Добірка наукової літератури з теми "Multi-scale design"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multi-scale design".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Multi-scale design"

1

Sakita, Kazuhiro. "WeC-1-4 DESIGN AND DEVELOPMENT OF MULTI-SCALE PRODUCT DESIGN SYSTEM." Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2015 (2015): _WeC—1–4–1—_WeC—1–4–3. http://dx.doi.org/10.1299/jsmemipe.2015._wec-1-4-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, Wei. "Multi-scale catalyst design." Chemical Engineering Science 62, no. 13 (July 2007): 3502–12. http://dx.doi.org/10.1016/j.ces.2007.02.057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Niu, Yulei, Zhiwu Lu, Ji-Rong Wen, Tao Xiang, and Shih-Fu Chang. "Multi-Modal Multi-Scale Deep Learning for Large-Scale Image Annotation." IEEE Transactions on Image Processing 28, no. 4 (April 2019): 1720–31. http://dx.doi.org/10.1109/tip.2018.2881928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

De Cooman, Bruno C., H. K. D. H. Bhadeshia, and Frédéric Barlat. "Advanced Steel Design by Multi-Scale Modeling." Materials Science Forum 654-656 (June 2010): 41–46. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.41.

Повний текст джерела
Анотація:
The present contribution highlights the approach to multi-scale steel design used at the Graduate Institute of Ferrous Technology (GIFT). Multi-scale modeling combining ab-initio methods, molecular dynamics, crystal plasticity modeling etc. enables GIFT researchers to gain a better fundamental understanding of phase and lattice stability, magnetic properties and basic mechanical constants. In addition, these methods allow for the reliable determination of critical material parameters. The opportunities for the development of new steel grade is thereby greatly enhanced and, when these new materials-oriented methods are combined with the more traditional engineering modeling methods, the challenges related to the large scale production of new steel grades can also be addressed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wei, James. "Design and integration of multi-scale structures." Chemical Engineering Science 59, no. 8-9 (April 2004): 1641–51. http://dx.doi.org/10.1016/j.ces.2004.01.045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Perera, M. S. M., S. Theodossiades, and H. Rahnejat. "A multi-physics multi-scale approach in engine design analysis." Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 221, no. 3 (September 1, 2007): 335–48. http://dx.doi.org/10.1243/14644193jmbd78.

Повний текст джерела
Анотація:
Vibration behaviour of an internal combustion engine depends on rigid body inertial dynamics, structural modal characteristics of its elastic members, tribological behaviour of loadbearing contacts, and piston-cylinder interactions. Therefore, it is essential to use a multi-physics approach that addresses all these physical properties in a single integrative model as presented in this paper. This approach can be regarded as holistic and a good aid for detailed design. Particular attention is paid to the critical elements in the system, such as load-bearing conjunctions (crankshaft main bearings) and piston-cylinder wall interactions. Another important feature is the integrated analysis across the physics of motion from microscale fluid film formation to submillimetre structural deformations and onto large displacements of inertial members. In order to succeed in predictions within sensible industrial time scales, analytical methods have been used as far as possible rather than numerical approaches. Model predictions show good agreement with fired engine test data.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nandong, Jobrun, and Zhuquan Zang. "Multi-loop design of multi-scale controllers for multivariable processes." Journal of Process Control 24, no. 5 (May 2014): 600–612. http://dx.doi.org/10.1016/j.jprocont.2014.03.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

SAKITA, Kazuhiro. "SIM-03 MULTI-SCALE SPATIAL MODEL FOR MULTI-SCALE PRODUCT DESIGN AND SIMULATION SYSTEM IMPLEMENTED WITH MESSAGE PASSING INTERFACE(Simulations of Micro/Nano Scale Phenomena I,Technical Program of Oral Presentations)." Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2009 (2009): 261–62. http://dx.doi.org/10.1299/jsmemipe.2009.261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Xiaokang, Chenran Li, Lin Lu, Oliver Deussen, and Changhe Tu. "Fabricable Multi‐Scale Wang Tiles." Computer Graphics Forum 41, no. 5 (August 2022): 149–59. http://dx.doi.org/10.1111/cgf.14610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gröbe, Mathias, and Dirk Burghardt. "Developing and Evaluating Multi-Scale Map Styles: Creating a Multi-Scale Legend." Abstracts of the ICA 1 (July 13, 2019): 1–2. http://dx.doi.org/10.5194/ica-abs-1-100-2019.

Повний текст джерела
Анотація:
<p><strong>Abstract.</strong> In recent years, the usage of zoomable maps strongly increased. The development of small and cheap electronic devices with wireless internet connection such as smartphones and tablets has made maps nowadays to a crucial part of everyday life. For the navigation and orientation, the user often uses zoomable maps (Muehlenhaus, 2014). Currently the technological development controls the map design and less cartographic design rules, which leads to the impress those current maps have a lower graphic quality. A sample for this trend is the new vector tile based maps, which offer the advantage of rotatable, multilingual maps build on one database (Martinelli and Roth, 2016).</p><p> There is a need for the development of cartographic design guidelines to guarantee consistent map readability over all zoom levels. The infinitely zoomable maps especially vector maps intensify this development. Analog maps had one specific scale, while a series of topographic maps were offered in manageable number of scales in comparison to OpenStreetMaps 20 zoom levels for raster tiles (Anon, 2019). Raster web maps had a number of predefined zoom levels, while vector maps offer the possibility of continuous zooming. This fact clarifies the requirement of research and development of rules for such types of maps.</p><p> A first important task for the fulfilment of this objective is the evaluation of a multi-scale map styles. For this task, we developed the concept of a multi-scale legend. This new tool should help cartographers and designer to create, modify and improve multi-scale map styles. It can help to explore existing map styles, identify inconsistencies and support the design process. We decided to use the legend due to the abstraction of the map style from map content. For visualization of the scale-dependencies for each feature in a row, the scale/zoom level changes in each column. In combination with other map features and zoom levels results a two-dimensional matrix showing the scale-dependent visualization. This legend matrix shows the map features in every zoom level, which allows reaching an overview of the symbolization of features over several scales. In this way, it is possible to check how consistent a map style is in one zoom level as well as over a set of zoom levels.</p><p> Figure 1 shows an example for a legend matrix using the OpenStreetMap Carto style: the representation of selected water bodies depending on the scale is illustrated. Streams and springs always occur together within the same zoom levels. In contrast to the rivers, the width of the streams remains nearly constant across the different scales. It is also visible that the color for the spring differs from the other water features. A multi-scale legend offers the possibility of grouping feature classes by topics (e.g. water bodies, vegetation and road network) as in the example. Other possibilities are geometry, color or occurrence in similar zoom levels. This can help in the search for errors, in the identification of breaks in the symbolization and in the development of continuous symbolization. The result is similar but more illustrative than the ScaleMaster (Brewer and Buttenfield, 2007, 2010), which is a diagram describing how feature classes are visualized depending from scale. Benefits of this legend are clarification of scale depended visualizations and the graphic implementation of design guidelines. A challenge is the implementation for different map styles due to the associated effort and the resulting sometimes very large overviews.</p><p> An on-going technological development takes place, wherefore cartographers should upgrade the design guidelines and methods for the production of current technological, well-looking maps. With the multi-scale legend, we provided a smart legend for a zoomable map. Nevertheless, these new ideas we have developed need more research and should always take the map purpose in account. Further, we would like to apply the multi-scale legend on existing map styles to reach more information about how these styles are working. In addition, we will further develop the multi-scale legend to a documentation of the creation of the map, showing how data is generalized and visualized.</p>
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Multi-scale design"

1

Suberu, Bolaji A. "Multi-scale Composite Materials with Increased Design Limits." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1377868507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hari, Bost Jan. "Multi-Scale Modelling, Simulation, Design and Analysis of Microreactors." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511850.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Holcombe, Evan W. "Multi-Scale Approach to Design Sustainable Asphalt Paving Materials." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1493805362392927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ferrer, Ferré Àlex. "Multi-scale topological design of structural materials : an integrated approach." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/406354.

Повний текст джерела
Анотація:
The present dissertation aims at addressing multiscale topology optimization problems. For this purpose, the concept of topology derivative in conjunction with the computational homogenization method is considered. In this study, the topological derivative algorithm, which is clearly non standard in topology optimization, and the optimality conditions are first introduced in order to a provide a better insight. Then, a precise treatment of the interface elements is proposed to reduce the numerical instabilities and the time-consuming computations that appear when using the topological derivative algorithm. The resulting strategy is examined and compared with current methodologies collected in the literature by means of some numerical tests of different nature. Then, a closed formula of the anisotropic topological derivative is obtained by solving analytically the exterior elastic problem. To this aim, complex variable theory and symbolic computation is considered. The resulting expression is validated through some numerical tests. In addition, different anisotropic topology optimization problems are solved to show the macroscopic topological implications of considering anisotropic materials. Finally, the two-scale topology optimization problem is tackled. As a first approach, an structural stiffness increase is achieved by considering the microscopic topologies as design variables of the problem. An alternate direction algorithm is proposed to address the high non-linearities of the problem. In addition, to mitigate the unaffordable time-consuming computations, a reduction technique is presented by means of pre-computing the optimal microscopic topologies in a computational material catalogue. As an extension of the first approach, besides designing the microscopic topologies, the macroscopic topology is also considered as a design variable, leading to even more optimal solutions. In addition, the proposed algorithms are modified in order to obtain manufacturable optimal designs. Two-scale topology optimization examples exhibit the potential of the proposed methodology
Aquest treball té com a objectiu abordar els problemes d'optimització de topologia de múltiples escales. Amb aquesta finalitat, es consideren els conceptes de derivada topologia junt amb el mètode d'homogeneïtzació computacional. En aquest estudi, es presenta primer les condicions d'optimalitat i l'algorisme d'optimització utilitzat quan es considera la derivada topològica. A continuació, es proposa un tractament més precís dels elements de la interfície per reduir les inestabilitats numèriques i els elevats càlculs computacionals que apareixen quan s'utilitza l'algorisme de la derivada topològica. L'estratègia resultant s'examina i es compara amb les metodologies actuals, que es poden trobar sovint recollides a la literatura, mitjançant algunes proves numèriques. A més, s'obté una fórmula tancada de la derivada topològica anisotròpica quan es resol analíticament el problema exterior d'elasticitat. Per aconseguir-ho, es considera la teoria de variable complexa i la computació simbòlica. L'expressió resultant es valida a través d'algunes proves numèriques. A més, es resolen diferents problemes d'optimització topològica anisotròpica per mostrar les implicacions de la topològica macroscòpica en considerar materials anisòtrops. Finalment, s'aborda els problemes d'optimització topològica de dues escales. Com a primera estratègia, es considera les topologies microestructurals com a variables de disseny del problema per obtenir un augment de la rigidesa de l'estructura. Es proposa un algoritme de direcció alternada per fer front a les altes no linealitats del problema. A més, per mitigar els elevats càlculs computacionals, es presenta una tècnica de reducció per mitjà d'un precalcul de les topologies microestructural òptimes, que posteriorment són recollides en un catàleg de material. Com a una extensió de la primera estratègia, a més del disseny de les topologies microestructurals, la topologia macroscòpica també es considera com una variable de disseny, obtenint així solucions encara més òptimes. A més, els algoritmes proposats es modifiquen per tal d'obtenir dissenys que poden ser posteriorment fabricats. Alguns exemples numèrics d'optimització topològica de dues escales mostren el potencial de la metodologia proposada.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kalua, Amos. "Framework for Integrated Multi-Scale CFD Simulations in Architectural Design." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/105013.

