Добірка наукової літератури з теми "Multiview2"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multiview2".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Multiview2"
Avison, D. E., A. T. Wood‐Harper, R. T. Vidgen, and J. R. G. Wood. "A further exploration into information systems development: the evolution of Multiview2." Information Technology & People 11, no. 2 (June 1998): 124–39. http://dx.doi.org/10.1108/09593849810218319.
Повний текст джерелаZhu, Shiping, Liyun Li, Juqiang Chen, and Kamel Belloulata. "An Efficient Fractal Video Sequences Codec with Multiviews." Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/853283.
Повний текст джерелаLi, Peng, Zhikui Chen, Jing Gao, Jianing Zhang, Shan Jin, Wenhan Zhao, Feng Xia, and Lu Wang. "A Deep Fusion Gaussian Mixture Model for Multiview Land Data Clustering." Wireless Communications and Mobile Computing 2020 (October 16, 2020): 1–9. http://dx.doi.org/10.1155/2020/8880430.
Повний текст джерелаChen, Feiqiong, Guopeng Li, Shuaihui Wang, and Zhisong Pan. "Multiview Clustering via Robust Neighboring Constraint Nonnegative Matrix Factorization." Mathematical Problems in Engineering 2019 (November 23, 2019): 1–10. http://dx.doi.org/10.1155/2019/6084382.
Повний текст джерелаChang, Yan-Shuo, Feiping Nie, and Ming-Yu Wang. "Multiview Feature Analysis via Structured Sparsity and Shared Subspace Discovery." Neural Computation 29, no. 7 (July 2017): 1986–2003. http://dx.doi.org/10.1162/neco_a_00977.
Повний текст джерелаWang, Haiyan, Guoqiang Han, Haojiang Li, Guihua Tao, Enhong Zhuo, Lizhi Liu, Hongmin Cai, and Yangming Ou. "A Collaborative Dictionary Learning Model for Nasopharyngeal Carcinoma Segmentation on Multimodalities MR Sequences." Computational and Mathematical Methods in Medicine 2020 (August 28, 2020): 1–15. http://dx.doi.org/10.1155/2020/7562140.
Повний текст джерелаKanaan-Izquierdo, Samir, Andrey Ziyatdinov, Maria Araceli Burgueño, and Alexandre Perera-Lluna. "Multiview: a software package for multiview pattern recognition methods." Bioinformatics 35, no. 16 (December 31, 2018): 2877–79. http://dx.doi.org/10.1093/bioinformatics/bty1039.
Повний текст джерелаZekovic, Amela, and Irini Reljin. "Multifractal analysis of multiview 3D video with different quantization parameters applying histogram method." Serbian Journal of Electrical Engineering 11, no. 1 (2014): 25–34. http://dx.doi.org/10.2298/sjee131130003z.
Повний текст джерелаPei, Jifang, Weibo Huo, Chenwei Wang, Yulin Huang, Yin Zhang, Junjie Wu, and Jianyu Yang. "Multiview Deep Feature Learning Network for SAR Automatic Target Recognition." Remote Sensing 13, no. 8 (April 9, 2021): 1455. http://dx.doi.org/10.3390/rs13081455.
Повний текст джерелаGu, Yi, and Kang Li. "Entropy-Based Multiview Data Clustering Analysis in the Era of Industry 4.0." Wireless Communications and Mobile Computing 2021 (April 30, 2021): 1–8. http://dx.doi.org/10.1155/2021/9963133.
Повний текст джерелаДисертації з теми "Multiview2"
ZARDINI, Alessandro. "Gli impatti organizzativi delle piattaforme di Enterprise Content Management sui processi decisionali." Doctoral thesis, Università degli Studi di Verona, 2010. http://hdl.handle.net/11562/343376.
Повний текст джерелаThe focus of this thesis is to analyze the correlations between the competitive advantage, associated to the improvement of the process of decision making, and the content management through the Enterprise Content Management platform (ECM). One scope of this work is to increase the Knowledge Management (KM) literature and in particular to seek the correlation between the ECM Systems and the Decision Support Systems. Enterprise Content Management platforms largely have been analyzed according to Transaction Cost Theory (Reimer, 2002; McKeever, 2003; Smith and McKeen, 2003; O'Callaghan and Smits, 2005; Tyrväinen et al., 2006) and generally are described as useful for the reduction of ECM costs inside an organization (McKeever, 2003). Through empirical analyses, various authors have stressed that ECM tools increase efficiency and reduce management and research costs. Few studies consider the impacts of these tools on the organization or company processes. In particular, no research has highlighted the strategic role of ECM platforms in Enterprise Content Management (Gupta et al., 2002; Helfat and Peteraf, 2003; Smith and McKeen, 2003; O'Callaghan and Smits, 2005) as a means to improve and speed up the decision-making process. The case study will be analyzed by the Knowledge Based View. Specifically, the knowledge-based view (KBV) constitutes a fundamental essence of the resource-based view (RBV; Conner and Prahalad, 1996), reflecting the importance of knowledge assets. The knowledge and enterprise content generated thus can be interpreted not only as strategic resources to achieve or maintain a competitive advantage but also as useful tools for developing and expanding the company’s ability to respond promptly to unexpected events in the external environment and therefore perfect decision making within the organization. According to several authors (Barney, 1991; Amit and Schoemaker, 1993; Peteraf, 1993; Winter, 1995; Grover et al., 2009), the Resource Based View (RBV) cites knowledge as a resource that can generate information asymmetries and thus a competitive advantage for the enterprises that possess it. Reconsidering the general theory on the RBV and including knowledge assets among an enterprise’s intangible resources easily results in the KBV. If the term “acquired resources” from the general RBV proposed by Lippman and Rumelt (1982) and Barney (1986) gets replaced by “knowledge,” the result is KBV theory, and knowledge represents one of the strategic factors for maintaining a competitive advantage (Grant and Baden-Fuller, 1995; Grant, 1996c; Teece et al., 1997; Sambamurthy and Subramani, 2005; Bach et al., 2008; Choi et al., 2008). The availability of content thus is necessary, but it is not a sufficient condition to improve the decision-making process and company performance. Rather, the company also needs to transform “passive” contents, such as unused information within the boundaries of organizational memory, into “active” sources that are integral to the decision-making process. To improve the decision-making process and create value, the enterprises must enrich the quality and quantity of all information that provides critical input to a decision. The goal therefore involves an ability to manage knowledge in- and outside the organization by transforming data into knowledge. In the case analyzed, decision-makers achieve the best performance not only improving the quantity and quality of input information to the decisional process but also thanks to a better formalization of the knowledge included in all phases of the process. In this view, ECM platforms are advanced KM tools that are fundamental for the development of a competitive advantage, in that they simplify and speed up the management (creation, classification, storing, change, deletion) of information, increase the productivity of each member, and improve the efficiency of the system (McKeever, 2003; Nordheim and Päivärinta, 2004; O' Callaghan and Smits, 2005). By implementing an ECM system, the company has not only an effective means for creating, tracking, managing, and archiving all company content but also can integrate business processes, develop collaborative actions through the systemic organization of work teams, and create a search engine with specialized “business logic views.” Standardized contents and layout, associated with a definition of content owners and users (i.e., management of authorizations), and document processes support the spread of updated, error-free information to various organizational actors. Similar to business intelligence systems, ECM platforms support decision making inside the organizations in terms of viewing and retrieving data and analyzing and sharing information—and thus increase organizational memory—as well as their storage and continuous maintenance along the life cycle of the enterprise. For the analysis of the case study, this study employs the action research method (Lewin, 1946; Checkland, 1985; Checkland and Scholes, 1990), and specifically Multiview2 (Avison and Wood-Harper, 2003). The original Multiview concept assumed a continuous interaction between analysts and method, including the present situation and the future scenario that originated by application of the methodology. In some respects, the original definition was limited, in that it did not describe the function of each element and the trend of possible interactions (Avison and Wood-Harper, 2003). Multiview2 fills these gaps by taking into consideration the action and reaction generated by the interactions of the elements. The three macro-categories therefore must be aligned to conduct an organizational, socio-technical, and technological analysis (Avison et al., 1998; Avison and Wood-Harper, 2003). The researcher provides a clear contribution that matches the theoretical framework used as a reference and measures and evaluates in subsequent phases the results obtained from those implemented actions.
Vetro, Anthony, Emin Martinian, Jun Xin, Alexander Behrens, and Huifang Sun. "THECHNIQUES FOR MULTIVIEW VIDEO CODING." INTELLIGENT MEDIA INTEGRATION NAGOYA UNIVERSITY / COE, 2005. http://hdl.handle.net/2237/10361.
Повний текст джерелаShafaei, Alireza. "Multiview depth-based pose estimation." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/56180.
Повний текст джерелаScience, Faculty of
Computer Science, Department of
Graduate
Khattak, Shadan. "Low complexity multiview video coding." Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/10511.
Повний текст джерелаBarba, Ferrer Pere. "Multiview Landmark Detection forIdentity-Preserving Alignment." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142475.
Повний текст джерелаAnsiktsigenkänning är en grundläggande uppgift inom datorseende och har varit ett viktigt område för forskning i många år. Dess betydelse i områden som ansiktsigenkänning och klassificering, 3D-animering, virtuell modellering eller biomedicin gör det till en verksamhet med hög efterfrågan. Att hitta precisa lösningar utgör fortfarande en stor utmaning idag. Denna rapport presenterar en enhetlig process för att automatiskt extrahera en uppsättning ansiktslandmärken och ta bort alla skillnader relaterade till posering, uttryck och miljö genom att ta ansiktet till ett neutralcentrerat poseringstillstånd. Landmärksdetektering baseras på en bildmässig strukturmodell med multipel synvinkel som först anger en del för varje landmärke som ska extraheras, och sen en trädstruktur där positionen sparas därefter skapas multipla trädmodeller för att modellera skillnader på grund av olika riktningar. I denna rapport behandlas både problemet med hur man hittar en uppsättning landmärken från en modell och problemet med att träna en sådan modell från en uppsättning märkta exempel. Vi visar hur en sådan modell framgångsrikt fångar ett stort utbud av formändringar där betydligt mindre träningsexempel behövs än för vanliga kommersiella ansiktsdetektorer. Inriktningsprocessen syftar huvudsakligen till att upphäva skillnaderna mellan flera ansikten så att de alla kan analyseras enligt samma kriterier. För att justera den detekterade uppsättning landmärken används en splineinterpolation till den önskade konfigurationen. Denna metod ger en dämpad interpolation medan objektets identitet bevaras. Vi presenterar resultaten av våra algoritmer både i en begränsad miljö och i utmanande LFPW face-databas. Goda resultat visar att vår metod är en bra process för enigt erkänna och förvränga ansikten i en obegränsad miljö och att vara i nivå med andra state-of-the-art förfaranden.
Mendonça, Paulo Ricardo dos Santos. "Multiview geometry : profiles and self-calibration." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621114.
Повний текст джерелаAksay, Anil. "Error Resilient Multiview Video Coding And Streaming." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611682/index.pdf.
Повний текст джерелаRichter, Stefan. "Compression and View Interpolation for Multiview Imagery." Thesis, KTH, Ljud- och bildbehandling, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-37699.
Повний текст джерелаJutla, Dawn N. "Multiview model for protection and access control." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ31529.pdf.
Повний текст джерелаSeeling, Christian. "MultiView-Systeme zur explorativen Analyse unstrukturierter Information." Aachen Shaker, 2007. http://d-nb.info/1000271293/34.
Повний текст джерелаКниги з теми "Multiview2"
Sun, Shiliang, Liang Mao, Ziang Dong, and Lidan Wu. Multiview Machine Learning. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3029-2.
Повний текст джерелаReid, David. Multiview and Merise: A comparative study. Salford: University of Salford, 1992.
Знайти повний текст джерелаWood-Harper, A. T. Information systems definition: The multiview approach. Oxford: Blackwell Scientific, 1985.
Знайти повний текст джерелаAvison, D. E. Multiview: An exploration in information systemsdevelopment. Henley-on-Thames: Alfred Waller Ltd., 1993.
Знайти повний текст джерелаChen, Shengyong, Y. F. Li, Jianwei Zhang, and Wanliang Wang, eds. Active Sensor Planning for Multiview Vision Tasks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77072-5.
Повний текст джерелаAvison, D. E. Multiview: An exploration in information systems development. London: McGraw-Hill, 1995.
Знайти повний текст джерелаT, Wood-Harper A., ed. Multiview: An exploration in information systems development. Oxford: Blackwell Scientific Publications, 1990.
Знайти повний текст джерелаChen, Shengyong. Active Sensor Planning for Multiview Vision Tasks. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Знайти повний текст джерелаTudor, Ian James. Multiview SSADM (V4) information engineering: A comparative study. Salford: University of Salford, 1992.
Знайти повний текст джерелаWood-Harper, A. T. Comparison of information systems definition methodologies: An action research, multiview perspective. Norwich: University of East Anglia, 1989.
Знайти повний текст джерелаЧастини книг з теми "Multiview2"
Vidgen, Richard. "Using the Multiview2 Framework for Internet-Based Information System Development." In Methodologies for Developing and Managing Emerging Technology Based Information Systems, 389–403. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-3629-3_32.
Повний текст джерелаSun, Shiliang, Liang Mao, Ziang Dong, and Lidan Wu. "Introduction." In Multiview Machine Learning, 1–6. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3029-2_1.
Повний текст джерелаSun, Shiliang, Liang Mao, Ziang Dong, and Lidan Wu. "Multiview Semi-supervised Learning." In Multiview Machine Learning, 7–22. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3029-2_2.
Повний текст джерелаSun, Shiliang, Liang Mao, Ziang Dong, and Lidan Wu. "Multiview Subspace Learning." In Multiview Machine Learning, 23–37. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3029-2_3.
Повний текст джерелаSun, Shiliang, Liang Mao, Ziang Dong, and Lidan Wu. "Multiview Supervised Learning." In Multiview Machine Learning, 39–57. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3029-2_4.
Повний текст джерелаSun, Shiliang, Liang Mao, Ziang Dong, and Lidan Wu. "Multiview Clustering." In Multiview Machine Learning, 59–71. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3029-2_5.
Повний текст джерелаSun, Shiliang, Liang Mao, Ziang Dong, and Lidan Wu. "Multiview Active Learning." In Multiview Machine Learning, 73–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3029-2_6.
Повний текст джерелаSun, Shiliang, Liang Mao, Ziang Dong, and Lidan Wu. "Multiview Transfer Learning and Multitask Learning." In Multiview Machine Learning, 85–104. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3029-2_7.
Повний текст джерелаSun, Shiliang, Liang Mao, Ziang Dong, and Lidan Wu. "Multiview Deep Learning." In Multiview Machine Learning, 105–38. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3029-2_8.
Повний текст джерелаSun, Shiliang, Liang Mao, Ziang Dong, and Lidan Wu. "View Construction." In Multiview Machine Learning, 139–49. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3029-2_9.
Повний текст джерелаТези доповідей конференцій з теми "Multiview2"
Nie, Feiping, Jing Li, and Xuelong Li. "Self-weighted Multiview Clustering with Multiple Graphs." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/357.
Повний текст джерелаNguyen, David T., and John Canny. "Multiview." In the SIGCHI Conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1240624.1240846.
Повний текст джерелаNguyen, David, and John Canny. "MultiView." In the SIGCHI conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1054972.1055084.
Повний текст джерелаTew, Yiqi, and Yoon Ket Lee. "A Study on Multi-View Camera Casting Framework using Internet of Things Technology." In International Conference on Digital Transformation and Applications (ICDXA 2020). Tunku Abdul Rahman University College, 2020. http://dx.doi.org/10.56453/icdxa.2020.1021.
Повний текст джерелаWu, Danyang, Jin Xu, Xia Dong, Meng Liao, Rong Wang, Feiping Nie, and Xuelong Li. "GSPL: A Succinct Kernel Model for Group-Sparse Projections Learning of Multiview Data." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/438.
Повний текст джерелаBruno, Eric, and Stephane Marchand-Maillet. "Multiview clustering." In the 32nd international ACM SIGIR conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1571941.1572103.
Повний текст джерелаPearlman, Justin D., and Zimri Yaseen. "Multiview Reductive Decomposition." In Photonics West '98 Electronic Imaging, edited by Robert F. Erbacher and Alex Pang. SPIE, 1998. http://dx.doi.org/10.1117/12.309535.
Повний текст джерелаRundensteiner, E. A., H. A. Kuno, Y. G. Ra, V. Crestana-Taube, M. C. Jones, and P. J. Marron. "The MultiView project." In the 1996 ACM SIGMOD international conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/233269.280361.
Повний текст джерелаChen, Guoyang, and Xipeng Shen. "Coherence-Free Multiview." In ICS '16: 2016 International Conference on Supercomputing. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2925426.2926277.
Повний текст джерелаvan Berkel, Cees, David W. Parker, and Anthony R. Franklin. "Multiview 3D LCD." In Electronic Imaging: Science & Technology, edited by Mark T. Bolas, Scott S. Fisher, and John O. Merritt. SPIE, 1996. http://dx.doi.org/10.1117/12.237437.
Повний текст джерелаЗвіти організацій з теми "Multiview2"
VAN KATWIJK, C. Multiview annulus liquid level gauge/level switch low. Office of Scientific and Technical Information (OSTI), May 1999. http://dx.doi.org/10.2172/782343.
Повний текст джерела