Добірка наукової літератури з теми "Multi-Scale finite element method"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multi-Scale finite element method".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Multi-Scale finite element method"
Li, Cui Yu, and Xiao Tao Zhang. "Multi-Scale Finite Element Method and its Application." Advanced Materials Research 146-147 (October 2010): 1583–86. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.1583.
Повний текст джерелаHiu, Haifeng, Changzhi Wang, and Xiaoguang Hu. "Multi-scale Finite Element Method for Members for Pipe Frames." IOP Conference Series: Earth and Environmental Science 446 (March 21, 2020): 052045. http://dx.doi.org/10.1088/1755-1315/446/5/052045.
Повний текст джерелаChen, Ning, Jiaojiao Chen, Jian Liu, Dejie Yu, and Hui Yin. "A homogenization-based Chebyshev interval finite element method for periodical composite structural-acoustic systems with multi-scale interval parameters." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 10 (December 12, 2018): 3444–58. http://dx.doi.org/10.1177/0954406218819030.
Повний текст джерелаXiang, Jia Wei, Zhan Si Jiang, and Jin Yong Xu. "A Wavelet-Based Finite Element Method for Modal Analysis of Beams." Advanced Materials Research 97-101 (March 2010): 2728–31. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.2728.
Повний текст джерелаPeng, Mengyao, Min Liu, Shuitao Gu, and Shidong Nie. "Multiaxial Fatigue Analysis of Jacket-Type Offshore Wind Turbine Based on Multi-Scale Finite Element Model." Materials 16, no. 12 (June 14, 2023): 4383. http://dx.doi.org/10.3390/ma16124383.
Повний текст джерелаKIM, HYOUNG SEOP. "MULTI-SCALE FINITE ELEMENT SIMULATION OF SEVERE PLASTIC DEFORMATION." International Journal of Modern Physics B 23, no. 06n07 (March 20, 2009): 1621–26. http://dx.doi.org/10.1142/s0217979209061366.
Повний текст джерелаJia, Hongxing, Shizhu Tian, Shuangjiang Li, Weiyi Wu, and Xinjiang Cai. "Seismic application of multi-scale finite element model for hybrid simulation." International Journal of Structural Integrity 9, no. 4 (August 13, 2018): 548–59. http://dx.doi.org/10.1108/ijsi-04-2017-0027.
Повний текст джерелаBardi, Istvan, Kezhong Zhao, Rickard Petersson, John Silvestro, and Nancy Lambert. "Multi-domain multi-scale problems in high frequency finite element methods." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 32, no. 5 (September 9, 2013): 1471–83. http://dx.doi.org/10.1108/compel-04-2013-0123.
Повний текст джерелаGai, Wen Hai, R. Guo, and Jun Guo. "Molecular Dynamics Approach and its Application in the Analysis of Multi-Scale." Applied Mechanics and Materials 444-445 (October 2013): 1364–69. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.1364.
Повний текст джерелаHE, WEN-YU, and WEI-XIN REN. "ADAPTIVE TRIGONOMETRIC HERMITE WAVELET FINITE ELEMENT METHOD FOR STRUCTURAL ANALYSIS." International Journal of Structural Stability and Dynamics 13, no. 01 (February 2013): 1350007. http://dx.doi.org/10.1142/s0219455413500077.
Повний текст джерелаДисертації з теми "Multi-Scale finite element method"
Balazi, atchy nillama Loïc. "Multi-scale Finite Element Method for incompressible flows in heterogeneous media : Implementation and Convergence analysis." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX053.
Повний текст джерелаThis thesis is concerned with the application of a Multi-scale Finite Element Method (MsFEM) to solve incompressible flow in multi-scale media. Indeed, simulating the flow in a multi-scale media with numerous obstacles, such as nuclear reactor cores, is a highly challenging endeavour. In order to accurately capture the finest scales of the flow, it is necessary to use a very fine mesh. However, this often leads to intractable simulations due to the lack of computational resources. To address this limitation, this thesis develops an enriched non-conforming MsFEM to solve viscous incompressible flows in heterogeneous media, based on the classical non-conforming Crouzeix--Raviart finite element method with high-order weighting functions. The MsFEM employs a coarse mesh on which new basis functions are defined. These functions are not the classical polynomial basis functions of finite elements, but rather solve fluid mechanics equations on the elements of the coarse mesh. These functions are themselves numerically approximated on a fine mesh, taking into account all the geometric details, which gives the multi-scale aspect of this method. A theoretical investigation of the proposed MsFEM is conducted at both the continuous and discrete levels. Firstly, the well-posedness of the discrete local problems involved in the MsFEM was demonstrated using new families of finite elements. To achieve this, a novel non-conforming finite element family in three dimensions on tetrahedra was developed. Furthermore, the first error estimate for the approximation of the Stokes problem in periodic perforated media using this MSFEM is derived, demonstrating its convergence. This is based on homogenization theory of the Stokes problem in periodic domains and on usual finite element theory. At the numerical level, the MsFEM to solve the Stokes and the Oseen problems in two and three dimensions is implemented in a massively parallel framework in FreeFEM. Furthermore, a methodology to solve the Navier–Stokes problem is provided
Adzima, M. Fauzan. "Constitutive modelling and finite element simulation of martensitic transformation using a computational multi-scale framework." Thesis, Swansea University, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678581.
Повний текст джерелаHUI, YANCHUAN. "Multi-scale Modelling and Design of Composite Structures." Doctoral thesis, Politecnico di Torino, 2019. http://hdl.handle.net/11583/2739922.
Повний текст джерелаBettinotti, Omar. "A weakly-intrusive multi-scale substitution method in explicit dynamics." Thesis, Cachan, Ecole normale supérieure, 2014. http://www.theses.fr/2014DENS0032/document.
Повний текст джерелаComposite laminates are increasingly employed in aeronautics, but can be prone to extensive delamination when submitted to impact loads. The need of performing virtual testing to predict delamination becomes essential for engineering workflows, in which the use of a fine modeling scheme appears nowadays to be the preferred one. The associated computational cost would be prohibitively high for large structures. The goal of this work consists in reducing such computational cost coupling the fine model, restricted to the surroundings of the delamination process zone, with a coarse one applied to the rest of the structure. Due to the transient behavior of impact problems, the dynamic adaptivity of the models to follow evolutive phenomena represents a crucial feature for the coupling. Many methodologies are currently used to couple multiple models, such as non-overlapping Domain Decomposition method, that, applied to dynamic adaptivity, has to be combined with a re-meshing strategy, considered as intrusive implementation within a Finite Element Analysis software. In this work, the bases of a weakly-intrusive approach, called Substitution method, are presented in the field of explicit dynamics. The method is based on a global-local formulation and is designed so that it is possible to make use of the pre-fixed coarse model the meshes the whole structure to obtain a global response: this pre-computation is then iteratively corrected considering the application of the refined model only where required, in the picture of an adaptive strategy. The verification of the Substitution method in comparison with the Domain Decomposition method is presented
Zhou, Zhiqiang. "Multiple-Scale Numerical Analysis of Composites Based on Augmented Finite Element Method." Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/75.
Повний текст джерелаDe, Mier Torrecilla Monica. "Numerical simulation of multi-fluid flows with the Particle Finite Element Method." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/6872.
Повний текст джерелаEn este trabajo nos hemos centrado en entender la principios físicos básicos de los multi-fluidos y las dificultades que aparecen en su simulación numérica. Hemos extendido el Particle Finite Element Method (PFEM) a problemas de varios fluidos diferentes con el objetivo de explotar el hecho de que los métodos lagrangianos son especialmente adecuados para el seguimiento de todo tipo de interfases. Hemos desarrollado un esquema numérico capaz de tratar grandes saltos en las propiedades físicas (densidad y viscosidad), de incluir la tensión superficial y de representar las discontinuidades de las variables del flujo. El esquema se basa en desacoplar las variables de posición de los nodos, velocidad y presión a través de la linearización de Picard y un método de segregación de la presión que tiene en cuenta las condiciones de interfase. La interfase se ha definido alineada con la malla móvil, de forma que se mantiene el salto de propiedades físicas sin suavizar a lo largo del tiempo. Además, los grados de libertad de la presión han sido duplicados en los nodos de interfase para representar la discontinuidad de esta variable debido a la tensión superficial y a la viscosidad variable, y la malla ha sido refinada cerca de la interfase para mejorar la precisión de la simulación. Hemos aplicado el esquema resultante a diversos problemas académicos y geológicos, como el sloshingde dos fluidos, extrusión de fluidos viscosos, ascensión y rotura de una burbuja dentro de una columna de líquido, mezcla de magmas y fuentes invertidas (negatively buoyant jet).
The simultaneous presence of multiple fluids with different properties in external or internal flows is found in daily life, environmental problems, and numerous industrial processes, among many other practical situations. Examples arefluid-fuel interaction in enhanced oil recovery, blending of polymers, emulsions in food manufacturing, rain droplet formation in clouds, fuel injection in engines, and bubble column reactors, to name only a few. Although multi-fluid flows occur frequently in nature and engineering practice, they still pose a major research challenge from both theoretical and computational points of view. In the case of immiscible fluids, the dynamics of the interface between fluids plays a dominant role. The success of the simulation of such flows will depend on the ability of the numerical method to model accurately the interface and the phenomena taking place on it.
In this work we have focused on understanding the basic physical principles of multi-fluid flows and the difficulties that arise in their numerical simulation. We have extended the Particle Finite Element Method to problems involving several different fluids with the aim of exploiting the fact that Lagrangian methods are specially well suited for tracking any kind of interfaces. We have developed a numerical scheme able to deal with large jumps in the physical properties, included surface tension, and able to accurately represent all types of discontinuities in the flow variables at the interface. The scheme is based on decoupling the nodes position, velocity and pressure variables through the Picard linearization and a pressure segregation method which takes into account the interface conditions. Theinterface has been defined to be aligned with the moving mesh, so that it remains sharp along time. Furthermore, pressure degrees of freedom have been duplicated at the interface nodes to represent the discontinuity of this variable due to surface tension and variable viscosity, and the mesh has been refined in the vicinity of the interface to improve the accuracy of the computations. We have applied the resulting scheme to several academic and geological problems, such as the two-fluid sloshing, extrusion of viscous fluids, bubble rise and break up, mixing of magmatic liquids and negatively buoyant jets.
Zhao, Kezhong. "A domain decomposition method for solving electrically large electromagnetic problems." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1189694496.
Повний текст джерелаKimn, Edward Sun. "A parametric finite element analysis study of a lab-scale electromagnetic launcher." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39498.
Повний текст джерелаGuney, Murat Efe. "High-performance direct solution of finite element problems on multi-core processors." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34662.
Повний текст джерелаSchiava, D'Albano Guillermo Gonzalo. "Computational and algorithmic solutions for large scale combined finite-discrete elements simulations." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9071.
Повний текст джерелаКниги з теми "Multi-Scale finite element method"
Habashi, W. G. Large-scale computational fluid dynamics by the finite element method. New York: American Institute of Aeronautics and Astronautics, 1991.
Знайти повний текст джерелаE, Tezduyar T., and United States. National Aeronautics and Space Administration., eds. Finite element solution techniques for large-scale problems in computational fluid dynamics. [Washington, DC: National Aeronautics and Space Administration, 1987.
Знайти повний текст джерелаL, Lin T., Povinelli Louis A, and United States. National Aeronautics and Space Administration., eds. Large-scale computation of incompressible viscous flow by least-squares finite element method. [Washington, DC: National Aeronautics and Space Administration, 1993.
Знайти повний текст джерелаL, Lin T., Povinelli Louis A, and United States. National Aeronautics and Space Administration., eds. Large-scale computation of incompressible viscous flow by least-squares finite element method. [Washington, DC: National Aeronautics and Space Administration, 1993.
Знайти повний текст джерелаL, Lin T., Povinelli Louis A, and United States. National Aeronautics and Space Administration., eds. Large-scale computation of incompressible viscous flow by least-squares finite element method. [Washington, DC: National Aeronautics and Space Administration, 1993.
Знайти повний текст джерелаCenter, Langley Research, ed. Analytic and computational perspectives of multi-scale theory for homogeneous, laminated composite, and sandwich beams and plates. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2012.
Знайти повний текст джерелаA, Saravanos D., and NASA Glenn Research Center, eds. A mixed multi-field finite element formulation for thermopiezoelectric composite shells. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Знайти повний текст джерелаA, Saravanos D., and NASA Glenn Research Center, eds. A mixed multi-field finite element formulation for thermopiezoelectric composite shells. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Знайти повний текст джерелаShigemi, Masashi. Finite element analysis of incompressible viscous flows around single and multi-element aerofoils in high Reynolds number region. Tokyo: National Aerospace Laboratory, 1988.
Знайти повний текст джерелаTan, Cher Ming. Applications of finite element methods for reliability studies on ULSI interconnections. London: Springer, 2011.
Знайти повний текст джерелаЧастини книг з теми "Multi-Scale finite element method"
van Eekelen, Tom. "Radiation Modeling Using the Finite Element Method." In Solar Energy at Urban Scale, 237–57. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118562062.ch11.
Повний текст джерелаAndreev, A. B., J. T. Maximov, and M. R. Racheva. "Finite Element Method for Plates with Dynamic Loads." In Large-Scale Scientific Computing, 445–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45346-6_47.
Повний текст джерелаRoters, Franz. "The Texture Component Crystal Plasticity Finite Element Method." In Continuum Scale Simulation of Engineering Materials, 561–72. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603786.ch28.
Повний текст джерелаIliev, Oleg P., Raytcho D. Lazarov, and Joerg Willems. "Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman’s Equations." In Large-Scale Scientific Computing, 14–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12535-5_2.
Повний текст джерелаHofreither, Clemens, Ulrich Langer, and Clemens Pechstein. "A Non-standard Finite Element Method Based on Boundary Integral Operators." In Large-Scale Scientific Computing, 28–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29843-1_3.
Повний текст джерелаLazarov, Boyan S. "Topology Optimization Using Multiscale Finite Element Method for High-Contrast Media." In Large-Scale Scientific Computing, 339–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43880-0_38.
Повний текст джерелаMatonoha, Ctirad, Alexej Moskovka, and Jan Valdman. "Minimization of p-Laplacian via the Finite Element Method in MATLAB." In Large-Scale Scientific Computing, 533–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97549-4_61.
Повний текст джерелаPreußer, T., and M. Rumpf. "An Adaptive Finite Element Method for Large Scale Image Processing." In Scale-Space Theories in Computer Vision, 223–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48236-9_20.
Повний текст джерелаPalha, Artur, and Marc Gerritsma. "Mimetic Least-Squares Spectral/hp Finite Element Method for the Poisson Equation." In Large-Scale Scientific Computing, 662–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12535-5_79.
Повний текст джерелаSteinbach, Olaf, and Huidong Yang. "An Algebraic Multigrid Method for an Adaptive Space–Time Finite Element Discretization." In Large-Scale Scientific Computing, 66–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73441-5_6.
Повний текст джерелаТези доповідей конференцій з теми "Multi-Scale finite element method"
Li Zhang and Guizhen Lu. "Analysis of multi scale finite element method in low frequency." In 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA). IEEE, 2014. http://dx.doi.org/10.1109/wartia.2014.6976414.
Повний текст джерелаMa, Xinyu, Nana Duan, Weijie Xu, and Shuhong Wang. "Multi-Scale Finite Element Method Applied in 3D Nonlinear Problem." In 2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation (CEFC). IEEE, 2024. http://dx.doi.org/10.1109/cefc61729.2024.10585808.
Повний текст джерелаLIU, WING. "Multi-scale finite element methods for structural dynamics." In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1057.
Повний текст джерелаDongdong, Zeng, Li Yanfei, and Lu Guizhen. "Study on multi-scale finite element method for EM wave equation." In 2010 International Workshop on Electromagnetics; Applications and Student Innovation (iWEM). IEEE, 2010. http://dx.doi.org/10.1109/aem2c.2010.5578775.
Повний текст джерелаThompson, M. K. "Finite Element Modeling of Multi-Scale Thermal Contact Resistance." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52385.
Повний текст джерелаCui-Yu Li and Xiao-Tao Zhang. "Numerical simulation of knitted fabric material with multi-scale finite element method." In 2009 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2009. http://dx.doi.org/10.1109/icmlc.2009.5212167.
Повний текст джерелаManta, Asimina, Matthieu Gresil, and Constantinos Soutis. "MULTI-SCALE FINITE ELEMENT ANALYSIS OF GRAPHENE/POLYMER NANOCOMPOSITES ELECTRICAL PERFORMANCE." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.1936.7586.
Повний текст джерелаCui-Yu Li and Xiao-Tao Zhang. "Numerical simulation of woven fabric material based on multi-scale finite element method." In 2008 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2008. http://dx.doi.org/10.1109/icmlc.2008.4620793.
Повний текст джерелаTam, Nguyen Ngoc. "Multi-scale Sheet Metal Forming Analyses by using Dynamic Explicit Homogenized Finite Element Method." In NUMISHEET 2005: Proceedings of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process. AIP, 2005. http://dx.doi.org/10.1063/1.2011255.
Повний текст джерелаYu, Qing, and Jer-Fang Wu. "Multi-Scale Finite Element Simulation of Progressive Damage in Composite Structures." In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92064.
Повний текст джерелаЗвіти організацій з теми "Multi-Scale finite element method"
Shenoy, V. B., R. Miller, E. B. Tadmor, D. Rodney, and R. Phillips. An Adaptive Finite Element Approach to Atomic-Scale Mechanics: The Quasicontinuum Method. Fort Belvoir, VA: Defense Technical Information Center, November 1998. http://dx.doi.org/10.21236/ada358720.
Повний текст джерелаZhu, Minjie, and Michael Scott. Two-Dimensional Debris-Fluid-Structure Interaction with the Particle Finite Element Method. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, April 2024. http://dx.doi.org/10.55461/gsfh8371.
Повний текст джерелаPask, J., N. Sukumar, M. Guney, and W. Hu. Partition-of-unity finite-element method for large scale quantum molecular dynamics on massively parallel computational platforms. Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1021061.
Повний текст джерелаZhang, Xingyu, Matteo Ciantia, Jonathan Knappett, and Anthony Leung. Micromechanical study of potential scale effects in small-scale modelling of sinker tree roots. University of Dundee, December 2021. http://dx.doi.org/10.20933/100001235.
Повний текст джерелаTerzic, Vesna, and William Pasco. Novel Method for Probabilistic Evaluation of the Post-Earthquake Functionality of a Bridge. Mineta Transportation Institute, April 2021. http://dx.doi.org/10.31979/mti.2021.1916.
Повний текст джерелаGuan, Jiajing, Sophia Bragdon, and Jay Clausen. Predicting soil moisture content using Physics-Informed Neural Networks (PINNs). Engineer Research and Development Center (U.S.), August 2024. http://dx.doi.org/10.21079/11681/48794.
Повний текст джерелаTurner, Andrew. Effect of Coupling on A-Walls for Slope Stabilization. Deep Foundations Institute, June 2018. http://dx.doi.org/10.37308/cpf-2015-land-1.
Повний текст джерелаZhu, Xian-Kui, and Bruce Wiersma. PR-644-213803-R01 Fatigue Life Models for Pipeline Containing Dents and Gouges. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2022. http://dx.doi.org/10.55274/r0012248.
Повний текст джерелаBao, Jieyi, Xiaoqiang Hu, Cheng Peng, Junyi Duan, Yizhou Lin, Chengcheng Tao, Yi Jiang, and Shuo Li. Advancing INDOT’s Friction Test Program for Seamless Coverage of System: Pavement Markings, Typical Aggregates, Color Surface Treatment, and Horizontal Curves. Purdue University, 2024. http://dx.doi.org/10.5703/1288284317734.
Повний текст джерелаChauhan and Wood. L52007 Experimental Validation of Methods for Assessing Closely Spaced Corrosion Defects. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2005. http://dx.doi.org/10.55274/r0011167.
Повний текст джерела