Повний текст джерела
Анотація:
An important aspect in the process of architectural design is the testing of solution alternatives in order to evaluate them on their appropriateness within the context of the design problem. Computational Fluid Dynamics (CFD) analysis is one of the approaches that have gained popularity in the testing of architectural design solutions especially for purposes of evaluating the performance of natural ventilation strategies in buildings. Natural ventilation strategies can reduce the energy consumption in buildings while ensuring the good health and wellbeing of the occupants. In order for natural ventilation strategies to perform as intended, a number of factors interact and these factors must be carefully analysed. CFD simulations provide an affordable platform for such analyses to be undertaken. Traditionally, these simulations have largely followed the direction of Best Practice Guidelines (BPGs) for quality control. These guidelines are built around certain simplifications due to the high computational cost of CFD modelling. However, while the computational cost has increasingly fallen and is predicted to continue to drop, the BPGs have largely remained without significant updates. The need to develop a CFD simulation framework that leverages the contemporary and anticipates the future computational cost and capacity can, therefore, not be overemphasised. When conducting CFD simulations during the process of architectural design, the variability of the wind flow field including the wind direction and its velocity constitute an important input parameter. Presently, however, in many simulations, the wind direction is largely used in a steady state manner. It is assumed that the direction of flow downwind of a meteorological station remains constant. This assumption may potentially compromise the integrity of CFD modelling as in reality, the wind flow field is bound to be dynamic from place to place. In order to improve the accuracy of the CFD simulations for architectural design, it is therefore necessary to adequately account for this variability. This study was a two-pronged investigation with the ultimate objective of improving the accuracy of the CFD simulations that are used in the architectural design process, particularly for the design and analysis of natural ventilation strategies. Firstly, a framework for integrated meso-scale and building scale CFD simulations was developed. Secondly, the newly developed framework was then implemented by deploying it to study the variability of the wind flow field between a reference meteorological station, the Virginia Tech Airport, and a selected localized building scale site on the Virginia Tech campus. The findings confirmed that the wind flow field varies from place to place and showed that the newly developed framework was able to capture this variation, ultimately, generating a wind flow field characterization representative of the conditions prevalent at the localized building site. This framework can be particularly useful when undertaking de-coupled CFD simulations to design and analyse natural ventilation strategies in the building design process.
Doctor of Philosophy
The use of natural ventilation strategies in building design has been identified as one viable pathway toward minimizing energy consumption in buildings. Natural ventilation can also reduce the prevalence of the Sick Building Syndrome (SBS) and enhance the productivity of building occupants. This research study sought to develop a framework that can improve the usage of Computational Fluid Dynamics (CFD) analyses in the architectural design process for purposes of enhancing the efficiency of natural ventilation strategies in buildings. CFD is a branch of computational physics that studies the behaviour of fluids as they move from one point to another. The usage of CFD analyses in architectural design requires the input of wind environment data such as direction and velocity. Presently, this data is obtained from a weather station and there is an assumption that this data remains the same even for a building site located at a considerable distance away from the weather station. This potentially compromises the accuracy of the CFD analyses as studies have shown that due to a number of factors such the urban built form, vegetation, terrain and others, the wind environment is bound to vary from one point to another. This study sought to develop a framework that quantifies this variation and provides a way for translating the wind data obtained from a weather station to data that more accurately characterizes a local building site. With this accurate site wind data, the CFD analyses can then provide more meaningful insights into the use of natural ventilation in the process of architectural design. This newly developed framework was deployed on a study site at Virginia Tech. The findings showed that the framework was able to demonstrate that the wind flow field varies from one place to another and it also provided a way to capture this variation, ultimately, generating a wind flow field characterization that was more representative of the local conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Koop, Matthew J. "High-Performance Multi-Transport MPI Design for Ultra-Scale InfiniBand Clusters." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243581928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Song, Huaguang. "Multi-scale data sketching for large data analysis and visualization." Scholarly Commons, 2012. https://scholarlycommons.pacific.edu/uop_etds/832.

Повний текст джерела
Анотація:
Analysis and visualization of large data sets is time consuming and sometimes can be a very difficult process, especially for 3D data sets. Therefore, data processing and visualization techniques have often been used in the case of different massive data analysis for efficiency and accuracy purposes. This thesis presents a multi-scale data sketching solution, specifically for large 3D scientific data with a goal to support collaborative data management, analysis and visualization. The idea is to allow users to quickly identify interesting regions and observe significant patterns without directly accessing the raw data, since most of the information in raw form is not useful. This solution will provide a fast way to allow the users to choose the regions they are interested and save time. By preprocessing the data, our solution can sketch out the general regions of the 3D data, and users can decide whether they are interested in going further to analyze the current data. The key issue is to find efficient and accurate algorithms to detect boundaries or regions information for large 3D scientific data. Specific techniques and performance analysis are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zentner, John Marc. "A Design Space Exploration Process for Large Scale, Multi-Objective Computer Simulations." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11572.

Повний текст джерела
Анотація:
The primary contributions of this thesis are associated with the development of a new method for exploring the relationships between inputs and outputs for large scale computer simulations. Primarily, the proposed design space exploration procedure uses a hierarchical partitioning method to help mitigate the curse of dimensionality often associated with the analysis of large scale systems. Closely coupled with the use of a partitioning approach, is the problem of how to partition the system. This thesis also introduces and discusses a quantitative method developed to aid the user in finding a set of good partitions for creating partitioned metamodels of large scale systems. The new hierarchically partitioned metamodeling scheme, the lumped parameter model (LPM), was developed to address two primary limitations to the current partitioning methods for large scale metamodeling. First the LPM was formulated to negate the need to rely on variable redundancies between partitions to account for potentially important interactions. By using a hierarchical structure, the LPM addresses the impact of neglected, direct interactions by indirectly accounting for these interactions via the interactions that occur between the lumped parameters in intermediate to top-level mappings. Secondly, the LPM was developed to allow for hierarchical modeling of black-box analyses that do not have available intermediaries with which to partition the system around. The second contribution of this thesis is a graph-based partitioning method for large scale, black-box systems. The graph-based partitioning method combines the graph and sparse matrix decomposition methods used by the electrical engineering community with the results of a screening test to create a quantitative method for partitioning large scale, black-box systems. An ANOVA analysis of the results of a screening test can be used to determine the sparse nature of the large scale system. With this information known, the sparse matrix and graph theoretic partitioning schemes can then be used to create potential sets of partitions to use with the lumped parameter model.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Samadiani, Emad. "Energy efficient thermal management of data centers via open multi-scale design." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/37218.

Повний текст джерела
Анотація:
Data centers are computing infrastructure facilities that house arrays of electronic racks containing high power dissipation data processing and storage equipment whose temperature must be maintained within allowable limits. In this research, the sustainable and reliable operations of the electronic equipment in data centers are shown to be possible through the Open Engineering Systems paradigm. A design approach is developed to bring adaptability and robustness, two main features of open systems, in multi-scale convective systems such as data centers. The presented approach is centered on the integration of three constructs: a) Proper Orthogonal Decomposition (POD) based multi-scale modeling, b) compromise Decision Support Problem (cDSP), and c) robust design to overcome the challenges in thermal-fluid modeling, having multiple objectives, and inherent variability management, respectively. Two new POD based reduced order thermal modeling methods are presented to simulate multi-parameter dependent temperature field in multi-scale thermal/fluid systems such as data centers. The methods are verified to achieve an adaptable, robust, and energy efficient thermal design of an air-cooled data center cell with an annual increase in the power consumption for the next ten years. Also, a simpler reduced order modeling approach centered on POD technique with modal coefficient interpolation is validated against experimental measurements in an operational data center facility.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Crowe, Robert A. "Design, construction and testing of a reduced-scale cascaded multi-level converter." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Jun%5FCrowe.pdf.

Повний текст джерела
Анотація:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, June 2003.
Thesis advisor(s): Robert W. Ashton, John G. Ciezki, Douglas J. Fouts. Includes bibliographical references (p. 125-126). Also available online.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Multi-scale design"

1

Kim, Gi-Heon. Evaluation study for large prismatic lithium-ion cell designs using multi-scale multi-dimensional battery model. Golden, Colo: National Renewable Energy Laboratory, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Legoh, Finarya. Acoustic design and scale model testing of a multi-purpose auditorium. Salford: University of Salford, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Adnan, Ibrahimbegović, Brank Boštjan, North Atlantic Treaty Organization. Public Diplomacy Division., and NATO Advanced Research Workshop on Multi-physics and Multi-scale Computer Models in Non-linear Analysis and Optimal Design of Engineering Structures under Extreme Conditions (2004 : Bled, Slovenia), eds. Engineering structures under extreme conditions: Multi-physics and multi-scale computer models in non-linear analysis and optimal design. Amsterdam: IOS Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Toor, Fatima. 17.1%-efficient multi-scale-textured black silicon solar cells without dielectric antireflection coating: Preprint. Golden, CO]: National Renewable Energy Laboratory, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

R, Coelho David, ed. Multi-level simulation for VLSI design. Boston: Kluwer Academic Publishers, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Multi-point interconnects for globally-asynchronous locally-synchronous systems. Konstanz: Hartung-Gorre Verlag, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

service), SpringerLink (Online, ed. Variation Aware Analog and Mixed-Signal Circuit Design in Emerging Multi-Gate CMOS Technologies. Dordrecht: Springer Netherlands, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nojavanzadeh, Donya, Zhenwei Liu, and Ali Saberi. Cooperative Control of Multi-Agent Systems: A Scale-Free Protocol Design. Springer International Publishing AG, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Design, Construction, And Testing Of A Reduced-Scale Cascaded Multi- Level Converter. Storming Media, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Speck-Planche, Alejandro. Multi-Scale Approaches in Drug Discovery: From Empirical Knowledge to in Silico Experiments and Back. Elsevier Science & Technology Books, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Multi-scale design"

1

Zhou, Sheng, and Christopher B. Jones. "Design and Implementation of Multi-scale Databases." In Advances in Spatial and Temporal Databases, 365–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-47724-1_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Carpentieri, Gerardo, Fernando Fraternali, and Robert E. Skelton. "A Tensegrity Paradigm for Minimal Mass Design of Roofs and Bridges." In Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems, 91–114. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39022-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dobrigkeit, Franziska, Ralf Teusner, Danielly de Paula, and Matthias Uflacker. "Design Thinking at Scale: A Multi Team Design Thinking Approach." In Understanding Innovation, 267–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62037-0_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vilanova, Oriol, Valentino Bianco, and Giancarlo Franzese. "Multi-Scale Approach for Self-Assembly and Protein Folding." In Design of Self-Assembling Materials, 107–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71578-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ye, Fan, Dayuan Jin, Yun Wan, and Xiong Jiang. "Concurrent Multi-scale Design of Hybrid Composite Antenna." In Proceedings of the Eighth Asia International Symposium on Mechatronics, 463–71. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1309-9_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wiechert, Lena, Andrew Comerford, Sophie Rausch, and Wolfgang A. Wall. "Advanced Multi-scale Modelling of the Respiratory System." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 1–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20326-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sakita, Kazuhiro. "Design and Development of Multi-scale Product Design and Lifecycle Simulation System." In Design for Innovative Value Towards a Sustainable Society, 619–22. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3010-6_119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Friák, Martin, HELGE-OTTO Fabritius, Svetoslav Nikolov, Michal Petrov, Liverios Lymperakis, Christoph Sachs, PAVLíNA Elstnerová, Jörg Neugebauer, and Dierk Raabe. "CHAPTER 9. Multi‐scale Modelling of a Biological Material: The Arthropod Exoskeleton." In Materials Design Inspired by Nature, 197–218. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737555-00197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Gang, Chris R. Kleijn, and Marc-Olivier Coppens. "Multi-Scale PDE-Based Design of Hierarchically Structured Porous Catalysts." In Lecture Notes in Computational Science and Engineering, 437–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03344-5_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, Zhenfeng, Daosen Zhai, Ruonan Zhang, and Jiaxin Wang. "Multi-frequency Large-Scale Channel Modeling and Green Networking Design." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 367–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14657-3_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Multi-scale design"

1

Zichun Zhong, Leiting Chen, Hongbin Cai, and Yue Cao. "Realistic simulation of multi-scale fluid-solid coupling." In Conceptual Design (CAID/CD). IEEE, 2008. http://dx.doi.org/10.1109/caidcd.2008.4730624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Allec, Nicholas, Zyad Hassan, Li Shang, Robert P. Dick, and Ronggui Yang. "ThermalScope: Multi-Scale Thermal Analysis for Nanometer-Scale Integrated Circuits." In 2008 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2008. http://dx.doi.org/10.1109/iccad.2008.4681639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shirazi, M. F., J. Andilla, C. P. Valdes, N. Lefaudeux, D. Andrade De Jesus, L. Sanchez Brea, S. Klein, et al. "High Resolution Multi-Modal and Multi-Scale Retinal Imaging for Clinical Settings." In Bio-Optics: Design and Application. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/boda.2021.dm2a.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Issa, H., M. Z. Tzen, M. Lenczner, R. Habib, E. Ostrosi, and F. Pfaender. "Multi-scale design using a holonic approach." In IET International Conference on Smart and Sustainable City 2013 (ICSSC 2013). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.1986.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Lei, Shengcai Li, Xuemin Cheng, and Qun Hao. "Design of a multi-scale optical lens." In Seventh International Symposium on Precision Mechanical Measurements, edited by Liandong Yu. SPIE, 2016. http://dx.doi.org/10.1117/12.2212358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tikhonov, V., M. Giers, V. Yakhimovich, B. Shemyakinsky, and L. Ring. "Multi-component friction testing of full-scale drill pipe specimen." In TRIBOLOGY AND DESIGN 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/td120061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rosen, David W. "Multi-scale Computer-Aided Design for additive manufacturing." In 2014 International Conference on Innovative Design and Manufacturing (ICIDM). IEEE, 2014. http://dx.doi.org/10.1109/idam.2014.6912661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coppola, Marcello, Babak Falsafi, John Goodacre, and George Kornaros. "From Embedded Multi-core SoCs to Scale-out Processors." In Design Automation and Test in Europe. New Jersey: IEEE Conference Publications, 2013. http://dx.doi.org/10.7873/date.2013.199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pan, Yan, Gang Liu, Xinyun Wu, Changlin Chen, Zhenghao Zhou, and Xin Liu. "Font Design Method Based on Multi-scale CycleGAN." In 2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE). IEEE, 2022. http://dx.doi.org/10.1109/icicse55337.2022.9828945.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Prescott, Thomas, and Antonis Papachristodoulou. "Multi-scale design in layered synthetic biological systems." In 2016 European Control Conference (ECC). IEEE, 2016. http://dx.doi.org/10.1109/ecc.2016.7810558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Multi-scale design"

1

Buehler, Markus J. Multi-Scale Hierarchical and Topological Design of Structures for Failure Resistance. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada606678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ratowsky, R. P., J. S. Kallman, R. J. Deri, and M. D. Pocha. Multi-scale electrodynamics (MELD): a CAD tool for photonics analysis and design. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/585002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vikas Tomer and John Renaud. Computer Aided Multi-scale Design of SiC-Si3N4 Nanoceramic Composites for High-Temperature Structural Applications. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/1007217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zabaras, Nicholas. Robust Multi-Length Scale Deformation Process Design for the Control of Microstructure-Sensitive Material Properties. Fort Belvoir, VA: Defense Technical Information Center, July 2007. http://dx.doi.org/10.21236/ada472450.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Barber, K. S. Multi-Scale Behavioral Modeling and Analysis Promoting a Fundamental Understanding of Agent-Based System Design and Operation. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada465613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Barcelo-Llull, Barbara, Ananda Pascual, Eugenio Cutolo, Ronan Fablet, Florent Gasparin, Stephanie Guinehut, Jaime H. Lasheras, et al. Design of the Observing System Simulation Experiments with multi-platform in situ data and impact on fine- scale structures. EuroSea, October 2020. http://dx.doi.org/10.3289/eurosea_d2.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Burns, Danny, Marina Apgar, and Anna Raw. Designing a Participatory Programme at Scale: Phases 1 and 2 of the CLARISSA Programme on Worst Forms of Child Labour. Institute of Development Studies (IDS), July 2021. http://dx.doi.org/10.19088/clarissa.2021.004.

Повний текст джерела
Анотація:
CLARISSA (Child Labour: Action-Research-Innovation in South and South-Eastern Asia) is a large-scale Participatory Action Research programme which aims to identify, evidence, and promote effective multi-stakeholder action to tackle the drivers of the worst forms of child labour in selected supply chains in Bangladesh, Nepal, and Myanmar. CLARISSA places a particular focus on participants’ own ‘agency’. In other words, participants’ ability to understand the situation they face, and to develop and take actions in response to them. Most of CLARISSA’s participants are children. This document shares the design and overarching methodology of the CLARISSA programme, which was co-developed with all consortium partners during and since the co-generation phase of the programme (September 2018–June 2020). The immediate audience is the CLARISSA programme implementation teams, plus the Foreign, Commonwealth & Development Office (FCDO). This design document is also a useful reference point for other programmes trying to build large-scale participatory processes. It provides a clear overview of the CLARISSA programmatic approach, the design, and how it is being operationalised in context.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rossi, Ruggero, David Jones, Jaewook Myung, Emily Zikmund, Wulin Yang, Yolanda Alvarez Gallego, Deepak Pant, et al. Evaluating a multi-panel air cathode through electrochemical and biotic tests. Engineer Research and Development Center (U.S.), December 2022. http://dx.doi.org/10.21079/11681/46320.

Повний текст джерела
Анотація:
To scale up microbial fuel cells (MFCs), larger cathodes need to be developed that can use air directly, rather than dissolved oxygen, and have good electrochemical performance. A new type of cathode design was examined here that uses a “window-pane” approach with fifteen smaller cathodes welded to a single conductive metal sheet to maintain good electrical conductivity across the cathode with an increase in total area. Abiotic electrochemical tests were conducted to evaluate the impact of the cathode size (exposed areas of 7 cm², 33 cm², and 6200 cm²) on performance for all cathodes having the same active catalyst material. Increasing the size of the exposed area of the electrodes to the electrolyte from 7 cm² to 33 cm² (a single cathode panel) decreased the cathode potential by 5%, and a further increase in size to 6200 cm² using the multi-panel cathode reduced the electrode potential by 55% (at 0.6 A m⁻²), in a 50 mM phosphate buffer solution (PBS). In 85 L MFC tests with the largest cathode using wastewater as a fuel, the maximum power density based on polarization data was 0.083 ± 0.006Wm⁻² using 22 brush anodes to fully cover the cathode, and 0.061 ± 0.003Wm⁻² with 8 brush anodes (40% of cathode projected area) compared to 0.304 ± 0.009Wm⁻² obtained in the 28 mL MFC. Recovering power from large MFCs will therefore be challenging, but several approaches identified in this study can be pursued to maintain performance when increasing the size of the electrodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Robinson, W. Full-scale evaluation of multi-axial geogrids in road applications. Engineer Research and Development Center (U.S.), March 2022. http://dx.doi.org/10.21079/11681/43549.

Повний текст джерела
Анотація:
The U.S. Army Engineer Research and Development Center (ERDC) constructed a full-scale unsurfaced test section to evaluate the performance of two prototype geogrids, referred to as NX950 and NX750, in road applications. The test section consisted of a 10-in.-thick crushed aggregate surface layer placed over a very weak 2 California Bearing Ratio (CBR) clay subgrade. Simulated truck traffic was applied using one of ERDC’s specially designed load carts outfitted with a single-axle dual wheel truck gear. Rutting performance and instrumentation response data were monitored at multiple traffic intervals. It was found that the prototype geogrids improved rutting performance when compared to the unstabilized test item, and that the test item containing NX950 had the best rutting performance. Further, instrumentation response data indicated that the geogrids reduced measured pressure and deflection near the surface of the subgrade layer. Pressure response data in the aggregate layer suggested that the geogrids redistributed applied pressure higher in the aggregate layer, effectively changing the measured stress profile with an increase in pavement depth.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tumbula, Samuel. Systematic review on the determining factors of school failure in the 1st year of engineering degree courses in Angola. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0111.

Повний текст джерела
Анотація:
Review question / Objective: What are the determining factors of school failure in the 1st year of engineering courses according to the perception of teachers and students of higher education institutions in Angola? Condition being studied: Our systematic review aims to analyze the determining factors of school failure in the 1st year of engineering courses (factors related to the teacher, student, higher education institution and educational policies). Study designs to be included: Questionnaires/Scale, interviews, focus group, case and multi-case studies, observational studies, document analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії