Добірка наукової літератури з теми "Nanocomposite, Electrical Properties"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nanocomposite, Electrical Properties".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nanocomposite, Electrical Properties"

1

Sabo, Y. T., D. E. A. Boryo, I. Y. Chindo, and A. M. Auwal. "Nanocomposites transformed from polystyrene waste/antimony, barium and nickel oxides nanoparticles with improved thermal and electrical properties." Nigerian Journal of Chemical Research 26, no. 2 (February 5, 2022): 117–27. http://dx.doi.org/10.4314/njcr.v26i2.7.

Повний текст джерела
Анотація:
In this experiment, the oxide nanoparticles were synthesized via chemical precipitation and the nanocomposites were produced using in situ polymerization method with varying nanoparticles contents ranged from 0.1 g to 1.0 g for electrical conductivity and from 0.05 g to 0.25 g for thermal conductivity. The electrical and thermal conductivities of nanocomposites were investigated and compared with the values obtained for untreated polystyrene. It was observed that the electrical and thermal properties were higher for the nanocomposites and increase with increasing nanoparticle concentrations in the samples. It can be observed that nanocomposite containing NiO nanoparticles gave a better electrical and thermal conductivity followed by nanocomposite containing BaO nanoparticles and nanocomposite containing Sb2O3 nanoparticles respectively. It can also be observed that nanocomposite containing NiO nanoparticle showed increase in rate of heat transfer from 1.60 W to 2.60 W, while nanocomposite containing BaO nanoparticles recorded increase in rate of heat transfer from 1.40 W to 2.45 W and nanoomposite containing Sb2O3 nanoparticle showed increase in rate of heat transfer from 1.07 W to 2.21 W, as concentration of nanoparticles increased from 0.05 g to 0.25 g respectively. Conclusively, with these results, the nanocomposite containing NiO nanoparticles gave a better thermal and electrical conductivity by having a better conducting filler network inside the matrix than nanocomposite containing BaO nanoparticles and nanocomposite containing Sb2O3 nanoparticles. It is recommended that during the production of polymer nanocomposite, PS/NiO, PS/BaO and PS/Sb2O3 nanocomposites could be used in electrically conductive devices as well as suitable materials for heat transfer applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Polsterova, Helena. "Dielectric Properties of Nanocomposites Based on Epoxy Resin." ECS Transactions 105, no. 1 (November 30, 2021): 461–66. http://dx.doi.org/10.1149/10501.0461ecst.

Повний текст джерела
Анотація:
Nanocomposites are subject of research in many fields of science. Electrical technology focused on the study of electrical properties of nanocomposites including breakdown strength, relative permittivity, resistivity and other. This paper describes the results of measurement of electrical parameters of a nanocomposite at various temperatures. The nanocomposite matrix was casting epoxy resin and nanoparticles were made of TiO2 powder at different concentrations.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

V. C. Morais, Manuel, Marco Marcellan, Nadine Sohn, Christof Hübner, and Frank Henning. "Process Chain Optimization for SWCNT/Epoxy Nanocomposite Parts with Improved Electrical Properties." Journal of Composites Science 4, no. 3 (August 14, 2020): 114. http://dx.doi.org/10.3390/jcs4030114.

Повний текст джерела
Анотація:
Electrically conductive nanocomposites present opportunities to replace metals in several applications. Usually, the electrical properties emerging from conductive particles and the resulting bulk values depend on the micro/nano scale morphology of the particle network formed during processing. The final electrical properties are therefore highly process dependent. In this study, the electrical resistivity of composites made from single-walled carbon nanotubes in epoxy was investigated. Three approaches along the processing chain were investigated to reduce the electrical resistivity of nanocomposites-the dispersion strategy in a three-roll mill, the curing temperature, and the application of electric fields during curing. It was found that a progressive increase in the shear forces during dispersion leads to a more than 50% reduction in the electrical resistivities. Higher curing temperatures of the nanocomposite resin also lead to a decrease of around 50% in resistivity. Furthermore, a scalable resin transfer molding set-up with gold-coated electrodes was developed and tested with different mold release agents. It has been shown that curing the material under electric fields leads to an electrical resistivity approximately an order of magnitude lower, and that the properties of the mold release agent also influence the final resistivity of different samples in the same batch.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cho, Kie Yong, A. Ra Cho, Yun Jae Lee, Chong Min Koo, Soon Man Hong, Seung Sangh Wang, Ho Gyu Yoon, and Kyung Youl Baek. "Enhanced Electrical Properties of PVDF-TrFE Nanocomposite for Actuator Application." Key Engineering Materials 605 (April 2014): 335–39. http://dx.doi.org/10.4028/www.scientific.net/kem.605.335.

Повний текст джерела
Анотація:
Carbon nanotubes (CNTs) coated by compatibilizer (P3HT-PMMA) imparted sta-ble dispersion in organic solvents and polymer matrix (P(VDF-TrFE)). The compatibility be-tween CNTs with P3HT-PMMA was con rmed by measuring Raman spectroscopy. CoatedCNTs were then blended with P(VDF-TrFE) (70:30 mol%) to obtain polymer nanocompositesby solution- casting process. Polymer nanocomposites showed enhanced electrical characteris-tics, as nanocomposites near the threshold of the transition between P(VDF-TrFE) insulatorand CNT conductor revealed great improvement of electrical conductivity up to 10-6 S/cmat 1 KHz. Electromechanical properties of the polymer nanocomposite were examined as afunction of electric eld.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kasım, Hasan, and Murat Yazıcı. "Electrical Properties of Graphene / Natural Rubber Nanocomposites Coated Nylon 6.6 Fabric under Cyclic Loading." Periodica Polytechnica Chemical Engineering 63, no. 1 (June 18, 2018): 160–69. http://dx.doi.org/10.3311/ppch.12122.

Повний текст джерела
Анотація:
In the present study, an elastomeric nanocomposite was prepared by two roller mixing mill with the Natural Rubber (NR) and Nano Graphene Platelets (NGP). The Nylon 6.6 cord fabrics were laminated with the prepared NR/NGP nanocomposite layers. The NR/NGP composites and Nylon 6.6 cord fabric laminated nanocomposite plates were cured at 165 °C for 10 min under pressure. Nylon 6.6 fabric reinforced NR/NGP nanocomposites were electrically characterized under free and cyclic loading conditions. NGP addition to NR improved the electrical conductivity. Under cyclic loading produced nanocomposite and cord fabric layered plates showed periodical sensing behavior with same amplitude in each period.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abou El Fadl, Faten Ismail, Maysa A. Mohamed, Magida Mamdouh Mahmoud, and Sayeda M. Ibrahim. "Studying the electrical conductivity and mechanical properties of irradiated natural rubber latex/magnetite nanocomposite." Radiochimica Acta 110, no. 2 (November 22, 2021): 133–44. http://dx.doi.org/10.1515/ract-2021-1080.

Повний текст джерела
Анотація:
Abstract Nanocomposites have received voluminous interest due to the combination of unique properties of organic and inorganic component in one material. In this class, magnetic polymer nanocomposites are of particular interest because of the combination of excellent magnetic properties, stability, and good biocompatibility. This paper reports the preparation and characterization of nanocomposites films based on natural rubber in latex state (NRL) loaded with different concentrations of semiconducting magnetite nanoparticles (Fe3O4) (MNPs) (5, 10, 15, 20, and 30%). NRL (100%) and NRL/Fe3O4 nanocomposites were prepared by solution casting technique then, exposed to various irradiation doses (50, 70, 100 kGy).The nanocomposite’s morphological, and physical properties were investigated through various spectroscopic techniques such as Fourier-transformed infrared, X-ray diffraction, scanning electron, and transmission electron microscopies. The mechanical properties, including the tensile strength and elongation at break percentage (E b %) of the nanocomposites were also studied and compared with the 100% NRL films. Based on the results obtained from the mechanical study, it is found that the NRL/20% Fe3O4 nanocomposite film exhibited the highest tensile strength at 100 kGy. On the other hand, based on the conductivity study, it is found that, NRL/Fe3O4 nanocomposite with 10% magnetite exhibit the highest conductivity as the content of magnetite plays an important and effective role based on the high and homogeneous dispersity.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ouis, Nora, Assia Belarbi, Salima Mesli, and Nassira Benharrats. "Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites." Chemistry & Chemical Technology 17, no. 1 (March 27, 2023): 118–25. http://dx.doi.org/10.23939/chcht17.01.118.

Повний текст джерела
Анотація:
A new nanocomposite based on conducting polyaniline (PANI) and Algerian montmorillonite clay dubbed Maghnite is proposed to combine conducting and thermal properties (Mag). The PANI-Mag nanocompo-sites samples were made by in situ polymerization with CTABr (cetyl trimethyl ammonium bromide) as the clay galleries' organomodifier. In terms of the PANI-Mag ratio, the electrical and thermal properties of the obtained nanocomposites are investigated. As the amount of Maghnite in the nanocomposite increases, thermal stability improves noticeably, as measured by thermal gravimetric analysis. The electric conductivity of nanocomposites is lower than that of free PANI. As the device is loaded with 5 % clay, the conductivity begins to percolate and decreases by many orders of magnitude. The findings show that the conductivity of nanocomposites is largely independent of clay loading and dispersion.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abdulla, Estabraq T. "Synthesis and electrical properties of conductive polyaniline/ SWCNT nanocomposites." Iraqi Journal of Physics (IJP) 15, no. 34 (January 8, 2019): 106–13. http://dx.doi.org/10.30723/ijp.v15i34.126.

Повний текст джерела
Анотація:
The synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite have been measured in frequency range (50Hz - 600KHz) and in the temperature range from (30 to 160K). The results show the electrical conductivity of the nanocomposite is higher than pure PANI.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Akhtarian, Shiva, Hadi Veladi, and Sajedeh Mohammadi Aref. "Fabrication and characterization of conductive poly(dimethylsiloxane)-carbon nanotube nanocomposites for potential microsensor applications." Sensor Review 39, no. 1 (January 21, 2019): 1–9. http://dx.doi.org/10.1108/sr-04-2017-0055.

Повний текст джерела
Анотація:
PurposeThe purpose of the study is to explore the potential possibility of using the conductive and piezoresistive nanocomposites that consist of insulating poly(dimethylsiloxane), a very popular silicone polymer, and the amazing properties of carbon nanotubes (CNT) in sensing applications. This nanocomposite is prepared by an optimized process to achieve a high-quality nanocomposite with uniform properties.Design/methodology/approachThe optimized process achieved in this study to provide PDMS/CNT nanocomposite includes the appropriate use of ultrasonic bath, magnetic stirrer, molding and curing in certain circumstances that results in obtaining high-quality nanocomposite with uniform properties. Experiments to characterize the influence of some factors such as pressure, temperature and the impact of CNT’s concentration on the electrical properties of the prepared nanocomposite have been designed and carried out.FindingsThe obtained preparing method of this nanocomposite is found to have better homogeneity in comparison to other methods for CNT/PDMS nanocomposite. This nanocomposite has both desirable properties of the PDMS elastomer and the additional conductive CNT, and it can be used to create all-polymer systems. Furthermore, the conductivity values of these nanocomposites can be changed by varying some factors such as temperature and pressure, so that those can be used in temperature- and pressure-sensoring applications.Originality/valueIn the present research, a convenient, inexpensive and reproducible method for preparing CNT/PDMS nanocomposite was investigated. These nanocomposites with the unique properties of both PDMS elastomer and CNTs and also with high electrical conductivity, piezoresistive properties and temperature dependent resistivity can be used in different sensoring applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Al-Saleh, Mohammed H., and Mohammad R. Irshidat. "Effect of viscosity reducing agent on the properties of CNT/epoxy nanocomposites." Journal of Polymer Engineering 36, no. 4 (May 1, 2016): 407–12. http://dx.doi.org/10.1515/polyeng-2015-0245.

Повний текст джерела
Анотація:
Abstract Epoxy nanocomposites that are produced in a solvent-free environment suffer from the inadequate dispersion of nanofiller and poor interfacial interaction between the nanofiller and polymer matrix. In this work, the effect of replacing a portion of the epoxy resin with a viscosity reducing agent (VRA) on the structure, electrical and mechanical properties of carbon nanotube (CNT)/epoxy nanocomposite have been investigated. Optical microscopy (OM) and transmission electron microscopy (TEM) were used to characterize the structure of the nanocomposite at the microscale and nanoscale, respectively. For nanocomposites without VRA, it was found that the addition of CNT degrades the tensile strength and toughness; meanwhile, it enhances the flexural modulus, Young’s modulus and electrical conductivity of the nanocomposite. However, the addition of VRA retained the tensile strength of the epoxy system and maintained the improvements in flexural strength and electrical conductivity that have been achieved due to CNT addition.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Nanocomposite, Electrical Properties"

1

Marashdeh, Wajeeh. "Relaxation Behavior and Electrical Properties of Polyimide/Graphene Nanocomposite." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850361812632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nygren, Kristian. "Magnetron Sputtering of Nanocomposite Carbide Coatings for Electrical Contacts." Doctoral thesis, Uppsala universitet, Oorganisk kemi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-302063.

Повний текст джерела
Анотація:
Today’s electronic society relies on the functionality of electrical contacts. To achieve good contact properties, surface coatings are normally applied. Such coatings should ideally fulfill a combination of different properties, like high electrical conductivity, high corrosion resistance, high wear resistance and low cost. A common coating strategy is to use noble metals since these do not form insulating surface oxides. However, such coatings are expensive, have poor wear resistance and they are often applied by electroplating, which poses environmental and human health hazards. In this thesis, nanocomposite carbide-based coatings were studied and the aim was to evaluate if they could exhibit properties that were suitable for electrical contacts. Coatings in the Cr-C, Cr-C-Ag and Nb-C systems were deposited by magnetron sputtering using research-based equipment as well as industrial-based equipment designed for high-volume production. To achieve the aim, the microstructure and composition of the coatings were characterized, whereas mechanical, tribological, electrical, electrochemical and optical properties were evaluated. A method to optically measure the amount of carbon was developed. In the Cr-C system, a variety of deposition conditions were explored and amorphous carbide/amorphous carbon (a-C) nanocomposite coatings could be obtained at substrate temperatures up to 500 °C. The amount of a-C was highly dependent on the total carbon content. By co-sputtering with Ag, coatings comprising an amorphous carbide/carbon matrix, with embedded Ag nanoclusters, were obtained. Large numbers of Ag nanoparticles were also found on the surfaces. In the Nb-C system, nanocrystalline carbide/a-C coatings could be deposited. It was found that the nanocomposite coatings formed very thin passive films, consisting of both oxide and a-C. The Cr-C coatings exhibited low hardness and low-friction properties. In electrochemical experiments, the Cr-C coatings exhibited high oxidation resistance. For the Cr-C-Ag coatings, the Ag nanoparticles oxidized at much lower potentials than bulk Ag. Overall, electrical contact resistances for optimized samples were close to noble metal references at low contact load. Thus, the studied coatings were found to have properties that make them suitable for electrical contact applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Noël, Amélie. "Electrical properties of film-forming polymer/graphene nanocomposites : Elaboration through latex route and characterization." Thesis, Saint-Etienne, EMSE, 2014. http://www.theses.fr/2014EMSE0767/document.

Повний текст джерела
Анотація:
Les dispersions de nanocomposite à base aqueuse sont produites pour des applications diverses telles que les adhésifs, les revêtements et plus récemment les encres. Ce projet consiste à réaliser des encres conductrices nanocomposites comprenant des particules de polymère (latex) à basse température de transition vitreuse, Tg, pour la formation de films à température ambiante, et des plaquettes de graphène, en raison de leurs excellentes propriétés conductrices. Les charges conductrices, appelées multi-feuillets de graphène, sont réalisées par broyage en voie aqueuse de graphite (1-10 µm) stabilisées par différents tensio-actifs et/ou stabilisants. Cette méthode sans solvant et à bas coût permet de produire des suspensions de multi-feuillets (1-10 feuillets) de graphène. Les particules de polymères utilisées sont synthétisées par polymérisation en émulsion de monomères acrylates. Dans un second temps, des mélanges physiques de suspensions de graphène et de latex acrylates ont permis d’obtenir des encres nanocomposites. L’ajout de graphène permet l’obtention d’un seuil de percolation à bas taux de charge et une nette amélioration des propriétés électriques et du renfort. Le diamètre des billes de latex a une influence importante sur ces propriétés et a également été étudié. Afin d’augmenter la stabilité des suspensions et les interactions graphène/latex, des nanocomposites structurés ont été synthétisés par polymérisation in situ en émulsion, miniemulsion ou dispersion en présence de graphène. Les excellentes propriétés électriques associées à leur flexibilité font de ces matériaux des candidats adaptés pour la réalisation d’encres conductrices pour impression sur textile
Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This project presents a procedure that provides a complete and consistent candidate for conductive inks based on a graphene/polymer nanocomposite material. It consists in the synthesis of conductive inks nanocomposites comprising polymer particles (latex) with low glass transition temperature, Tg, and graphene platelets, for the conductive properties. The conductive particles, named Nanosize Multilayered Graphene (NMG), are prepared by wet grinding delamination of micro-graphite suspensions stabilized by various surfactants and/or polymeric stabilizers. This solvent-free procedure allows the formation of NMG suspensions with low thickness (1-10 sheets). Polymer particles are synthetized by surfactant-free emulsion polymerization with acrylates monomers.Physical blending of latex particles and NMG platelets are performed to obtain conductive nanocomposites inks. Adding NMG induce a low percolation threshold and a sharp increase of the electrical and mechanical properties of the nanocomposites. Moreover, the polymer particles diameters have an impact on these properties.To increase the formation of a well-defined cellular microstructure, the nanocomposites are also synthetized by in situ polymerization in presence of NMG platelets, using emulsion, miniemulsion or dispersion polymerization. The excellent electrical properties of these nanocomposites associated to their flexibility make these materials suitable candidates for the production of conductive inks for textile printing applications
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ayewah, Daniel Osagie Oyinkuro. "Characterization of surfactant dispersed single wall nanotube - polystyrene matrix nanocomposite." Thesis, [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Houssat, Mohammed. "Nanocomposite electrical insulation : multiscale characterization and local phenomena comprehension." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30211.

Повний текст джерела
Анотація:
Dans le domaine de l'isolation électrique, il a été démontré que les matériaux hybrides organiques/inorganiques nanocomposites (NC) assurent une nette amélioration de leur fonctionnement à haute température/haute tension et permettent aux systèmes d'isolation électrique de renforcer leurs propriétés diélectriques. Récemment, il a été démontré que certaines modifications des propriétés électriques telles que la permittivité, la rupture diélectrique, la résistance aux décharges partielles ou la durée de vie étaient souvent attribuées à l'interphase nanoparticule/matrice, une région où la présence des nanoparticules modifie les propriétés de la matrice. De plus, des études récentes montrent qu'une fonctionnalisation de la surface des nanoparticules permet une meilleure dispersion dans la matrice hôte. Cette meilleure dispersion affecte la zone d'interphase et joue également un rôle majeur dans l'amélioration des propriétés des nanocomposites. Cependant, le rôle de l'interphase reste théorique et peu de résultats expérimentaux existent pour décrire ce phénomène. Par conséquent, en raison de l'échelle nanométrique de l'interphase, une caractérisation de ses propriétés demeure un défi. Au cours de cette thèse, deux études principales sont menées afin de mieux comprendre la relation structure-propriété dans les polymères nanocomposites. Tout d'abord, la microscopie à force atomique (AFM) est utilisée pour effectuer simultanément des mesures qualitatives et quantitatives de ces zones d'interaction dans le nanocomposite polyimide/nitrure de silicium (PI/Si3N4). Le mode Peak Force Quantitative Nano Mechanical (PF QNM) dérivé de l'AFM révèle la présence de l'interphase en mesurant les propriétés mécaniques (module de Young, déformation ou adhérence). Le mode microscopie à force électrostatique (EFM) est utilisé pour détecter et mesurer la permittivité locale de la matrice et de l'interphases. Par ailleurs, l'objectif de ce travail est de présenter l'effet de la fonctionnalisation de surface des nanoparticules de nitrure de silicium (Si3N4) sur les régions d'interphase. Ces résultats quantitatifs, à la fois mécaniques et électriques, permettent de comparer la dimension et les propriétés des interphase autour des nanoparticules traitées et non traitées. Par conséquent, cette nouvelle approche de caractérisation de cette zone confronte les résultats expérimentaux à des modèles théoriques. Un nouveau modèle basé sur les résultats expérimentaux obtenus est proposé. De plus, la deuxième partie de cette étude présente une caractérisation macroscopique des propriétés et de la rigidité diélectrique des films de polyimide pur, du nanocomposite avec des particules traitées et non traités. Les résultats révèlent le rôle de l'interphase sur la réduction du phénomène de polarisation de l'électrode (PE) dû aux mouvements ioniques surtout à haute température. Pour les nanoparticules non traitées, ces effets sont moins importants en raison de la formation d'agrégats. En revanche, une diminution nette de la PE est obtenue en fonctionnalisant la surface des nanoparticules avec le silane comme agent de couplage. Enfin, la rigidité diélectrique de l'ensemble des échantillons est mesurée et montre une augmentation considérable de la performance diélectrique des nanocomposites à haute température par rapport au PI pur
In the electrical insulation field, it was demonstrated that nanocomposite (NC) organic/inorganic hybrid materials assure a distinct improvement of their high temperature/high voltage functioning and allow the electrical insulation to strengthen its dielectric properties. Recently, it was shown that some modifications of the electrical properties such as permittivity, dielectric breakdown, partial discharges resistance or lifetime are often awarded to the nanoparticle/matrix interphase, a region where the presence of the nanoparticle changes the matrix properties. Moreover, recent studies show that the nanoparticle surface functionalization allows a better dispersion of the particles within the host matrix. This better dispersion affects the interphase zone and plays a major role in the nanocomposite properties improvement as well. However, the role of the interphase remains theoretical and few experimental results exist to describe this phenomenon. Accordingly, because of its nanometer scale, the interphase properties characterization remains a challenge. Two main studies are carried out, during this thesis work, that can provide a better understanding of structure-properties relationships in polymer nanocomposite. First, Atomic Force Microscopy (AFM) is employed to make at the same time qualitative and quantitative measurements of these interaction zones within Polyimide/Silicon Nitride (PI/Si3N4) nanocomposite. The Peak Force Quantitative Nano Mechanical (PF QNM) AFM mode reveals the presence of the interphase by measuring mechanical properties (Young modulus, deformation or adhesion). Electrostatic force microscope (EFM) mode is used in order to detect and measure the matrix and interphase local permittivity. Moreover, the aim of this work is to present the effect of the surface functionalization of silicon nitride (Si3N4) nanoparticles on the interphase regions. Mechanical and electrical quantitative results permit comparing the interphase dimension and properties between treated and untreated Si3N4 nanoparticles. As a result, this new approach to characterize the nanocomposite interphase zone using local measurements confronts experimental results with theoretical models. A new model based on the obtained experimental results is proposed. In addition, the second part of this study presents a macroscopic investigation on the dielectric properties and breakdown strength of neat polyimide, untreated and treated nanocomposite films. Results reveal the interphase role on the reduction of the electrode polarization (EP) phenomenon due to ionic movements especially at high temperatures. For untreated nanoparticles, these effects are less important due to the aggregate formation. In contrast, an EP drastic decrease is obtained by functionalizing the nanofiller surface with a silane coupling agent. Finally, the high temperature breakdown strength for all samples is investigated and shows a considerable increase of nanocomposites dielectric performance at high temperature compared to neat PI
Стилі APA, Harvard, Vancouver, ISO та ін.
6

DeGeorge, Vincent G. "Chemical Partitioning and Resultant Effects on Structure and Electrical Properties in Co-Containing Magnetic Amorphous Nanocomposites for Electric Motors." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/885.

Повний текст джерела
Анотація:
chemical partitioning of Cobalt-containing soft magnetic amorphous and nanocomposite materials has been investigated with particular focus on its consequences on these materials’ nanostructure and electrical resistivity. Theory, models, experiment, and discussion in this regard are presented on this class of materials generally, and are detailed in particular on alloys of composition, (Fe65Co35)79.5+xB13Si2Nb4-xCu1.5, for X={0- 4at%}, and Co-based, Co76+YFe4Mn4-YB14Si2Nb4, for Y={0-4at%}. The context of this work is within the ongoing efforts to integrate soft magnetic metal amorphous and nanocomposite materials into electric motor applications by leveraging material properties with motor topology in order to increase the electrical efficiency and decrease the size, the usage of rare-earth permanent magnets, and the power losses of electric motors. A mass balance model derived from consideration of the partitioning of glass forming elements relates local composition to crystal state in these alloys. The ‘polymorphic burst’ onset mechanism and a Time-Temperature- Transformation diagram for secondary crystallization are also presented in relation to the partitioning of glass forming elements. Further, the intrinsic electrical resistivity of the material is related to the formation of virtual bound states due to dilute amounts of the glass forming elements. And lastly, a multiphase resistivity model for the effective composite resistivity that accounts for the amorphous, crystalline, and glass former-rich amorphous regions, each with distinct intrinsic resistivity, is also presented. The presented models are validated experimentally on the Co-containing alloys by Atom Probe Tomography performed through collaboration with Pacific Northwestern National Laboratory.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Al, Mafarage Ali M. "Processing and Properties of Multifunctional Two-Dimensional Nanocomposite Based on Single Wall Carbon Nanotubes." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1556310855748631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Olenych, I. B., O. I. Aksimentyeva, and Yu Yu Horbenko. "Electrical Properties of Hybrid Composites Based on Poly(3,4-ethylenedioxythiophene) with ZnO and Porous Silicon Nanoparticles." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42552.

Повний текст джерела
Анотація:
The electrical properties of hybrid nanosystem based on poly(3,4 ethylenedioxythiophene) with ZnO and porous silicon nanoparticles were studied by the methods of current-voltage characteristics and thermally stimulated conductivity. The dependence of electrical parameters of hybrid films on their composition has been found. The analysis of the temperature dependences of the composites conductivity in the temperature range of 80-330 К indicates the activation character of charge transfer and presence the trapping of unequilibrium carriers at the porous silicon and ZnO nanoparticle – polymer interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ezat, Gulstan S. "The influence of multi-walled carbon nanotubes on the properties of polypropylene nanocomposite : the enhancement of dispersion and alignment of multiwalled carbon nanotube in polypropylene nanocomposite and its effect on the mechanical, thermal, rheological and electrical properties." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5703.

Повний текст джерела
Анотація:
Carbon nanotubes are known as ideal fillers for polymer systems; the main advantage of carbon nanotubes over other nano-reinforcing particles is the combination of superior strength and stiffness with large aspect ratio. Carbon nanotubes may improve the mechanical, electrical and thermal properties of polymers, but to realise their potential in polymer systems uniform dispersion, strong interfacial adhesion and alignment of nanotubes within the polymer matrix are necessary. These properties are not easy to achieve and they are key challenges in producing CNT/Polymer system. This research was carried out in an attempt to understand how the properties of CNT/Polymer composite can be optimised by manipulation of additives, compounding and postcompounding conditions. Polypropylene/Multi-Walled Carbon Nanotube (PP/MCNT) composites were prepared by conventional twin screw extrusion. Dispersants and compatibilisers were used to establish good interaction between filler and polymer. Several different extruder screw configurations were designed and the properties of PP/MCNT composite prepared by each configuration investigated. The results indicated that the addition of carbon nanotubes without additives enhanced mechanical, electrical and thermal properties of polypropylene polymer. Incorporation of compatibilisers into PP/MCNT improved the stiffness but decreased the strength of the nanocomposite, whilst addition of dispersants decreased the mechanical properties of the nanocomposite. Addition of both additives at high concentration improved electrical conductivity and induced electrical percolation in the nanocomposite. Extruder screw configuration was found to have significant effect on the electrical conductivity whilst only slightly affecting mechanical properties of the nanocomposite, possibly due to the competition between dispersion and degradation of polymer chains and possible reduction of carbon nanotube length by intensive shear during compounding. The use of screw configuration with high mixing intensity promoted the dispersion of nanotubes and favoured the conduction process in the nanocomposite. Finally in an attempt to improve dispersion and alignment of carbon nanotubes, compounded PP/MCNT composite was subjected to micromoulding, fibre spinning and biaxial stretching processes and the resultant properties investigated. Application of post-compounding process was found to have significant effect on mechanical and rheological properties of the nanocomposite. Stiffness and strength of the nanocomposites treated by post-compounding processes were found to increase by up to 160% and 300%, respectively. The reinforcement effect of carbon nanotubes in the stretched nanocomposites was found to be the greatest. Rheological analysis suggested that the application of post-compounding processes enhanced dispersion of carbon nanotubes within the nanocomposite. Overall, this finding of this research has shown that carbon nanotubes can be incorporated into polypropylene using conventional equipment to provide significant improvement in properties. By careful choices of additives, compounding and postcompounding conditions, specific properties can be further enhanced.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nedfors, Nils. "Synthesis and Characterization of Multifunctional Carbide- and Boride-based Thin Films." Doctoral thesis, Uppsala universitet, Oorganisk kemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-219040.

Повний текст джерела
Анотація:
This thesis present research on synthesis, microstructure, and properties of carbide- and boride- based thin films. The films have been synthesized by dc magnetron sputtering, and their microstructures have been characterized mainly by X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and transmission electron microscopy.  One of the main objectives with this research has been to evaluate the thin films potential as materials for sliding electrical contact applications and this have influenced, which properties that have been evaluated. Co-sputtered Nb-C films have a microstructure comprising of nanocrystalline NbCx  (nc-NbCx) grains embedded in a matrix of amorphous C (a-C). A thinner a-C matrix form in the Nb-C films compared to the well-studied Ti-C system. As a consequence, the Nb-C films have a higher hardness and conductivity than previously studied Ti-C sputtered under similar conditions. The promising electrical contact properties are attained for reactively sputtered Nb-C films under industrial conditions, at deposition rates two orders of magnitude higher. A reduction in crystallinity is seen when Si is added to the Nb-C films and amorphous films forms at Si content > 25 at.%. The alloying of Si was however not beneficial for the electrical contact properties. Substoichiometric CrB2-x (B/Cr = 1.5) and NbB2-x (B/Nb = 1.8) films are achieved when deposited from MeB2 targets. Boron segregates to grain boundaries forming a B-rich tissue phase. This result in superhardness for the NbB2-x films (42 ± 4 GPa) as well as a low friction attributed to the formation of a boric acid film. Carbon forms a solid solution in the MeB2 grains as well as segregating to grain boundaries forming an amorphous BCx (a-BCx) phase when alloyed to CrB2-x and NbB2-x films. The formation of the a-BCx phase drastically improves the electrical contact resistance of the NbB2-x films. However, the mechanical properties are degraded, which result in a high friction and wear rate. It was in TEM studies of the metastable amorphous structures for the Nb-Si-C films found that the electron beam induces crystallization. Hence, great care is required when studying these types of metastable structures.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Nanocomposite, Electrical Properties"

1

Wang, Qing, and Lei Zhu. Functional polymer nanocomposites for energy storage and conversion. Edited by Wang Qing, Zhu Lei, and American Chemical Society. Division of Polymeric Materials: Science and Engineering. Washington, D.C: American Chemical Society, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Qing. Functional polymer nanocomposites for energy storage and conversion. Washington, D.C: American Chemical Society, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

ZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Huang, Xingyi, and Chunyi Zhi. Polymer Nanocomposites: Electrical and Thermal Properties. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang, Xingyi, and Chunyi Zhi. Polymer Nanocomposites: Electrical and Thermal Properties. Springer, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huang, Xingyi, and Chunyi Zhi. Polymer Nanocomposites: Electrical and Thermal Properties. Springer London, Limited, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Araújo, Ana Cláudia Vaz de. Síntese de nanopartículas de óxido de ferro e nanocompósitos com polianilina. Brazil Publishing, 2021. http://dx.doi.org/10.31012/978-65-5861-120-2.

Повний текст джерела
Анотація:
In this work magnetic Fe3O4 nanoparticles were synthesized through the precipitation method from an aqueous ferrous sulfate solution under ultrasound. A 23 factorial design in duplicate was carried out to determine the best synthesis conditions and to obtain the smallest crystallite sizes. Selected conditions were ultrasound frequency of 593 kHz for 40 min in 1.0 mol L-1 NaOH medium. Average crystallite sizes were of the order of 25 nm. The phase obtained was identified by X-ray diffractometry (XRD) as magnetite. Scanning electron microscopy (SEM) showed polydisperse particles with dimensions around 57 nm, while transmission electron microscopy (TEM) revealed average particle diameters around 29 nm, in the same order of magnitude of the crystallite size determined with Scherrer’s equation. These magnetic nanoparticles were used to obtain nanocomposites with polyaniline (PAni). The material was prepared under exposure to ultraviolet light (UV) or under heating, from dispersions of the nanoparticles in an acidic solution of aniline. Unlike other synthetic routes reported elsewhere, this new route does not utilize any additional oxidizing agent. XRD analysis showed the appearance of a second crystalline phase in all the PAni-Fe3O4 composites, which was indexed as goethite. Furthermore, the crystallite size decreases nearly 50 % with the increase in the synthesis time. This size decrease suggests that the nanoparticles are consumed during the synthesis. Thermogravimetric analysis showed that the amount of polyaniline increases with synthesis time. The nanocomposite electric conductivity was around 10-5 S cm-1, nearly one order of magnitude higher than for pure magnetite. Conductivity varied with the amount of PAni in the system, suggesting that the electric properties of the nanocomposites can be tuned according to their composition. Under an external magnetic field the nanocomposites showed hysteresis behavior at room temperature, characteristic of ferromagnetic materials. Saturation magnetization (MS) for pure magnetite was ~ 74 emu g-1. For the PAni-Fe3O4 nanocomposites, MS ranged from ~ 2 to 70 emu g-1, depending on the synthesis conditions. This suggests that composition can also be used to control the magnetic properties of the material.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Novel Nanocomposites: Optical, Electrical, Mechanical and Surface Related Properties. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-2248-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ayyar, Manikandan, Anish Khan, Abdullah Mohammed Ahmed Asiri, and Imran Khan. Magnetic Nanoparticles and Polymer Nanocomposites: Structural, Electrical and Optical Properties and Applications [Volume 2]. Elsevier Science & Technology, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ayyar, Manikandan, Anish Khan, Abdullah Mohammed Ahmed Asiri, and Imran Khan. Magnetic Nanoparticles and Polymer Nanocomposites: Structural, Electrical and Optical Properties and Applications, Volume 2. Elsevier Science & Technology, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Nanocomposite, Electrical Properties"

1

Tsekmes, Alex, Peter Morshuis, and Gary C. Stevens. "Chapter 8 Electrical Properties of Polymer Nanocomposites." In Tailoring of Nanocomposite Dielectrics, 218–42. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing Pte. Ltd., 2016. http://dx.doi.org/10.1201/9781315201535-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bhatt, Chandni, Ram Swaroop, and A. L. Sharma. "Structural and Electrical Properties of Polymer Nanocomposite Films." In Springer Proceedings in Physics, 373–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29096-6_50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Silva, Jaime, Ricardo Simoes, and Senentxu Lanceros-Mendez. "Modeling Carbon Nanotube Electrical Properties in CNT/Polymer Composites." In New Frontiers of Nanoparticles and Nanocomposite Materials, 287–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/8611_2012_64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shen, Wei, Mengyao Han, Qinrong Li, Daomin Min, and Shengtao Li. "Preparation of PP/MgO Nanocomposite Films and Study on Its Dielectric Properties." In Lecture Notes in Electrical Engineering, 582–90. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1532-1_62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Singh, Sudhanshu, Nitesh Singh Rajput, Deepshikha Rathore, and Umesh Kumar Dwivedi. "Development and Electrical Properties of Titanium Dioxide-Based Polymer Nanocomposite Structures." In Lecture Notes in Mechanical Engineering, 271–80. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4059-2_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

El Ansary, Zakaria, Ilham Bouknaitir, Silvia Soreto Teixeira, Lamyaa Kreit, Annamaria Panniello, Paola Fini, Marinella Striccoli, Mohamed El Hasnaoui, Luís Cadillon Costa, and Mohammed Essaid Achour. "Electrical Properties in PMMA/Carbon-Dots Nanocomposite Films Below the Percolation Threshold." In NATO Science for Peace and Security Series B: Physics and Biophysics, 235–50. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2018-0_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Taib, Misliana MD, Suriani Ibrahim, and Shaifulazuar Rozali. "Structural and Electrical Properties of Graphene Oxide/Nickel Oxide Based Polymer Nanocomposite." In Lecture Notes in Mechanical Engineering, 981–90. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9505-9_86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Miglietta, Maria Lucia, Brigida Alfano, Tiziana Polichetti, Ettore Massera, Fausta Loffredo, Fulvia Villani, Anna De Girolamo Del Mauro, and Paola Delli Veneri. "Investigation on the Sensing Properties at Room Temperature of a Graphene/SnO2 Nanocomposite Towards CO2." In Lecture Notes in Electrical Engineering, 34–39. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25706-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Carturan, S., A. Antonaci, G. Maggioni, A. Quaranta, M. Tonezzer, R. Milan, G. Mattei, and P. Mazzoldi. "Optical Sensing Properties Towards Ethanol Vapors of Au-Polyimide Nanocomposite Films Synthesized by Different Chemical Routes." In Lecture Notes in Electrical Engineering, 51–54. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3606-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Desouky, Mai, Ahmed Medhat, Mona Samir, Dina Salah, and Amal Kasry. "Structure and Properties Manipulations of Graphene: Towards Developing High Sensitivity Optical and Electrical Sensors." In Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, 941–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94319-6_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Nanocomposite, Electrical Properties"

1

Thaler, Dominic, Nahal Aliheidari, and Amir Ameli. "Electrical Properties of Additively Manufactured Acrylonitrile Butadiene Styrene/Carbon Nanotube Nanocomposite." In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8002.

Повний текст джерела
Анотація:
Additive manufacturing is an emerging method to produce customized parts with functional materials without big investments. As one of the common additive manufacturing methods, fused deposition modeling (FDM) uses thermoplastic-based feedstock. It has been recently adapted to fabricate composite materials too. Acrylonitrile butadiene styrene (ABS) is the most widely used material as FDM feedstock. However, it is an electrically insulating polymer. Carbon Nanotubes (CNTs) on the other hand are highly conductive. They are attractive fillers because of their high aspect ratio, and excellent mechanical and physical properties. Therefore, a nanocomposite of these two materials can give an electrically conductive material that is potentially compatible with FDM printing. This work focuses on the investigation of the relationships between the FDM process parameters and the electrical conductivity of the printed ABS/CNT nanocomposites. Nanocomposite filaments with CNT contents up to 10wt% were produced using a twin-screw extruder followed by 3D printing using FDM method. The starting material was pellets from a masterbatch containing 15 wt% CNT. Compression-molded samples of ABS/CNT were also prepared as the bulk baselines. The effects of CNT content and nozzle size on the through-layer and in-layer electrical conductivity of the printed nanocomposites were analyzed. Overall, a higher percolation threshold was observed in the printed samples, compared to that of the compression-molded counterparts. This resulted in the conductivity of the printed samples that is at least one order of magnitude lower. Moreover, at CNT contents up to 5 wt%, the in-layer conductivity of the printed samples was almost two orders of magnitudes higher than that in the through-layer direction. In ABS/3 wt% CNT samples, the through-layer conductivity continuously decreased as the nozzle diameter was decreased from 0.8 mm to 0.35 mm. These variations in the electrical conductivity were explained in terms of the CNT alignment, caused by the extrusion process during the print, quality of interlayer bonding during deposition, and the voids created due to the discrete nature of the printing process.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Hua, and Gang Li. "Computational Analysis of Strain Effects on Electrical Transport Properties of Crystalline Nanocomposite Thin Films." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64641.

Повний текст джерела
Анотація:
In this work, we model the strain effects on the electrical transport properties of Si/Ge nanocomposite thin films. We utilize a two-band k·p theory to calculate the variation of the electronic band structure as a function of externally applied strains. By using the modified electronic band structure, electrical conductivity of the Si/Ge nanocomposites is calculated through a self-consistent electron transport analysis, where a nonequilibrium Green’s function (NEGF) is coupled with the Poisson equation. The results show that both the tensile uniaxial and biaxial strains increase the electrical conductivity of Si/Ge nanocomposite. The effects are more evident in the biaxial strain cases.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ngabonziza, Yves, Jackie Li, and Carol F. Barry. "Electrical Conductivity and Elastic Properties of MWCNT-PP Nanocomposites." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68431.

Повний текст джерела
Анотація:
Electrical and elastic properties of multiwalled carbon nanotubes (MWCNTs) reinforced polypropylene (PP) nanocomposites were studied experimentally and theoretically. The MWCNT-PP nanocomposites samples with a range of 0 to 12 wt% MWCNT were injection molded using different injection velocities. These nanocomposites were characterized for their electrical resistance using 2-Probe measurement and their tensile properties. Parallel to the experimental investigation, a percolation theory was applied to study the electrical conductivity of the nanocomposite system in terms of content of nanotubes and injection rate. Both Kirkpatrick [1] and McLachlan [2] models were used to determine the transition from low conductivity to high conductivity which designates as percolation threshold. Both experimental and modeling results have shown that the electrical conductivity increased suddenly as the content of MWNTs was close to percolation threshold of 3.8 wt%. The injection speed also showed an effect on electrical conductivity of the composites. In addition, several micromechanical models were applied to elucidate the elastic properties of the nanocomposites. The results indicate that the interphase between the carbon nanotubes and polymers plays an important role in determining elastic modulus of the system.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Minnich, Austin, and Gang Chen. "Modeling the Thermoelectric Properties of Nanocomposites." In ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/enic2008-53003.

Повний текст джерела
Анотація:
Modeling the thermoelectric properties of nanocomposites is difficult due to the complex grain boundary scattering processes which scatter both electrons and phonons. In this work we describe a code we developed which numerically calculates the electrical and thermal properties of bulk and nanocomposite thermoelectric materials using the Boltzmann equation under the relaxation time approximation. The code is capable of calculating all the relevant thermoelectric properties over a wide range of temperatures, doping concentrations, and compositions, allowing for a full characterization of the material. We model nanocomposites by incorporating a grain boundary scattering rate based on a simple model we developed and models in the literature. The code and grain boundary scattering models are validated on bulk data and data from nano-SiGe, and are then applied to other candidate thermoelectric materials to see if they would be good candidates for nanocomposites. The analysis shows that GaAs might be promising as a nanocomposite thermoelectric material.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kotin, Igor A., Irina V. Antonova, Regina A. Soots, and Victor Ya Prinz. "Electrical properties of nanocomposite graphene-organic monolayers." In 2010 11th International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM 2010). IEEE, 2010. http://dx.doi.org/10.1109/edm.2010.5568658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reddy, R. J., R. Asmatulu, and W. S. Khan. "Electrical Properties of Recycled Plastic Nanocomposites Produced by Injection Molding." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40259.

Повний текст джерела
Анотація:
Plastic recycling is a recovery process of waste plastics to make new products into different forms. Plastics are usually sorted based on their resin identification codes before the recycling and melting processes. Although the recycling rate of plastics is significantly high, properties and economical value of the recycled plastics are fairly low, which in turn limits the use of recycled plastics in the market. In the present study, high density polyethylene (HDPE) in the form of pellets was dissolved in toluene, and then nanoscale graphene inclusions at different loadings (e.g., 0%, 0.25%, 0.5%, 1%, 2% and 4%) were added into the polymeric solutions. The remaining solvent was removed from the nanocomposite before the injection molding process. The injection molding process was conducted on the chopped recycled plastics associated with graphene loadings. The dielectric and electric properties of plastic nanocomposites were studied in detail. The test results showed that the dielectric properties were slightly improved by the addition of inclusions, which may be due to the non-polar nature of HDPE and/or residues in the recycled plastics. However, electrical conductivities of nanocomposites were significantly increased because of the improved electrical conduction, polarization and electron mobility at room temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Oskouyi, Amirhossein B., Uttandraman Sundararaj, and Pierre Mertiny. "A Numerical Model to Study the Effect of Temperature on Electrical Conductivity of Polymer-CNT Nanocomposites." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62602.

Повний текст джерела
Анотація:
In this study the effect of the temperature on the electrical conductivity of nanocomposites with carbon nanotube (CNT) fillers was investigated. A three-dimensional continuum Monte Carlo model was developed and employed first to form a CNT percolation network. CNT fillers were randomly generated and dispersed in a cubic representative volume element. Periodic boundary conditions were applied in this model to minimize size effects while decreasing computational cost. CNT fibers that connected electrically to each other through electron hopping were recognized and grouped as clusters. In addition to tunneling resistance, the effect of intrinsic CNT resistivity was considered. A three-dimensional resistor network was subsequently developed to evaluate nanocomposite electrical properties. Modeling employing the finite element method was conducted to evaluate the electrical conductivity of the percolation network. Considering the determining role of tunneling resistance on electrical conductivity of CNT based nanocomposites, as well as results obtained from experimental studies, temperature was expected to play an important role in nanocomposite electrical properties. The effect of temperature on electrical conductivity of CNT nanocomposites was thus investigated through employing the developed Monte Carlo and finite element models. Other aspects, including the electrical behavior of the polymer, tunneling resistivity and the intrinsic resistivity of CNT were considered in this study as well. The comprehensiveness of the developed modeling approach enables an evaluation of results in conjunction with experimental data in future works.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Das, S. K., and R. Prakash. "Electrical properties of multiwalled carbon nanotubes /polyaniline nanocomposite." In 2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems (ELECTRO-2009). IEEE, 2009. http://dx.doi.org/10.1109/electro.2009.5441048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hirano, Y., R. Hanaoka, N. Osawa, K. Miyagi, Y. Fujita, and Y. Kanamaru. "Electrical and mechanical properties of nanocomposite materials containing electrically dispersed MWCNTs." In 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 2016. http://dx.doi.org/10.1109/ceidp.2016.7785466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ngabonziza, Yves, and Jackie Li. "Electrical Conductivity and Elastic Properties of Carbon Nanotube Reinforced Polycarbonate Nanocomposites." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62685.

Повний текст джерела
Анотація:
In the past years, carbon nanotubes and their composites have been intensively studied due to their extremely high strength and high electrical and thermal conductivities. However, to be able to use CNT-reinforced composites as structural materials in real applications, more cost-efficient processing methods should be adopted and the properties of such nanocomposites need to be further analyzed. Here we investigate the electrical and elastic properties of multi-walled carbon nanotubes (MWCNT) reinforced polycarbonate (PC) nanocomposites produced by injection molding which has been widely used in industrial plastic production. Nanocomposite samples with MWCNT ranging from 0 to 7wt% were tested for both electrical conductivity using a 2-probe measurement and mechanical properties under tensile loading. It has been found that the electrical conductivity depends on both injection velocity and the CNT content while the elastic properties of the nanocomposites only depend on the CNT content. Besides the experimental testing, a percolation theory and micromechanics models have been applied to determine the electrical conductivity percolation threshold and the effective elastic modulus of the nanocomposites in terms of CNT contents. The results are compared with our experimental data. It shows that a percolation threshold is around 1.8wt% of MWCNT. The evaluation of elastic properties using micromechanics models not only indicates the influence of MWCNT on elastic properties but also the presence of an interphase between the CNT and PC matrix.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Nanocomposite, Electrical Properties"

1

Barnes, Eftihia, Jennifer Jefcoat, Erik Alberts, Hannah Peel, L. Mimum, J, Buchanan, Xin Guan, et al. Synthesis and characterization of biological nanomaterial/poly(vinylidene fluoride) composites. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42132.

Повний текст джерела
Анотація:
The properties of composite materials are strongly influenced by both the physical and chemical properties of their individual constituents, as well as the interactions between them. For nanocomposites, the incorporation of nano-sized dopants inside a host material matrix can lead to significant improvements in mechanical strength, toughness, thermal or electrical conductivity, etc. In this work, the effect of cellulose nanofibrils on the structure and mechanical properties of cellulose nanofibril poly(vinylidene fluoride) (PVDF) composite films was investigated. Cellulose is one of the most abundant organic polymers with superior mechanical properties and readily functionalized surfaces. Under the current processing conditions, cellulose nanofibrils, as-received and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidized, alter the crystallinity and mechanical properties of the composite films while not inducing a crystalline phase transformation on the 𝛾 phase PVDF composites. Composite films obtained from hydrated cellulose nanofibrils remain in a majority 𝛾 phase, but also exhibit a small, yet detectable fraction of 𝛼 and ß PVDF phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії