Добірка наукової літератури з теми "Multicriterial optimization"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multicriterial optimization".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Multicriterial optimization"
Podinovski, V. V. "Potential optimality in multicriterial optimization." Computational Mathematics and Mathematical Physics 54, no. 3 (March 2014): 429–38. http://dx.doi.org/10.1134/s0965542514030154.
Повний текст джерелаZypkin, Ya Z., and A. S. Krasnenker. "Man Machine Methods for Multicriterial Optimization." IFAC Proceedings Volumes 21, no. 19 (June 1988): 271–72. http://dx.doi.org/10.1016/s1474-6670(17)54504-8.
Повний текст джерелаVuleta, Jovo. "Visekriterijumska optimizacija izbora izvodjaca projekta." Ekonomski anali 44, no. 157 (2003): 7–40. http://dx.doi.org/10.2298/eka0357007v.
Повний текст джерелаBogó-Tóth, Zs, and Z. Lakner. "Multicriterial optimization of liquid food packaging systems." Acta Alimentaria 43, Supplement 1 (November 2014): 29–35. http://dx.doi.org/10.1556/aalim.43.2014.suppl.5.
Повний текст джерелаVladimirova, L. V. "Multicriterial approach to beam dynamics optimization problem." Journal of Physics: Conference Series 747 (September 2016): 012070. http://dx.doi.org/10.1088/1742-6596/747/1/012070.
Повний текст джерелаGawlicki, Michał, and Łukasz Jankowski. "Trajectory Identification for Moving Loads by Multicriterial Optimization." Sensors 21, no. 1 (January 5, 2021): 304. http://dx.doi.org/10.3390/s21010304.
Повний текст джерелаStaib, Tilo. "Necessary Optimality Conditions for Nonsmooth Multicriterial Optimization Problems." SIAM Journal on Optimization 2, no. 1 (February 1992): 153–71. http://dx.doi.org/10.1137/0802009.
Повний текст джерелаKokhanovskii, V. A., and D. V. Glazunov. "Multicriterial Optimization of the Composition of a Lubricant." Journal of Machinery Manufacture and Reliability 49, no. 7 (December 2020): 624–32. http://dx.doi.org/10.3103/s1052618820070080.
Повний текст джерелаKoleva, E., L. Koleva, Dm Trushnikov, G. Kolev, and Z. Petrova. "Multicriterial optimization strategies for electron beam welding processes." Journal of Physics: Conference Series 2240, no. 1 (March 1, 2022): 012038. http://dx.doi.org/10.1088/1742-6596/2240/1/012038.
Повний текст джерелаBucur, Amelia. "Aspects Of Multicriterial Mathematical Modeling And Of The Fuzzy Formalism For The Hierarchization Of Study Programs Based On Several Quality Characteristics." ACTA Universitatis Cibiniensis 67, no. 1 (September 1, 2015): 1–6. http://dx.doi.org/10.1515/aucts-2015-0055.
Повний текст джерелаДисертації з теми "Multicriterial optimization"
Burggraf, Timo Verfasser], Stefan [Akademischer Betreuer] [Ulbrich, and Christian [Akademischer Betreuer] Beidl. "Development of an automatic, multidimensional, multicriterial optimization algorithm for the calibration of internal combustion engines / Timo Burggraf. Betreuer: Stefan Ulbrich ; Christian Beidl." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2015. http://d-nb.info/1111112231/34.
Повний текст джерелаBurggraf, Timo [Verfasser], Stefan [Akademischer Betreuer] Ulbrich, and Christian [Akademischer Betreuer] Beidl. "Development of an automatic, multidimensional, multicriterial optimization algorithm for the calibration of internal combustion engines / Timo Burggraf. Betreuer: Stefan Ulbrich ; Christian Beidl." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2015. http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-43987.
Повний текст джерелаDächert, Kerstin [Verfasser]. "Adaptive Parametric Scalarizations in Multicriteria Optimization / Kerstin Dächert." Wuppertal : Universitätsbibliothek Wuppertal, 2014. http://d-nb.info/1054221308/34.
Повний текст джерелаFilomeno, Coelho Rajan. "Multicriteria optimization with expert rules for mechanical design." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211184.
Повний текст джерелаConsequently, to solve these problems, the most wide-spread meta-heuristic methods are evolutionary algorithms (EAs), which work as follows: the best individuals among an initial population of randomly generated potential solutions are favoured and com-bined (by specific operators like crossover and mutation) in order to create potentially better individuals at the next generation. The creation of new generations is repeated till the convergence is reached. The ability of EAs to explore widely the design space is useful to solve single-objective unconstrained optimization problems, because it gener-ally prevents from getting trapped into a local optimum, but it is also well known that they do not perform very efficiently in the presence of constraints. Furthermore, in many industrial applications, multiple objectives are pursued together.
Therefore, to take into account the constrained and multicriteria aspects of optimization problems in EAs, a new method called PAMUC (Preferences Applied to MUltiobjectiv-ity and Constraints) has been proposed in this dissertation. First the user has to assign weights to the m objectives. Then, an additional objective function is built by linearly aggregating the normalized constraints. Finally, a multicriteria decision aid method, PROMETHEE II, is used in order to rank the individuals of the population following the m+1 objectives.
PAMUC has been validated on standard multiobjective test cases, as well as on the pa-rametrical optimization of the purge valve and the feed valve of the Vinci engine, both designed by Techspace Aero for launcher Ariane 5.
\
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Zhang, Tianfang. "Machine learning multicriteria optimization in radiation therapy treatment planning." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257509.
Повний текст джерелаInom strålterapiplanering har den senaste forskningen använt maskininlärning baserat på historiskt levererade planer för att automatisera den process i vilken kliniskt acceptabla planer produceras. Jämfört med traditionella angreppssätt, såsom upprepad optimering av en viktad målfunktion eller flermålsoptimering (MCO), har automatiska planeringsmetoder generellt sett fördelarna av lägre beräkningstider och minimal användarinteraktion, men saknar däremot flexibiliteten hos allmänna ramverk som exempelvis MCO. Maskininlärningsmetoder kan vara speciellt känsliga för avvikelser i dosprediktionssteget på grund av särskilda egenskaper hos de optimeringsfunktioner som vanligtvis används för att återskapa dosfördelningar, och lider dessutom av problemet att det inte finns något allmängiltigt orsakssamband mellan prediktionsnoggrannhet och kvalitet hos optimerad plan. I detta arbete presenterar vi ett sätt att förena idéer från maskininlärningsbaserade planeringsmetoder med det väletablerade MCO-ramverket. Mer precist kan vi, givet förkunskaper i form av antingen en tidigare optimerad plan eller en uppsättning av historiskt levererade kliniska planer, automatiskt generera Paretooptimala planer som täcker en dosregion motsvarande uppnåeliga såväl som kliniskt acceptabla planer. I det förra fallet görs detta genom att introducera dos--volym-bivillkor; i det senare fallet görs detta genom att anpassa en gaussisk blandningsmodell med viktade data med förväntning--maximering-algoritmen, modifiera den med exponentiell lutning och sedan använda speciellt utvecklade optimeringsfunktioner för att ta hänsyn till prediktionsosäkerheter.Numeriska resultat för konceptuell demonstration erhålls för ett fall av prostatacancer varvid behandlingen levererades med volymetriskt modulerad bågterapi, där det visas att metoderna utvecklade i detta arbete är framgångsrika i att automatiskt generera Paretooptimala planer med tillfredsställande kvalitet och variation medan kliniskt irrelevanta dosregioner utesluts. I fallet då historiska planer används som förkunskap är beräkningstiderna markant kortare än för konventionell MCO.
Bokrantz, Rasmus. "Multicriteria optimization for managing tradeoffs in radiation therapy treatment planning." Doctoral thesis, KTH, Optimeringslära och systemteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122663.
Повний текст джерелаEn viktig aspekt av planering av strålterapibehandlingar är avvägningar mellan behandlingsmål vilka står i konflikt med varandra. Exempel på sådana avvägningar är mellan tumörkontroll och dos till omkringliggande frisk vävnad, mellan behandlingstid och doskvalitet, och mellan nominell plankvalitet och robusthet med avseende på geometriska fel. Denna avhandling syftar till att utveckla metoder som kan underlätta beslutsfattande kring motstridiga behandlingsmål. Primärt studeras en metod för flermålsoptimering där behandlingsplanen väljs genom kontinuerlig interpolation över ett representativt urval av förberäknade alternativ. De förberäknade behandlingsplanerna utgör en delmängd av de Paretooptimala planerna, det vill säga de planer sådana att en förbättring enligt ett kriterium inte kan ske annat än genom en försämring enligt ett annat. Beräkning av en approximativ representation av mängden av Paretooptimala planer studeras först med avseende på fluensoptimering för intensitetsmodulerad strålterapi. Felet för den approximativa representationen minimeras genom att innesluta mängden av Paretooptimala planer mellan inre och yttre approximationer. Dessa approximationer förfinas iterativt genom att varje ny plan genereras där avståndet mellan approximationerna för tillfället är som störst. En teknik för att beräkna det maximala avståndet mellan approximationerna föreslås vilken är flera storleksordningar snabbare än den bästa tidigare kända metoden. En generalisering till distribuerade beräkningsmiljöer föreslås även. Approximation av mängden av Paretooptimala planer studeras även för direkt maskinparameteroptimering, som används för att beräkna representationer där varje interpolerad behandlingsplan är direkt levererbar. Det faktum att en ändlig representation av mängden av Paretooptimala lösningar har ett approximationsfel till Paretooptimalitet hanteras via en metod där en interpolerad behandlingsplan projiceras på Paretomängden. Projektioner studeras även under bivillkor som förhindrar att den interpolerade planens dos-volym histogram kan försämras. Flermålsoptimering utökas till planering av rotationsterapi och intensitetsmodulerad protonterapi. Protonplaner som är robusta mot geometriska fel beräknas genom optimering med avseende på det värsta möjliga utfallet av de föreliggande osäkerheterna. Flermålsoptimering utökas även teoretiskt till att innefatta denna formulering. Nyttan av värsta fallet-optimering jämfört med tidigare mer konservativa metoder som även skyddar mot osäkerheter som inte kan realiseras i praktiken demonstreras experimentellt.
QC 20130527
Sánchez, Corrales Helem Sabina. "Multi-objective optimization and multicriteria design of PI /PID controllers." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/393990.
Повний текст джерелаNowadays, the proportional integral and proportional integral derivatives are the most used control algorithm in the industry. Moreover, the fractional controllers have received attention recently for both, the research community and from the industrial point of view. Owing to this, in this thesis some of the scenarios involve the tuning of these controllers by using the Multiobjective Optimization Design procedure. This procedure focuses on providing reasonable trade-off among the conflictive objectives and brings the designer the possibility to appreciate the comparison of the design objectives. This thesis is divided in three parts. The first part, presented the fundamentals of the control system showing and discussing the different trade-offs between performance/robustness and servo/regulation operation modes. On the other hand a background on multi-objective optimization has been provided. The second part, introduces the Nash solution as a multi-criteria decision making technique, to select a point from the Pareto front that represent the best compromise among the design objective. This solution provides a semi-automatic selection from the Pareto front approximation and offers a good trade-off between the goal objectives. Hereafter, a Multi-stage approach for the multi-objective optimization process is presented. This approach involves two algorithms: a deterministic and evolutionary algorithm. In which both algorithms complement each other in despite of their drawbacks and improve the results of the overall optimization in terms of convergence and accuracy. Further, the introduction of reliability based objective into the multi-objective problem is carried out, to measure the performance degradation. It is worthwhile to mention that, due to the existence of uncertainties in real-world designing and manufacturing having this design objective will give another perspective to the designer. In order to validate the approach, two different case studies has been considered, the Boiler control problem for controller tuning and as second case, a non-linear Peltier Cell. Finally, the third part of this thesis, the contributions on controller tuning have been presented. First, a set of tuning rules based on the NS for a proportional-integral (PI) controller have been devised, where the robustness/performance trade-off have been considered. Moreover, as a second case it is presented a tuning for proportional-integral-derivative controller where the trade-off of the performance/robustness and servo/regulation operation mode has been considered. Moreover, the fractional-order-proportional-integral-derivative controller is tuned by using the Multi-stage approach for the MOO process.
Schott, Jason R. (Jason Ramon). "Fault tolerant design using single and multicriteria genetic algorithm optimization." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11582.
Повний текст джерелаArreola-Risa, Jesus S. "Multicriteria optimization for design of multivariate control charts for manufacturing processes." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/27997.
Повний текст джерелаHeiserer, Daniel F. [Verfasser]. "Fast Reanalysis for Large Scale Multicriteria Structural Optimization / Daniel F Heiserer." Aachen : Shaker, 2005. http://d-nb.info/1186576960/34.
Повний текст джерелаКниги з теми "Multicriterial optimization"
Ehrgott, Matthias. Multicriteria Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-22199-0.
Повний текст джерелаMulticriteria optimization. 2nd ed. Berlin: Springer, 2005.
Знайти повний текст джерелаEschenauer, Hans, Juhani Koski, and Andrzej Osyczka, eds. Multicriteria Design Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48697-5.
Повний текст джерелаStatnikov, Roman B. Multicriteria Optimization and Engineering. Boston, MA: Springer US, 1995.
Знайти повний текст джерела1948-, Matusov Joseph B., ed. Multicriteria optimization and engineering. New York: Chapman & Hall, 1995.
Знайти повний текст джерелаStatnikov, Roman B., and Joseph B. Matusov. Multicriteria Optimization and Engineering. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2089-4.
Повний текст джерелаStatnikov, Roman B. Multicriteria Design: Optimization and Identification. Dordrecht: Springer Netherlands, 1999.
Знайти повний текст джерелаB, Statnikov R. Multicriteria design: Optimization and identification. Dordrecht: Kluwer Academic, 1999.
Знайти повний текст джерелаEschenauer, Hans. Multicriteria Design Optimization: Procedures and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.
Знайти повний текст джерелаPitel, Jozef. Multicriterion optimization and its utilization in agriculture. Amsterdam: Elsevier, 1990.
Знайти повний текст джерелаЧастини книг з теми "Multicriterial optimization"
Klapka, Jindřich, Petr Piňos, and Vítězslav Ševčík. "Multicriterial Projects Selection." In Handbook of Optimization, 245–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30504-7_10.
Повний текст джерелаRabinovitch, Mark. "Multicriterial Optimization in Production and Management." In Operations Research ’93, 405–7. Heidelberg: Physica-Verlag HD, 1994. http://dx.doi.org/10.1007/978-3-642-46955-8_99.
Повний текст джерелаGergel, Victor, and Evgeny Kozinov. "GPU-Based Parallel Computations in Multicriterial Optimization." In Communications in Computer and Information Science, 88–100. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05807-4_8.
Повний текст джерелаGergel, Victor, and Evgeny Kozinov. "Parallel Computing for Time-Consuming Multicriterial Optimization Problems." In Lecture Notes in Computer Science, 446–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62932-2_43.
Повний текст джерелаRotar, Corina. "An Evolutionary Technique for Multicriterial Optimization Based on Endocrine Paradigm." In Genetic and Evolutionary Computation – GECCO 2004, 414–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24855-2_50.
Повний текст джерелаMuzalewska, Małgorzata, and Wojciech Moczulski. "Methodology of multicriterial optimization of geometric features of an orthopedic implant." In Innovations in Biomedical Engineering, 289–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70063-2_31.
Повний текст джерелаZawidzki, Machi, and Łukasz Jankowski. "Multicriterial Optimization of Geometrical and Structural Properties of the Basic Module of a Single-Branch Truss-Z Structure." In Advances in Structural and Multidisciplinary Optimization, 163–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67988-4_11.
Повний текст джерелаGergel, Victor, and Evgeny Kozinov. "Efficient Methods of Multicriterial Optimization Based on the Intensive Use of Search Information." In Springer Proceedings in Mathematics & Statistics, 27–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56829-4_3.
Повний текст джерелаGergel, Victor, and Evgeny Kozinov. "An Approach for Parallel Solving the Multicriterial Optimization Problems with Non-convex Constraints." In Communications in Computer and Information Science, 121–35. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71255-0_10.
Повний текст джерелаSpillers, William R., and Keith M. MacBain. "Multicriteria Optimization." In Structural Optimization, 175–78. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-95865-1_8.
Повний текст джерелаТези доповідей конференцій з теми "Multicriterial optimization"
Bezruk, Valery, Daria Chebotaryova, and Yuliia Skoryk. "Multicriterial optimization of communication means." In 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). IEEE, 2022. http://dx.doi.org/10.1109/tcset55632.2022.9766957.
Повний текст джерелаRijavec, Nenad, and Arianne Hinds. "Multicriterial Optimization Approach to Eliminating Multiplications." In 2006 IEEE Workshop on Multimedia Signal Processing. IEEE, 2006. http://dx.doi.org/10.1109/mmsp.2006.285332.
Повний текст джерелаZanic, Vedran, Stanislav Kitarovic, and Pero Prebeg. "Safety as Objective in Multicriterial Structural Optimization." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20712.
Повний текст джерелаZavalishchin, Dmitry, and Galina Timofeeva. "Multicriterial optimization of transportation based on customers probabilistic preferences." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2019 (ICCMSE-2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5137935.
Повний текст джерелаGergel, Victor, and Evgeny Kozinov. "Accelerating multicriterial optimization by the intensive exploitation of accumulated search data." In NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA–2016): Proceedings of the 2nd International Conference “Numerical Computations: Theory and Algorithms”. Author(s), 2016. http://dx.doi.org/10.1063/1.4965367.
Повний текст джерелаGuini, Fatimazahra, Abdellah El Barkany, and Abdelouahhab Jabri. "Multicriterial evaluation of process planning of a new product in the stage of its design." In 2018 4th International Conference on Optimization and Applications (ICOA). IEEE, 2018. http://dx.doi.org/10.1109/icoa.2018.8370571.
Повний текст джерелаKishkin, Krasimir, Dimitar Arnaudov, Venelin Todorov, and Stefka Fidanova. "Multicriterial evaluation and optimization of an algorithm for charging energy storage elements." In 16th Conference on Computer Science and Intelligence Systems. PTI, 2021. http://dx.doi.org/10.15439/2021f55.
Повний текст джерелаForth, Kasimir, Jimmy Abualdenien, André Borrmann, Sabrina Fellermann, and Christian Schunicht. "Design optimization approach comparing multicriterial variants using BIM in early design stages." In 38th International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 2021. http://dx.doi.org/10.22260/isarc2021/0034.
Повний текст джерелаEmelichev, Vladimir, and Vladimir Korotkov. "Investigation in stability of Markowitz's multicriterial portfolio optimization problem with Wald's maximin criteria in euclidean metric." In 2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI). IEEE, 2012. http://dx.doi.org/10.1109/icpci.2012.6486478.
Повний текст джерелаShorikov, A. F., and E. V. Butsenko. "Network models for solving the problem of multicriterial adaptive optimization of investment projects control with several acceptable technologies." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 9th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’17. Author(s), 2017. http://dx.doi.org/10.1063/1.5007385.
Повний текст джерелаЗвіти організацій з теми "Multicriterial optimization"
Stepanović, Milica, Dragoljub Bajić, and Dušan Polomši. Multicriteria Analysis and Optimization of Groundwater Control Systems with Variable Values of Criterion over Predefined Time Points. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, August 2021. http://dx.doi.org/10.7546/crabs.2021.08.09.
Повний текст джерела