Добірка наукової літератури з теми "Multiples integrals"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multiples integrals".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Multiples integrals"
Song, Jiang Yong. "An Elliptic Integral Solution to the Multiple Inflections Large Deflection Beams in Compliant Mechanisms." Advanced Materials Research 971-973 (June 2014): 349–52. http://dx.doi.org/10.4028/www.scientific.net/amr.971-973.349.
Повний текст джерелаvan der Neut, Joost, and Kees Wapenaar. "Adaptive overburden elimination with the multidimensional Marchenko equation." GEOPHYSICS 81, no. 5 (September 2016): T265—T284. http://dx.doi.org/10.1190/geo2016-0024.1.
Повний текст джерелаSaouter, Yannick. "New pancake series for π". Mathematical Gazette 104, № 560 (18 червня 2020): 296–303. http://dx.doi.org/10.1017/mag.2020.53.
Повний текст джерелаBandyrskii, B., L. Hoshko, I. Lazurchak, and M. Melnyk. "Optimal algorithms for computing multiple integrals." Mathematical Modeling and Computing 4, no. 1 (July 1, 2017): 1–9. http://dx.doi.org/10.23939/mmc2017.01.001.
Повний текст джерелаFleury, Clement, and Ivan Vasconcelos. "Imaging condition for nonlinear scattering-based imaging: Estimate of power loss in scattering." GEOPHYSICS 77, no. 1 (January 2012): S1—S18. http://dx.doi.org/10.1190/geo2011-0135.1.
Повний текст джерелаKrál, Josef. "Note on generalized multiple Perron integral." Časopis pro pěstování matematiky 110, no. 4 (1985): 371–74. http://dx.doi.org/10.21136/cpm.1985.118252.
Повний текст джерелаHaddad, Roudy El. "Repeated integration and explicit formula for the \(n\)-th integral of \(x^m(\ln x)^{m'}\)." Open Journal of Mathematical Sciences 6, no. 1 (June 10, 2022): 51–75. http://dx.doi.org/10.30538/oms2022.0178.
Повний текст джерелаShao, Zijia, Shuohao Wang, and Hetian Yu. "Application of the Residue Theorem to Euler Integral, Gaussian Integral, and Beyond." Highlights in Science, Engineering and Technology 38 (March 16, 2023): 311–16. http://dx.doi.org/10.54097/hset.v38i.5821.
Повний текст джерелаBajic, Tatjana. "On relation between one multiple and a corresponding one-dimensional integral with applications." Yugoslav Journal of Operations Research 28, no. 1 (2018): 79–92. http://dx.doi.org/10.2298/yjor160916020b.
Повний текст джерелаMalyutin, V. B., and B. O. Nurjanov. "The semiclassical approximation of multiple functional integrals." Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 59, no. 4 (January 5, 2024): 302–7. http://dx.doi.org/10.29235/1561-2430-2023-59-4-302-307.
Повний текст джерелаДисертації з теми "Multiples integrals"
Dworaczek, Guera Charlie. "Analyse asymptotiques d'intégrales multiples : au-delà des beta-ensembles classiques." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0036.
Повний текст джерелаThis thesis aims to extend mathematical techniques that extract the asymptotic behavior of certain multiple integrals as the number of integrals tends to infinity. A well-understood case is the partition function of classical beta-ensembles. Probabilistic techniques of large deviations and analysis of loop equations form the classical arsenal for its study and allow for a broad understanding of its asymptotic behavior. Non-trivial generalizations of this multiple integral are studied in this manuscript: the high-temperature regime of beta-ensembles and the sinh model. In the first model, the temperature proportional to the number of particles makes the entropy of the same order as the confining potential and the two-body interaction. This has multiple consequences: an unbounded support for the equilibrium measure contrary to the classical regime of beta-ensembles, and a much more delicate master operator to handle. A detailed study of its behavior allows for the demonstration of a central limit theorem and the asymptotic behavior of the logarithm of its partition function. This first result permits the study of certain aspects of so-called integrable physical systems like the Toda chain, and more specifically, its hydrodynamic limit. This second result finally extends the application of the method of loop equations to cases where particles do not concentrate on a compact set. Lastly, another model is studied, the sinh model. The study of this model is motivated by the quantum separation of variables method where such integrals appear. It constitutes a generalization of classical beta-ensembles where the confining effect is weaker than the interaction, and the latter is more complicated. The equilibrium measure is studied, leading to a certain verification of Lukyanov's conjecture on the quantum sinh-Gordon model in 1+1 dimensions and finite volume
Coine, Clément. "Continuous linear and bilinear Schur multipliers and applications to perturbation theory." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD074/document.
Повний текст джерелаIn the first chapter, we define some tensor products and we identify their dual space. Then, we give some properties of Schatten classes. The end of the chapter is dedicated to the study of Bochner spaces valued in the space of operators that can be factorized by a Hilbert space.The second chapter is dedicated to linear Schur multipliers. We characterize bounded multipliers on B(Lp, Lq) when p is less than q and then apply this result to obtain new inclusion relationships among spaces of multipliers.In the third chapter, we characterize, by means of linear Schur multipliers, continuous bilinear Schur multipliers valued in the space of trace class operators. In the fourth chapter, we give several results concerning multiple operator integrals. In particular, we characterize triple operator integrals mapping valued in trace class operators and then we give a necessary and sufficient condition for a triple operator integral to define a completely bounded map on the Haagerup tensor product of compact operators. Finally, the fifth chapter is dedicated to the resolution of Peller's problems. We first study the connection between multiple operator integrals and perturbation theory for functional calculus of selfadjoint operators and we finish with the construction of counter-examples for those problems
Rindone, Fabio. "New non-additive integrals in Multiple Criteria Decision Analysis." Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1315.
Повний текст джерелаBeiraghi, Shapour. "Multiple classifier fusion using the fuzzy integral." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0008/MQ52513.pdf.
Повний текст джерелаRen, Deqing. "New techniques of multiple integral field spectroscopy." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3800/.
Повний текст джерелаZhang, Chengdian. "Calculus of variations with multiple integration." Bonn : [s.n.], 1989. http://catalog.hathitrust.org/api/volumes/oclc/20436929.html.
Повний текст джерелаRichter, Gregor. "Iterated Integrals and genus-one open-string amplitudes." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19309.
Повний текст джерелаOver the last few decades the prevalence of multiple polylogarithms and multiple zeta values in low order Feynman diagram computations of quantum field theory has received increased attention, revealing a link to the mathematical theories of Chen’s iterated integrals and periods. More recently, a similar ubiquity of multiple zeta values was observed in the α'-expansion of genus-zero string theory amplitudes. Inspired by these developments, this work is concerned with the systematic appearance of iterated integrals in scattering amplitudes of open superstring theory. In particular, the focus will be on studying the genus-one amplitude, which requires the notion of iterated integrals defined on punctured elliptic curves. We introduce the notion of twisted elliptic multiple zeta values that are defined as a class of iterated integrals naturally associated to an elliptic curve with a rational lattice removed. Subsequently, we establish an initial value problem that determines the expansions of twisted elliptic multiple zeta values in terms of the modular parameter τ of the elliptic curve. Any twisted elliptic multiple zeta value degenerates to cyclotomic multiple zeta values at the cusp τ → i∞, with the corresponding limit serving as the initial condition of the initial value problem. Finally, we describe how to express genus-one open-string amplitudes in terms of twisted elliptic multiple zeta values and study the four-point genus-one open-string amplitude as an example. For this example we find that up to third order in α' all possible contributions in fact belong to the subclass formed by elliptic multiple zeta values, which is equivalent to the absence of unphysical poles in Gliozzi-Scherk-Olive projected superstring theory.
Rey, Neto Edgard Casal de [UNESP]. "Reduções perturbativas com multiplos tempos e hierarquias de equações integraveis." Universidade Estadual Paulista (UNESP), 1996. http://hdl.handle.net/11449/132674.
Повний текст джерелаRey, Neto Edgard Casal de. "Reduções perturbativas com multiplos tempos e hierarquias de equações integraveis /." São Paulo : [s.n.], 1996. http://hdl.handle.net/11449/132674.
Повний текст джерелаHu, Dehui. "Understanding introductory students’ application of integrals in physics from multiple perspectives." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16190.
Повний текст джерелаDepartment of Physics
N. Sanjay Rebello
Calculus is used across many physics topics from introductory to upper-division level college courses. The concepts of differentiation and integration are important tools for solving real world problems. Using calculus or any mathematical tool in physics is much more complex than the straightforward application of the equations and algorithms that students often encounter in math classes. Research in physics education has reported students’ lack of ability to transfer their calculus knowledge to physics problem solving. In the past, studies often focused on what students fail to do with less focus on their underlying cognition. However, when solving physics problems requiring the use of integration, their reasoning about mathematics and physics concepts has not yet been carefully and systematically studied. Hence the main purpose of this qualitative study is to investigate student thinking in-depth and provide deeper insights into student reasoning in physics problem solving from multiple perspectives. I propose a conceptual framework by integrating aspects of several theoretical constructs from the literature to help us understand our observations of student work as they solve physics problems that require the use of integration. I combined elements of three important theoretical constructs: mathematical resources or symbolic forms, which are the small pieces of knowledge elements associated with students’ use of mathematical ideas; conceptual metaphors, which describe the systematic mapping of knowledge across multiple conceptual domains – typically from concrete source domain to abstract target domain; and conceptual blending, which describes the construction of new learning by integrating knowledge in different mental spaces. I collected data from group teaching/learning interviews as students solved physics problems requiring setting up integrals. Participants were recruited from a second-semester calculus-based physics course. I conducted qualitative analysis of the videotaped student conversations and their written work. The main contributions of this research include (1) providing evidence for the existence of symbolic forms in students’ reasoning about differentials and integrals, (2) identifying conceptual metaphors involved in student reasoning about differentials and integrals, (3) categorizing the different ways in which students integrate their mathematics and physics knowledge in the context of solving physics integration problems, (4)exploring the use of hypothetical debate problems in shifting students’ framing of physics problem solving requiring mathematics.
Книги з теми "Multiples integrals"
Spandagos, Vaggelēs. Oloklērōtikos logismos: Theōria-methodologia, 1600 lymenes askēseis. Athēna: Aithra, 1988.
Знайти повний текст джерелаMajor, Péter. Multiple Wiener-Itô Integrals. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02642-8.
Повний текст джерелаBraides, Andrea. Homogenization of multiple integrals. Oxford: Clarendon Press, 1998.
Знайти повний текст джерелаSmirnov, V. A. Analytic tools for Feynman integrals. Heidelberg: Springer, 2012.
Знайти повний текст джерелаSloan, I. H. Lattice methods for multiple integration. Oxford: Clarendon Press, 1994.
Знайти повний текст джерелаservice), SpringerLink (Online, ed. Multiple Integrals in the Calculus of Variations. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Знайти повний текст джерелаKorobov, N. M. Teoretikochislovye metody v priblizhennom analize. 2nd ed. Moskva: MT︠S︡NMO, 2004.
Знайти повний текст джерелаKuznet︠s︡ov, D. F. Strong approximation of multiple Ito and Stratonovich stochastic integrals: Multple Fourier series approach. Saint-Peterburg: Politechnical University Publishing House, 2011.
Знайти повний текст джерелаKwapień, Stanisław, and Wojbor A. Woyczyński. Random Series and Stochastic Integrals: Single and Multiple. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0425-1.
Повний текст джерела1943-, Woyczyński W. A., ed. Random series and stochastic integrals: Single and multiple. Boston: Birkhäuser, 1992.
Знайти повний текст джерелаЧастини книг з теми "Multiples integrals"
Coombes, Kevin R., Ronald L. Lipsman, and Jonathan M. Rosenberg. "Multiple Integrals." In Multivariable Calculus and Mattiematica®, 153–83. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1698-8_8.
Повний текст джерелаShakarchi, Rami. "Multiple Integrals." In Problems and Solutions for Undergraduate Analysis, 337–58. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1738-1_21.
Повний текст джерелаLang, Serge. "Multiple Integrals." In Undergraduate Analysis, 565–606. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4757-2698-5_21.
Повний текст джерелаCourant, Richard, and Fritz John. "Multiple Integrals." In Introduction to Calculus and Analysis Volume II/1, 367–542. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57149-7_4.
Повний текст джерелаMarshall, Gordon S. "Multiple Integrals." In Springer Undergraduate Mathematics Series, 127–36. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-3412-1_8.
Повний текст джерелаEriksson, Kenneth, Claes Johnson, and Donald Estep. "Multiple Integrals." In Applied Mathematics: Body and Soul, 939–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05800-8_13.
Повний текст джерелаCourant, Richard, and Fritz John. "Multiple Integrals." In Introduction to Calculus and Analysis, 367–542. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8958-3_4.
Повний текст джерелаStroud, K. A. "Multiple Integrals." In Further Engineering Mathematics, 433–96. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20731-2_9.
Повний текст джерелаZorich, Vladimir A. "Multiple Integrals." In Universitext, 109–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48993-2_3.
Повний текст джерелаStroud, K. A. "Multiple Integrals." In Engineering Mathematics, 662–88. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1007/978-1-349-18708-9_23.
Повний текст джерелаТези доповідей конференцій з теми "Multiples integrals"
Banik, Sumit, and Samuel Friot. "Analytic Evaluation of Multiple Mellin-Barnes Integrals." In Loops and Legs in Quantum Field Theory, 039. Trieste, Italy: Sissa Medialab, 2024. http://dx.doi.org/10.22323/1.467.0039.
Повний текст джерелаShakeshaft, Robin. "Theoretical aspects of above-threshold absorption." In Multiple Excitations of Atoms. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/mea.1986.mb1.
Повний текст джерелаGeorgiev, S. "Multiple iso-integrals." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912715.
Повний текст джерелаChaloupka, Jan, Filip Kocina, Petr Veigend, Gabriela Nečasová, Jiří Kunovský, and Václav Šátek. "Multiple integral computations." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992650.
Повний текст джерелаLequn Hu, Derek T. Anderson, and Timothy C. Havens. "Multiple kernel aggregation using fuzzy integrals." In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622312.
Повний текст джерелаZelikin, M. I., Piotr Kielanowski, Victor Buchstaber, Anatol Odzijewicz, Martin Schlichenmaier, and Theodore Voronov. "On Multiple Integral Minimization Problems." In XXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3527421.
Повний текст джерелаOrszulik, Ryan, and Jinjun Shan. "Integral plus double integral synchronization control for multiple piezoelectric actuators." In 2015 European Control Conference (ECC). IEEE, 2015. http://dx.doi.org/10.1109/ecc.2015.7330684.
Повний текст джерелаChaloupka, Jan, Jiří Kunovský, Alžběta Martinkovičová, Václav Šátek, and Elvira Thonhofer. "Multiple integral computations using Taylor series." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913137.
Повний текст джерелаOkaichi, Naoto, Masato Miura, Jun Arai, and Tomoyuki Mishina. "Integral 3D display using multiple LCDs." In SPIE/IS&T Electronic Imaging, edited by Nicolas S. Holliman, Andrew J. Woods, Gregg E. Favalora, and Takashi Kawai. SPIE, 2015. http://dx.doi.org/10.1117/12.2077514.
Повний текст джерелаChaloupka, Jan, Jiří Kunovský, Václav Šátek, Petr Veigend, and Alžbeta Martinkovičová. "Numerical Integration of Multiple Integrals using Taylor Polynomial." In 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005539701630171.
Повний текст джерелаЗвіти організацій з теми "Multiples integrals"
Brigola, R. Remark on the Multiple Wiener Integral. Fort Belvoir, VA: Defense Technical Information Center, March 1987. http://dx.doi.org/10.21236/ada186015.
Повний текст джерелаPerez-Abreu, Victor. Multiple Wiener Integrals and Nonlinear Functionals of a Nuclear Space Valued Wiener Process. Fort Belvoir, VA: Defense Technical Information Center, October 1986. http://dx.doi.org/10.21236/ada177227.
Повний текст джерелаBright, Gerald D., Robert S. Mandry, and Mark D. Barnell. Innovative Approach to Fusion Testbed to Integrate Multiple Sensor Data. Fort Belvoir, VA: Defense Technical Information Center, July 1995. http://dx.doi.org/10.21236/ada299800.
Повний текст джерелаSamorodnitsky, Gennady, and Jerzy Szulga. An Asymptotic Evaluation of the Tail of a Multiple Symmetric Alpha-Stable Integral. Fort Belvoir, VA: Defense Technical Information Center, February 1988. http://dx.doi.org/10.21236/ada194570.
Повний текст джерелаLandweber, Louis. Residues of Integrals with Three-Dimensional Multipole Singularities, with Application to the Lagally Theorem. Fort Belvoir, VA: Defense Technical Information Center, July 1985. http://dx.doi.org/10.21236/ada158771.
Повний текст джерелаHarris and Edlund. L51766 Instantaneous Rotational Velocity Development. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 1997. http://dx.doi.org/10.55274/r0010119.
Повний текст джерелаBrakarz, José, and Laura Jaitman. Evaluation of Slum Upgrading Programs: Literature Review and Methodological Approaches. Inter-American Development Bank, December 2013. http://dx.doi.org/10.18235/0009149.
Повний текст джерелаMoeyaert, Mariola. Introduction to Meta-Analysis. Instats Inc., 2023. http://dx.doi.org/10.61700/9egp6tqy3koga469.
Повний текст джерелаMoeyaert, Mariola. Introduction to Meta-Analysis. Instats Inc., 2023. http://dx.doi.org/10.61700/z1ui6nlaom67q469.
Повний текст джерелаLee, Jin-Kyu, Amir Naser, Osama Ennasr, Ahmet Soylemezoglu,, and Garry Glaspell. Unmanned ground vehicle (UGV) full coverage planning with negative obstacles. Engineer Research and Development Center (U.S.), August 2023. http://dx.doi.org/10.21079/11681/47527.
Повний текст джерела