pd déposées sur alpha -Al2O3 et delta-Al2O3 sont très utilisées en physicochimie avec un impact environnemental important : en particulier dans le domaine de l’hydrogénation sélective, pour la synthèse de polymères ou l’hydrogénation de CO2 pour la production de méthane. Nous avons tout d’abord effectué des analyses 2D aux différentes étapes du processus de synthèse du catalyseur : imprégnation du précurseur, séchage et chauffage pour la calcination dans l’air à la pression atmosphérique. La motivation de cette approche a été de comparer des analyses post mortem avec des traitements en ETEM où l’évolution des nanoparticules peut être mesurée in situ et pas seulement « avant » et « après ». De manière générale, les études faites en ETEM en 2D donnent un aperçu limité sur la morphologie des objets et la distribution spatiale des nanoparticules supportées. Nous avons développé une nouvelle approche d’acquisition rapide pour collecter dans des temps très courts des séries d’images sous différents angles de vue pour la tomographie électronique, la rapidité de cette acquisition étant un prérequis pour appréhender correctement la morphologie d’un nano-système au cours de son évolution dynamique in situ. La technique a ensuite été utilisée pour l’étude de plusieurs systèmes où une acquisition tridimensionnelle rapide est indispensable, notamment sur un sujet concernant un enjeu sociétal important, la dépollution des moteurs diesel : l’oxydation de la suie a été étudiée in situ sur des supports à base de zircone entre 400 et 600°C et une pression de 2 mbar d’oxygène à différents degrés de combustion, ce qui a permis d’extraire des données cinétiques telle que l’énergie d’activation du processus. La tomographie électronique rapide a été également appliquée à des matériaux sensibles au faisceau électronique, comme des nanocomposites polymères et des objets biologiques, montrant le large spectre d’applications possibles pour cette technique, qui constitue un pas important vers la caractérisation operando 3D de nanomatériaux en temps réel
In the beginning of the XXIst century, Environmental Transmission Electron Microscopy has become one of the reliable characterization techniques of nanomaterials in conditions mimicking their real life. ETEM is now able to follow the dynamic evolution of nanomaterials under various conditions like high temperature, liquid or various gas pressures. Among various fields of research, catalysis can benefit significantly from Environmental Microscopy. This contribution starts with the study of the Palladium-Alumina catalytic system. Pd nanoparticles supported by α-Al2O3 and δ-Al2O3 are of an important physicochemical and environmental interest, particularly in the field of selective hydrogenation in petrochemistry, for the synthesis of polymers or CO2 hydrogenation for methane production. We first performed 2D analyses at different steps of the synthesis process, then the same synthesis steps were performed under in situ conditions. The motivation of this approach was to compare post mortem treatments with ETEM observations. In general, 2D data provide limited insights on, for example, the morphology and position of supported nanoparticles. We have then developed a new fast acquisition approach to collect tomographic tilt series in very short times, enabling to reconstruct nano-systems in 3D during their dynamical evolution. Taking advantage of this approach, we have determined the activation energy for soot combustion on YSZ oxidation catalysts for diesel motors from volumetric data extracted from in situ experiments. Fast electron tomography was also applied to electron beam sensitive materials, like polymer nanocomposites and biological materials, showing the wide spectrum of possible applications for rapid 3D characterization of nanomaterials
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Han, Chenhui. "Nanomaterials stabilized pickering emulsions and their applications in catalysis." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134131/1/Chenhui%20Han%20Thesis_Redacted.pdf.

Повний текст джерела
Анотація:
This thesis is an exploratory study of nanomaterials stabilized Pickering emulsions and their applications. The study illustrates some novel emulsion behaviour through dynamic observation and develops a mechanically switchable emulsion based on the microstructure design of nanomaterials. The droplets of emulsion are demonstrated as an effective microreactor for chemical reactions that happen at the oil-water interface, showing the potential application of Pickering emulsion in catalysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Huh, Seong. "Morphological Control of Multifunctional Mesoporous Silica Nanomaterials for Catalysis Applications." Ames, Iowa : Oak Ridge, Tenn. : Ames Laboratory ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004. http://www.osti.gov/servlets/purl/837271-xREJ4t/webviewable/.

Повний текст джерела
Анотація:
Thesis (Ph.D.); Submitted to Iowa State Univ., Ames, IA (US); 19 Dec 2004.
Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2397" Seong Huh. US Department of Energy 12/19/2004. Report is also available in paper and microfiche from NTIS.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Nanomaterials - Catalytic Applications"

1

Varghese, Anitha, and Gurumurthy Hegde. Emerging Nanomaterials for Catalysis and Sensor Applications. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003218708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhou, Meng, ed. Catalysis by Metal Complexes and Nanomaterials: Fundamentals and Applications. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Toxic Gas Sensors and Biosensors. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901175.

Повний текст джерела
Анотація:
The book focuses on novel sensor materials and their environmental and healthcare applications, such as NO2 detection, toxic gas and biosensing, hydrazine determination, glucose sensing and the detection of toxins and pollutants on surfaces. Materials covered include catalytic nanomaterials, metal oxides, perovskites, zeolites, spinels, graphene-based gas sensors, CNT/Ni nanocomposites, glucose biosensors, single and multi-layered stacked MXenes, black phosphorus, transition metal dichalcogenides and P3OT thin films.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hussain, Chaudhery Mustansar, Sudheesh K. Shukla, and Bindu Mangla, eds. Functionalized Nanomaterials for Catalytic Application. Wiley, 2021. http://dx.doi.org/10.1002/9781119809036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hussain, Chaudhery Mustansar, Sudheesh K. Shukla, and Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Limited, John, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hussain, Chaudhery Mustansar, Sudheesh K. Shukla, and Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Incorporated, John, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hussain, Chaudhery Mustansar, Sudheesh K. Shukla, and Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Incorporated, John, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hussain, Chaudhery Mustansar, Sudheesh K. Shukla, and Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Incorporated, John, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hegde, Gurumurthy, and Anitha Varghese. Emerging Nanomaterials for Catalysis and Sensor Applications. Taylor & Francis Group, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Emerging Nanomaterials for Catalysis and Sensor Applications. Taylor & Francis Group, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Nanomaterials - Catalytic Applications"

1

Denicourt-Nowicki, Audrey, and Alain Roucoux. "Metallic Nanoparticles in Neat Water for Catalytic Applications." In Nanomaterials in Catalysis, 55–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527656875.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rossetti, Ilenia, and Lucio Forni. "Oxide Nanomaterials for the Catalytic Combustion of Hydrocarbons." In Synthesis, Properties, and Applications of Oxide Nanomaterials, 563–601. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470108970.ch18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sehgal, B., and G. B. Kunde. "Recent Advances in the Catalytic Applications of Magnetic Nanomaterials." In Emerging Applications of Low Dimensional Magnets, 9–31. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003196952-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rubiyah, M. H., Krishnakumar Melethil, Albin James, Sharon Varghese, and Bejoy Thomas. "Cellulose Nanocrystals (CNCs) Supported Inorganic Nanomaterials for Catalytic Applications." In Handbook of Biopolymers, 1–33. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6603-2_34-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Melethil, Krishnakumar, Sharon Varghese, Albin James, M. H. Rubiya, and Bejoy Thomas. "Bacterial Nanocellulose (BNCs) Supported Inorganic Nanomaterials for Catalytic Applications." In Handbook of Biopolymers, 1–34. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-16-6603-2_35-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rubiya, M. H., Krishnakumar Melethil, Albin James, Sharon Varghese, and Bejoy Thomas. "Cellulose Nanocrystals (CNCs) Supported Inorganic Nanomaterials for Catalytic Applications." In Handbook of Biopolymers, 907–39. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0710-4_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Melethil, Krishnakumar, Sharon Varghese, Albin James, M. H. Rubiya, and Bejoy Thomas. "Bacterial Nanocellulose (BNCs) Supported Inorganic Nanomaterials for Catalytic Applications." In Handbook of Biopolymers, 941–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0710-4_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Binish, C. J., and A. V. Vijayasankar. "Correlation of Surface Properties and Catalytic Activity of Metal Aluminophosphates." In Emerging Nanomaterials for Catalysis and Sensor Applications, 49–63. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003218708-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yoo, Je Min. "Catalytic Degradation of Phenols by Recyclable CVD Graphene Films." In Studies on Graphene-Based Nanomaterials for Biomedical Applications, 15–27. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2233-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Keshri, Kumer Saurav, and Biswajit Chowdhury. "Ceria-Based Nano-composites: A Comparative Study on Their Contributions to Important Catalytic Processes." In Synthesis and Applications of Nanomaterials and Nanocomposites, 361–94. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1350-3_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Nanomaterials - Catalytic Applications"

1

Oleksenko, Ludmila, Igor Matushko, Nelly Maksymovych, George Fedorenko, Larisa Lutsenko, and Hanna Arinarkhova. "Morphology, Gas Sensitive and Catalytic Properties of Ce-containing Nanomaterials Based on Tin Dioxide Doped with Sb." In 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2019. http://dx.doi.org/10.1109/nap47236.2019.216988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kansara, Shivam, Sanjeev K. Gupta, and Yogesh Sonvane. "Catalytic activity of Cu4-cluster to adsorb H2S gas: h-BN nanosheet." In INTERNATIONAL CONFERENCE ON NANOMATERIALS FOR ENERGY CONVERSION AND STORAGE APPLICATIONS: NECSA 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5035254.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shved, Elena, Yuliia Bespalko, Oksana Gorban, Kseniia Yutilova, and Evgeniia Bakhalova. "The Influence of Nanosized Zirconium (IV) Oxide on the Catalytic Curing of Epoxy Resin ED-20 with Isomethyltetrahydrophthalic Anhydride." In 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2020. http://dx.doi.org/10.1109/nap51477.2020.9309566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kytsya, A., L. Bazylyak, O. Pobigun-Halaiska, I. Opeida, P. Simon, and I. Zelenina. "Synthesis and Catalytic Properties of Ni©Ag Bimetallic Nanostructures." In 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8915129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khalameida, Svitlana, Volodymyr Sydorchuk, Volodymyr Starchevskyy, and Iryna Koval. "Synthesis of nano-dispersed perovskites under sonochemical treatment and their catalytic properties." In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sukhov, V. N., Z. V. Bloshenko, and A. L. Samsonik. "Effect of the residual gases catalytic activity on the island tin films crystallization." In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Klivenko, A., A. Yergaziyeva, and S. Kudaibergenov. "Gold nanoparticles stabilized by amphoteric cryogel-perspective flow-through catalytic reactor for oxidation and reduction processes." In 2016 International Conference on Nanomaterials: Application & Properties (NAP). IEEE, 2016. http://dx.doi.org/10.1109/nap.2016.7757304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Karakurkchi, A., N. Sakhnenko, M. Ved, I. Parsadanov, and S. Menshov. "Nanostructured Oxide-Metal Catalysts for Intra-Cylinder Catalysis." In 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8914840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Blyzniuk, B. V., V. E. Diyuk, and V. V. Lisnyak. "Catalytic Decomposition of Hydrogen Peroxide over Nanoporous Activated Carbon: Effects of Oxidative and Thermal Treatments." In 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8915255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Majumdar, Dibyarup. "Nanoparticles: Synthesis & application in catalysis & effluent treatment." In 2013 International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET). IEEE, 2013. http://dx.doi.org/10.1109/icanmeet.2013.6609251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Nanomaterials - Catalytic Applications"

1

Huh, Seong. Morphological Control of Multifunctional Mesoporous Silica Nanomaterials for Catalysis Applications. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/837271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chaudhary, Umesh. Synthesis of high surface area nanomaterials and their application in catalysis. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1342582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Radu, Daniela Rodica. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/837277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії