Добірка наукової літератури з теми "Multidimensional process"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multidimensional process".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Multidimensional process"
Tomko, Mary Kay. "Recovery: A Multidimensional Process." Issues in Mental Health Nursing 9, no. 2 (January 1988): 139–49. http://dx.doi.org/10.3109/01612848809140919.
Повний текст джерелаMIZUTANI, Daijiro, Kengo OBAMA, Kiyoyuki KAITO, and Kiyoshi KOBAYASHI. "MULTIDIMENSIONAL INFRASTRUCTURE DETERIORATION PROCESS MODEL." Journal of Japan Society of Civil Engineers, Ser. D3 (Infrastructure Planning and Management) 72, no. 1 (2016): 34–51. http://dx.doi.org/10.2208/jscejipm.72.34.
Повний текст джерелаHuang, Jih-Jeng, Gwo-Hshiung Tzeng, and Chorng-Shyong Ong. "Multidimensional data in multidimensional scaling using the analytic network process." Pattern Recognition Letters 26, no. 6 (May 2005): 755–67. http://dx.doi.org/10.1016/j.patrec.2004.09.027.
Повний текст джерелаSyuzev, V. V., E. V. Smirnova, and A. V. Proletarsky. "Algorithms of multidimensional random process simulation." Computer Optics 45, no. 4 (July 2021): 627–37. http://dx.doi.org/10.18287/2412-6179-co-770.
Повний текст джерелаPishchukhin, Aleksandr. "Multidimensional monitoring of a streaming process." IOP Conference Series: Materials Science and Engineering 709 (January 3, 2020): 033024. http://dx.doi.org/10.1088/1757-899x/709/3/033024.
Повний текст джерелаIbarrola, P., and R. Vélez. "Hypothesis Testing for Multidimensional Gaussian Process." Theory of Probability & Its Applications 37, no. 1 (January 1993): 142–45. http://dx.doi.org/10.1137/1137032.
Повний текст джерелаSznitman, A. S., and S. R. S. Varadhan. "A multidimensional process involving local time." Probability Theory and Related Fields 71, no. 4 (1986): 553–79. http://dx.doi.org/10.1007/bf00699041.
Повний текст джерелаKurpius, DeWayne J., Dale R. Fuqua, and Thaddeus Rozecki. "The Consulting Process: A Multidimensional Approach." Journal of Counseling & Development 71, no. 6 (July 8, 1993): 601–6. http://dx.doi.org/10.1002/j.1556-6676.1993.tb02249.x.
Повний текст джерелаDeslauriers, Gilles, Jacques Dubois, and Serge Dubuc. "Multidimensional Iterative Interpolation." Canadian Journal of Mathematics 43, no. 2 (April 1, 1991): 297–312. http://dx.doi.org/10.4153/cjm-1991-016-4.
Повний текст джерелаBerry, Robert Q., and Mark W. Ellis. "Multidimensional Teaching." Mathematics Teaching in the Middle School 19, no. 3 (October 2013): 172–78. http://dx.doi.org/10.5951/mathteacmiddscho.19.3.0172.
Повний текст джерелаДисертації з теми "Multidimensional process"
Mohd, Yunus Mohd Yusri. "Multivariate statistical process monitoring using classical multidimensional scaling." Thesis, University of Newcastle upon Tyne, 2012. http://hdl.handle.net/10443/1495.
Повний текст джерелаKodali, Lata. "Extensions of Weighted Multidimensional Scaling with Statistics for Data Visualization and Process Monitoring." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99911.
Повний текст джерелаDoctor of Philosophy
In this work, two main ideas in data visualization and anomaly detection in dynamic networks are further explored. For both ideas, a connecting theme is extensions of a method called Multidimensional Scaling (MDS). MDS is a dimension-reduction method that takes high-dimensional data (all $p$ dimensions) and creates a low-dimensional projection of the data. That is, relationships in a dataset with presumably a large number of dimensions or variables can be summarized into a lower number of, e.g., two, dimensions. For a given data, an analyst could use a scatterplot to observe the relationship between 2 variables initially. Then, by coloring points, changing the size of the points, or using different shapes for the points, perhaps another 3 to 4 more variables (in total around 7 variables) may be shown in the scatterplot. An advantage of MDS (or any dimension-reduction technique) is that relationships among the data can be viewed easily in a scatterplot regardless of the number of variables in the data. The interpretation of any MDS plot is that observations that are close together are relatively more similar than observations that are farther apart, i.e., proximity in the scatterplot indicates relative similarity. In the first project, we use a weighted version of MDS called Weighted Multidimensional Scaling (WMDS) where weights, which indicate a sense of importance, are placed on the variables of the data. The problem with any WMDS plot is that inaccuracies of the method are not included in the plot. For example, is an observation that appears to be an outlier, really an outlier? An analyst cannot confirm this without further context. Thus, we created a model to calculate, visualize, and interpret such inaccuracy or uncertainty in WMDS plots. Such modeling efforts help analysts facilitate exploratory data analysis. In the second project, the theme of MDS is extended to an application with dynamic networks. Dynamic networks are multiple snapshots of pairwise interactions (represented as edges) among a set of nodes (observations). Over time, changes may appear in some of the snapshots. We aim to detect such changes using a process monitoring approach on dynamic networks. Statistical monitoring approaches determine thresholds for in-control or expected behavior that are calculated from data with no signal. Then, the in-control thresholds are used to monitor newly collected data. We applied this approach on dynamic network data, and we utilized a detailed simulation study to better understand the performance of such monitoring. For the simulation study, data are generated from dynamic network models that use MDS. We found that monitoring summary statistics of the network were quite effective on data generated from these models. Thus, simple tools may be used as a first step to anomaly detection in dynamic networks.
Teets, Jay Marshall. "Multidimensional Visualization of Process Monitoring and Quality Assurance Data in High-Volume Discrete Manufacturing." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/26156.
Повний текст джерелаPh. D.
Grefe, Linderbaum Beth. "FEEDBACK ORIENTATION: THE DEVELOPMENT AND VALIDATION OF A MULTIDIMENSIONAL MEASURE." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1152204402.
Повний текст джерелаFebrer, Pedro Maria Ulisses dos Santos Jalhay. "Residue sum formula for pricing options under the variance Gamma Model." Master's thesis, Instituto Superior de Economia e Gestão, 2020. http://hdl.handle.net/10400.5/20802.
Повний текст джерелаO resultado principal desta dissertação é a demonstração da fórmula de serie de soma tripla para o preço de uma opção Europeia induzido por um processo Variance Gamma. Com esta intenção, apresentamos certas propriedades e noções sobre processos de Lévy e análise complexa multidimensional, dando ênfase à aplicação do cálculo de resíduos ao integral Mellin-Barnes. Subsequentemente, iremos construir a representação na forma do integral Mellin-Barnes, em C^3, para o preço de uma opção e, apoiados pelo anteriormente mencionado cálculo de resíduos, deduziremos a representação em serie de soma tripla para o preço de uma opção Europeia e os seus correspondentes gregos. Para terminar, dando uso à nova formula, serão computados e discutidos alguns valores para um caso de estudo particular.
The main result of this dissertation is the proof of the triple sum series formula for the price of an European call option driven by the Variance Gamma process. With this intention, we present some notions and properties of Lévy processes and multidimensional complex analysis, with emphasis on the application of residue calculus to the Mellin-Barnes integral. Subsequently, we construct the Mellin-Barnes integral representation, in C^3, for the price of the option and, buttressed with the aforementioned residue calculus, we deduce the triple sum series representation for the price of the European option and its corresponding greeks. Finally, with the use of the new formula, some values for a particular case study are computed and discussed.
info:eu-repo/semantics/publishedVersion
Rubenstein, Tamera Sullivan. "Mentoring as A Multidimensional Process: The Personal Experience of an Infant-Toddler Classroom Mentor /." The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487932351058896.
Повний текст джерелаVan, der Westhuizen Katriena Elizabet. "Comprehensive multidimensional gas chromatography for the analysis of Fischer-Tropsch products." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18006.
Повний текст джерелаENGLISH ABSTRACT: The analysis of Fischer–Tropsch–derived (FT–derived) synthetic crude and derived products is very challenging because of the highly complex nature of these products. In this study, the use of comprehensive multidimensional gas chromatography (GCxGC) with time-of-flight mass spectrometry (TOF-MS) and flame ionisation detection (FID) was investigated for the analysis of these products and the technique was found to be invaluable for the analysis of these complex mixtures. The compositions of FT synthetic crude, produced at low temperature (LT–FT) and high temperature (HT–FT) processes were compared and the effect that changes in FT reaction temperature has on product formation was investigated. Results for conventional onedimensional GC (1D-GC) and GCxGC were compared. It was found that conventional 1D–GC does not have sufficient peak capacity to separate the thousands of compounds in the HT FT products. GCxGC provides a huge peak capacity of tens-of-thousands to separate highly complex mixtures. Structured chromatograms, where groups of compounds with similar properties are grouped together, aid in peak identification. Moreover, sensitivity at low microgram per milliliter levels is obtained. These attributes enabled accurate analysis of various complex feed and product streams in the FT refinery, and also various final fuel products. The use of GCxGC alone was demonstrated, and also combined with high performance liquid chromatography (HPLC), supercritical fluid chromatography (SFC) and nuclear magnetic resonance (NMR) when even more separation power was needed. HPLC–GCxGC enabled the separation of alkene and cyclic alkane compound classes in oligomerisation products. These compound classes have similar mass spectra, elute in adjacent regions and co–elute even to some extent on the GCxGC contour plot, making differentiation difficult. SFC is a good replacement for HPLC for these applications because it does not use solvents as mobile phases. CO2 is easily evaporated after the separation and does not interfere with the GCxGC separation of the analytes. SFC is also a very good technique to separate the compound classes of alkanes, alkenes, aromatics and oxygenates, and is therefore highly complementary to GCxGC. The combination of GCxGC with NMR data was also found to be very valuable for the identification of branched alkane isomers in LT–FT diesels. GCxGC provides excellent separation of individual compounds but the identification of isomers (except for mono–methyl branching) is difficult because the mass spectra of most of these isomers are similar and not all compounds are in the mass spectral libraries. NMR, on the other hand, is able to distinguish between the individual types of branched isomers but has limited separation power for the complex mixtures. By combining the two techniques, the best of both was obtained. The study found GCxGC to be invaluable for the analysis of the highly complex FT–derived products, while its combination with other techniques such as HPLC, SFC and NMR provided even more separation power.
AFRIKAANSE OPSOMMING: Die hoogs komplekse samestelling van sintetiese ru–olie en afgeleide produkte, afkomstig van Fischer–Tropsch (FT) sintese, bied groot uitdagings aan die analis. Die studie het die gebruik van GCxGC met ’n TOF-MS en FID bestudeer vir die analise van FT produkte en het bevind dat die tegniek van onskatbare waarde is vir die analise van die hoogs komplekse mengsels. Die samestellings van produkte van lae- en hoë-temperatuur FT prossesse is vergelyk en die effek van ’n verhoging in die reaksie–temperatuur op die produk samestelling is ondersoek. Resultate vir 1D–GC and GCxGC is vergelyk en dit was duidelik dat 1D-GC nie naastenby voldoende piekkapasiteit het om al die komponente van die produkte wat tydens die hoëtemperatuur prosses gevorm word, te kan skei nie. Die GCxGC se piekkapasiteit daarteenoor is in die orde van tienduisende wat die skeiding van hoogs komplekse mensels moontlik maak terwyl die tegniek hoogs gestruktureerde kontoerplotte verskaf wat help met identfikasie van komponente. Die tegniek is verder ook baie sensitief en kan komponente op lae μg/mL vlakke waarneem. Hierdie eienskappe het akkurate analise van verskeie FT produkstrome moontlik gemaak. Die kombinasie van GCxGC met HPLC, SFC en KMR het selfs meer skeidingskrag verskaf waar nodig. HPLC–GCxGC het die skeiding van alkene en sikliese alkane moontlik gemaak. Hierdie komponent klasse se massaspektra is feitlik dieselfde en terselfdertyd elueer die twee groepe reg langs mekaar, en oorvleuel soms selfs tot ’n mate, op die GCxGC kontoerplot, sodat dit moeilik is om daartussen te onderskei. SFC is ’n goeie alternatief vir HPLC in meeste toepassings aangesien die tegniek net CO2 gebruik, wat maklik verdamp by kamertemperatuur en nie oplosmiddels gebruik wat se pieke steur met die van die laekookpunt komponente op die GCxGC kontoerplot nie. Skeidings van die komponentgroepe alkane, alkene, aromate en oksigenate is moontlik met SFC en daarom komplimenteer dit die GCxGC skeiding goed aan. Die kombinasie van GCxGC met kern–magnetiese resonansie (KMR) is van waarde gevind om die verskillende tipes vertakkings in ’n lae-temperatuur FT diesel te identifiseer. GCxGC verskaf uitstekende skeiding van individuele komponente maar die identifikasie van die verskilende isomere, behalwe vir die mono-metiel vertakkings, is moeilik aangesien die massaspektra van baie van die komponente soortgelyk is en die komponente nie in die massa spektrum–biblioteke voorkom nie. KMR, aan die ander kant, kan tussen die individuele vertakkings onderskei maar het beperkte skeidingskrag vir komplekse mensels. Deur die twee tegnieke te kombineer is die beste van albei tegnieke bekom. Die studie het bevind dat GCxGC van onskatbare waarde is vir die analise van die komplekse sintetiese FT produkte terwyl die kombinasie met ander tegnieke soos HPLC, SFC and KMR selfs meer skeidingskrag verskaf.
Aristizabal, Catalina Ramirez. "Sucesso de sistemas de Business Intelligence: uma abordagem multidimensional." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3136/tde-18082016-101353/.
Повний текст джерелаAs well as other investments in Information Technology (IT), Business Intelligence (BI) systems have also been questioned in relation to the benefits and returns obtained after its implementation. These questions arise because the BI product is intelligence, or, in other words, some kind of processed information and the value of information is difficult to assess. This research aims to contribute to this by addressing the issue of evaluation of BI systems through the information systems success model proposed by DeLone and McLean, beyond the traditional dimensions that are interrelated: BI capabilities, quality of information, user satisfaction, and level of use. The decision approach was included as a variable since a key objective of BI systems is to process data coming from different sources to produce information that serves as a basis for the decision-making process. Once the BI capability and information quality are multidimensional constructs, one of the contributions of this study was to review the literature available about the dimensions that operationalize this construct and evaluate them empirically. BI capability was defined in terms of accessibility, analytical capabilities, flexibility and integration, and the information quality in terms of opportunity, completeness, timeliness and accuracy. The research problem was addressed by the survey methodology: the respondents were invited to participate in the survey via email and the questionnaire was made available in electronic form through the SurveyMonckey tool. A number of 246 responses were usable out of the 483 total responses that were obtained. Since the proposed conceptual model includes multiple interdependencies, the statistical technique selected to analyze the data was the structural equation modeling. The software used was the SmartPLS, which tests the structural model using the ordinary least squares method. It was possible to prove empirically all the causal relationships proposed between success dimensions of BI systems, except for the moderation effect of making-decision approach variable on the relationship between satisfaction and usage level. A subsequent test allowed us to observe that this variable could be a predictor of the level of use. According to these results, we can say that the success of BI can be defined in terms of BI capability, the quality of information, user satisfaction and the level of use. The operationalization of the variables BI capability and information quality as a multidimensional construct could enlighten the decision about which features should be prioritized in implementing the development of BI systems in companies.
Van, der Westhuizen Rina. "The use of multidimensional GC techniques for the analysis of complex petrochemical products." Thesis, Stellenbosch: University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/4639.
Повний текст джерелаThesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2005.
ENGLISH ABSTRACT: The composition of petrochemical products obtained from Fischer Tropsch (FT) technologies is of the highest complexity possible and may contain thousands of components. Chemicals produced from FT feedstocks often contain trace level contaminants that can poison catalysts or that affect product performance in down-line processes. Single dimension GC analysis of these mixtures provides incomplete information because of lack of separation power. This study evaluates the separation power of heart-cut GC-GC, comprehensive GCxGC and sequential GC-GC for three selected challenging petrochemical applications. The fundamental theoretical aspects of the techniques are discussed. Oxygenates are removed as far as possible in C10 – C13 alkylation feedstocks, used in the production of linear alkyl benzenes, because the oxygenates may have deactivating effects on some expensive alkylation catalysts. Residual oxygenates may still be present and can consist of hundreds of components. Detection of individual components at ng/g levels is required. Heart-cut GC-GC is used to illustrate the separation and enrichment power for oxygenates in an alkylation feedstock. The stationary phase in the first dimension column was selected to provide separation of the oxygenates from the hydrocarbons in a relatively narrow window. The oxygenate fraction is then enriched by repeated injections and collection on the cryotrap. After sufficient enrichment, the trap is heated and the oxygenates are analysed on the second dimension column. Comprehensive GCxGC and Sequential GC-GC are compared for the separation and analysis of the oxygenated chemical component classes in the alkylation feedstock, before removal of oxygenates. Cyclic alcohols can occur in detergent alcohols produced from FT feedstocks. These cyclics are regarded as impurities because they affect the physical properties of the detergents. The cyclic and noncyclic alcohols in a narrow C12 – C13 detergent alcohol distillation cut have similar boiling points and polarities, and separation of individual components is thus difficult to achieve. Comprehensive GCxGC and sequential GC-GC are evaluated for the separation of the alcohol component classes. The study shows that both approaches provide component class separation but the high resolving power of the second column and the optimal chromatographic operating conditions of sequential GC-GC provide better separation of the individual components. The study illustrates the immense power of the three multidimensional GC techniques namely heart-cut GC-GC, comprehensive GCxGC and sequential GC-GC. The three multidimensional GC techniques each have their own advantages, disadvantages and unique applications and should be used as complementary rather than as competitive analytical tools.
AFRIKAANSE OPSOMMING: Fischer Tropsch (FT) petrochemiese produkte is van baie hoë kompleksiteit en kan uit duisende komponente bestaan. Chemikalië afkomstig van dié voerstrome bevat soms spoorhoeveelhede onsuiwerhede wat deaktiverend op kataliste kan inwerk of wat die werkverrrigting van finale produkte kan beïnvloed. Enkeldimensie GC analises van die komplekse mengsels is meesal onakkuraat as gevolg van geweldige piekoorvleueling. Die studie evalueer die skeidingsvermoë van drie multidimensionele tegnieke, Heart-cut GC-GC, Comprehensive GCxGC en Sequential GC-GC vir geselekteerde petrochemiese toepassings. Die fundamentele teoretiese aspekte van die tegnieke word bespreek en drie analitiese toepassings word beskryf. Oksigenate word so ver moontlik verwyder uit C10 – C13 paraffien-voerstrome, wat gebruik word in die vervaardiging van liniêre alkielbenzene, aangesien dit deaktiverend kan inwerk op alkileringskataliste. Die oorblywende oksigenate kan uit honderde komponente bestaan sodat analise van individuele komponente tot op lae ng/g vlakke nodig is. Heart-cut GC-GC word gebruik om die skeiding en verryking van die oksigenate in die alkileringsvoerstroom te illustreer. Die stationêre fase in die eerste-dimensie kolom is so gekies dat skeiding tussen oksigenate en koolwaterstowwe verkry word. Met herhaalde inspuitings verhoog die oksigenaat-konsentrasie op die cryo val en - na voldoende verryking - word die val verhit en die oksigenate geanaliseer op die tweede dimensie kolom. Die skeiding en analises verkry met Comprehensive GCxGC en Sequential GC-GC word vergelyk vir die chemiese klasse-skeiding van die alkileringsvoer (voor verwydering van oksigenate). Sikliese alkohole kan voorkom in detergent-alkohole vervaardig vanaf FT voerstrome. Dit word as onsuiwerhede beskou aangesien dit die fisiese eienskappe van die finale produkte beïnvloed. Die sikliese en nie-sikliese alkohole se kookpunte en polariteite is baie naby aanmekaar sodat skeiding van individuele komponente moeilik verkry word. Comprehensive GCxGC en Sequential GC-GC word evalueer vir die skeiding van die alkohol. Die studie toon aan dat albei die tegnieke skeiding gee van die chemiese komponent-klasse maar dat die hoë-resolusie tweede-dimensie kolom en die optimisering van die experimentele kondisies van die Sequential GC-GC sisteem beter skeiding van individuele komponente gee. Die uitsonderlike skeidingsvermoë van die drie multidimensionele tegnieke, Heart-cut GC-GC, Comprehensive GCxGC en Sequential GC-GC word geïllustreer in die studie. Elke tegniek het sy eie voordele, nadele en unieke toepassings en die drie tegnieke behoort as komplementêre eerder as kompeterende tegnieke gebruik te word.
Calonico, Cipriano. "Towards a multidimensional model of creativity: an analysis of six models of creativity and the creative process." Thesis, Malmö högskola, Fakulteten för lärande och samhälle (LS), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-32099.
Повний текст джерелаКниги з теми "Multidimensional process"
Park, June S. Delay analysis for multidimensional queueing process in CSMA/CD local area networks. Monterey, Calif: Naval Postgraduate School, 1991.
Знайти повний текст джерелаStroock, Daniel W. Multidimensional diffusion processes. 2nd ed. Berlin: Springer, 1997.
Знайти повний текст джерелаHölttä, Risto. Multidimensional diffusion of innovation. Helsinki: Helsinki School of Economics and Business Administration, 1989.
Знайти повний текст джерелаDozzi, M. Stochastic processes with a multidimensional parameter. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Знайти повний текст джерелаFriz, Peter K. Multidimensional stochastic processes as rough paths: Theory and applications. New York: Cambridge University Press, 2010.
Знайти повний текст джерелаFriz, Peter K. Multidimensional stochastic processes as rough paths: Theory and applications. Cambridge, UK: Cambridge University Press, 2010.
Знайти повний текст джерелаIvanova, Valeriya, Elena Alyab'eva, Marina Bogdanova, Tat'yana Boguckaya, Elena Vanina, Ekaterina Vistarovskaya, Lyubov' Gienko, et al. Organization of educational work in a modern university: traditions and innovations. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1893199.
Повний текст джерелаMunerman, Viktor, Vadim Borisov, and Aleksandra Kononova. Mass data processing. Algebraic models and methods. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1906037.
Повний текст джерелаVaradhan, S. R. S., and Daniel W. Stroock. Multidimensional Diffusion Processes. Springer London, Limited, 2007.
Знайти повний текст джерелаStroock, Daniel W., and S. R. S. Varadhan. Multidimensional Diffusion Processes. Springer, 2009.
Знайти повний текст джерелаЧастини книг з теми "Multidimensional process"
Rinderle-Ma, Stefanie. "Multidimensional Process Analytics." In Encyclopedia of Big Data Technologies, 1–6. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63962-8_97-1.
Повний текст джерелаRinderle-Ma, Stefanie. "Multidimensional Process Analytics." In Encyclopedia of Big Data Technologies, 1163–69. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-77525-8_97.
Повний текст джерелаBolt, Alfredo, and Wil M. P. van der Aalst. "Multidimensional Process Mining Using Process Cubes." In Enterprise, Business-Process and Information Systems Modeling, 102–16. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19237-6_7.
Повний текст джерелаShort, Dan. "Nonlinear Multidimensional Language." In Making Psychotherapy More Effective with Unconscious Process Work, 71–88. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003127208-5.
Повний текст джерелаBusinska, Ligita. "Multidimensional Business Process Modeling Approach." In Advances in Databases and Information Systems, 247–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12082-4_31.
Повний текст джерелаVogelgesang, Thomas, Stefanie Rinderle-Ma, and H. Jürgen Appelrath. "A Framework for Interactive Multidimensional Process Mining." In Business Process Management Workshops, 23–35. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58457-7_2.
Повний текст джерелаSiemionek, Anna, and Michał Chalastra. "Multidimensional Process of Financial Controlling Implementation." In The Impact of Globalization on International Finance and Accounting, 411–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68762-9_45.
Повний текст джерелаRotshtein, Alexander, and Serhiy Shtovba. "Genetic Optimization of Multidimensional Technological Process Reliability." In Computational Intelligence in Reliability Engineering, 287–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-37368-1_9.
Повний текст джерелаMansmann, Svetlana, Thomas Neumuth, and Marc H. Scholl. "Multidimensional Data Modeling for Business Process Analysis." In Conceptual Modeling - ER 2007, 23–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75563-0_4.
Повний текст джерелаSuesaowaluk, Poonphon. "Multidimensional Process Analytical System for Manufacturing Management." In Lecture Notes in Electrical Engineering, 841–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47200-2_88.
Повний текст джерелаТези доповідей конференцій з теми "Multidimensional process"
Agi, Damian T., Hani A. E. Hawa, and Alexander W. Dowling. "Equation-Oriented Modeling of Water-Gas Shift Membrane Reactor for Blue Hydrogen Production." In Foundations of Computer-Aided Process Design, 395–402. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.152308.
Повний текст джерелаYang, Ting, Jufen Ye, Jianghua Hu, Congtie Li, Junyuan Tan, Zhiming Shen, and Yuanming Sun. "Multidimensional Risk Assessment and Strategy Analysis of Overhead Transmission Lines Based on Analytic Hierarchy Process." In 2024 The 9th International Conference on Power and Renewable Energy (ICPRE), 791–96. IEEE, 2024. https://doi.org/10.1109/icpre62586.2024.10768640.
Повний текст джерелаMa, Fa-Jun, Shaozhou Wang, Chuqi Yi, Lang Zhou, Ziv Hameiri, Stephen Bremner, and Xiaojing Hao. "Easy Access to Typical Multidimensional Process/Optical/Electrical Simulations for Solar Cells by Tuning 11 Variables." In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), 0413. IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10749296.
Повний текст джерелаVogelgesang, Thomas, and H. Jürgen Appelrath. "Multidimensional process mining." In the Joint EDBT/ICDT 2013 Workshops. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2457317.2457321.
Повний текст джерелаMatheus, Justo, Antonio Dourado, Jorge Henriques, Maria Antonio, and Dora Nogueira. "Iterative Multidimensional Scaling for Industrial Process Monitoring." In 2006 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icsmc.2006.384359.
Повний текст джерела"Integration Process for Multidimensional Textual Data Modeling." In 1st International Workshop in Software Evolution and Modernization. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004602501190126.
Повний текст джерелаHartnett, M., and G. W. Irwin. "Statistical approaches to industrial process plant modelling." In IEE Colloquium on Multidimensional Systems: Problems and Solutions. IEE, 1998. http://dx.doi.org/10.1049/ic:19980166.
Повний текст джерелаKurilla, Jozef. "Temperature control of multidimensional system using decoupled MPC controllers." In 2017 21st International Conference on Process Control (PC). IEEE, 2017. http://dx.doi.org/10.1109/pc.2017.7976239.
Повний текст джерелаQing Xiangyun and Wang Xingyu. "Bayesian multidimensional scale clustering based on Dirichlet process." In 2008 Chinese Control Conference (CCC). IEEE, 2008. http://dx.doi.org/10.1109/chicc.2008.4605443.
Повний текст джерелаIdczak, D. "On a continuous variant of a linear repetitive process." In The Fourth International Workshop on Multidimensional Systems - NDS 2005. IEEE, 2005. http://dx.doi.org/10.1109/nds.2005.195362.
Повний текст джерелаЗвіти організацій з теми "Multidimensional process"
Sena, Mary, and Jessica Jones. Hyperparameter Setting for a Marked Multidimensional Hawkes Process with Dissimilar Decays. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821256.
Повний текст джерелаPark, June S., and Keebom Kang. Delay Analysis for Multidimensional Queueing Process in CSMA/CD Local Area Networks. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada242364.
Повний текст джерелаAhuja, S., S. L. Dieckman, and N. Gopalsami. Application of NMR spectroscopy and multidimensional imaging to the gelcasting process and in-situ real-time monitoring of cross-linking polyacrylamide gels. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/167202.
Повний текст джерелаRojas, Eduardo. Urban Heritage Conservation in Latin America and the Caribbean: A Task for All Social Actors. Inter-American Development Bank, November 2002. http://dx.doi.org/10.18235/0008523.
Повний текст джерелаKucirkova, Natalia Ingebretsen, and David Dockterman. Towards a holistic understanding of evidence: A working paper. UiS Scholarly Publishing Services, September 2024. http://dx.doi.org/10.31265/usps.284.
Повний текст джерелаWong, Eugene, and Jean Walrand. Multidimensional Signals, Data and Processes. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada254797.
Повний текст джерелаWong, Eugene, and Jean Walrand. Multidimensional Signals, Data and Processes. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada255318.
Повний текст джерелаAxford, Barrie. The Implications of Rising Multipolarity for Authoritarian Populist Governance, Multilateralism, and the Nature of New Globalization. European Center for Populism Studies (ECPS), March 2024. http://dx.doi.org/10.55271/pp0031.
Повний текст джерелаShostak, Ray, Martín Alessandro, Peter Diamond, Edgardo Mosqueira, and Mariano Lafuente. The Center of Government, Revisited: A Decade of Global Reforms. Inter-American Development Bank, July 2023. http://dx.doi.org/10.18235/0004994.
Повний текст джерелаMessina, Francesca, Ioannis Georgiou, Melissa Baustian, Travis Dahl, Jodi Ryder, Michael Miner, and Ronald Heath. Real-time forecasting model development work plan. Engineer Research and Development Center (U.S.), September 2023. http://dx.doi.org/10.21079/11681/47599.
Повний текст джерела