Добірка наукової літератури з теми "MOx sensor"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MOx sensor".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "MOx sensor"
Yurko, Gabriel, Javad Roostaei, Timothy Dittrich, Lanyu Xu, Michael Ewing, Yongli Zhang, and Gina Shreve. "Real-Time Sensor Response Characteristics of 3 Commercial Metal Oxide Sensors for Detection of BTEX and Chlorinated Aliphatic Hydrocarbon Organic Vapors." Chemosensors 7, no. 3 (August 27, 2019): 40. http://dx.doi.org/10.3390/chemosensors7030040.
Повний текст джерелаAbdullah, Abdulnasser Nabil, Kamarulzaman Kamarudin, Latifah Munirah Kamarudin, Abdul Hamid Adom, Syed Muhammad Mamduh, Zaffry Hadi Mohd Juffry, and Victor Hernandez Bennetts. "Correction Model for Metal Oxide Sensor Drift Caused by Ambient Temperature and Humidity." Sensors 22, no. 9 (April 26, 2022): 3301. http://dx.doi.org/10.3390/s22093301.
Повний текст джерелаMüller, Gerhard, and Giorgio Sberveglieri. "Origin of Baseline Drift in Metal Oxide Gas Sensors: Effects of Bulk Equilibration." Chemosensors 10, no. 5 (May 2, 2022): 171. http://dx.doi.org/10.3390/chemosensors10050171.
Повний текст джерелаMartinez, Burgués, and Marco. "Fast Measurements with MOX Sensors: A Least-Squares Approach to Blind Deconvolution." Sensors 19, no. 18 (September 18, 2019): 4029. http://dx.doi.org/10.3390/s19184029.
Повний текст джерелаSamotaev, Nikolay, Konstantin Oblov, Anastasia Ivanova, Boris Podlepetsky, Nikolay Volkov, and Nazar Zibilyuk. "Technology for SMD Packaging MOX Gas Sensors." Proceedings 2, no. 13 (November 30, 2018): 934. http://dx.doi.org/10.3390/proceedings2130934.
Повний текст джерелаSamotaev, Nikolay, Konstantin Oblov, and Anastasia Ivanova. "Laser Micromilling Technology as a Key for Rapid Prototyping SMD ceramic MEMS devices." MATEC Web of Conferences 207 (2018): 04003. http://dx.doi.org/10.1051/matecconf/201820704003.
Повний текст джерелаJaeschke, Carsten, Oriol Gonzalez, Johannes J. Glöckler, Leila T. Hagemann, Kaylen E. Richardson, Francesc Adrover, Marta Padilla, Jan Mitrovics, and Boris Mizaikoff. "A Novel Modular eNose System Based on Commercial MOX Sensors to Detect Low Concentrations of VOCs for Breath Gas Analysis." Proceedings 2, no. 13 (November 30, 2018): 993. http://dx.doi.org/10.3390/proceedings2130993.
Повний текст джерелаWen, Wei-Chih, Ting-I. Chou, and Kea-Tiong Tang. "A Gas Mixture Prediction Model Based on the Dynamic Response of a Metal-Oxide Sensor." Micromachines 10, no. 9 (September 11, 2019): 598. http://dx.doi.org/10.3390/mi10090598.
Повний текст джерелаPalacín, Jordi, Eduard Clotet, and Elena Rubies. "Assessing over Time Performance of an eNose Composed of 16 Single-Type MOX Gas Sensors Applied to Classify Two Volatiles." Chemosensors 10, no. 3 (March 19, 2022): 118. http://dx.doi.org/10.3390/chemosensors10030118.
Повний текст джерелаFrancioso, Luca, Pasquale Creti, Maria Concetta Martucci, Simonetta Capone, Antonietta Taurino, Pietro Siciliano, and Chiara De Pascali. "100 nm-Gap Fingers Dielectrophoresis Functionalized MOX Gas Sensor Array for Low Temperature VOCs Detection." Proceedings 2, no. 13 (November 13, 2018): 1027. http://dx.doi.org/10.3390/proceedings2131027.
Повний текст джерелаДисертації з теми "MOx sensor"
Priščák, Juraj. "Charakterizace senzitivních nanomateriálů pro MOX senzory plynů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442521.
Повний текст джерелаBertero, Christophe. "Perception de l'environnement urbain à l'aide d'une flotte de capteurs sur des vélos : application à la pollution de l'air." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30321.
Повний текст джерелаThis thesis takes place in the context of "smart cities", where the information processing improves the quality of life. It studies the perception of the environment and especially the perception of air pollution in the city using sensors on bikes. The first chapter introduces the technical and scientific challenges in terms of information collection and modeling applied to aerology. The second chapter presents the design of a fleet of mobile instruments for measuring air pollution. We characterize the shape of the sensor network needed for modeling, on the one hand using the literature and on the other hand using a simulation. The third chapter deals with the development of such an instrument. We have built our instrument around a semiconductor metal oxide micro-sensor (MOx sensor) of NO2 and CO, the MiCS-4514, and evaluated its performance in controlled environments. The fourth chapter presents the two deployments of this instrument in the city of Toulouse in France, first with a bicycle rental association and then with bikers from our laboratory, and the dataset collected. Finally, we estimate the pollution levels in NO2 and CO in the city
Silva, Gilvaldo Gentil Da. "Métodos de síntese de estruturas metal-orgânicos de [Cu3(BTC)2.(H2O)3]n e Derivados e Aplicações para Sensores Eletroquímicos." UNIVERSIDADE FEDERAL DE PERNAMBUCO, 2015. https://repositorio.ufpe.br/handle/123456789/15775.
Повний текст джерелаMade available in DSpace on 2016-03-08T18:36:41Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) 06-10-2015-Tese(FINAL) Beate.pdf: 6575678 bytes, checksum: cdc2b377e45a971cafecf1f7f6a889b1 (MD5) Previous issue date: 2015-06-19
CNPQ E CAPES
Na elaboração de sínteses para estrutura metal-orgânica (Cu3BTC2), conhecido como MOE-199, ou HKUST-1, uma rota e dois métodos foram desenvolvidos: Eletroquímica em temperatura ambiente (TA) e moderada (TM), sonoeletroquímica e ablação de laser em líquido, a qual proporcionou um material desejado com moderado rendimento. Muitas técnicas de caracterização (XRD, FT–IR, SEM, e TGA) mostraram que o HKUST-1 foi obtido em muitos métodos. No entanto, foram encontradas diferenças interessantes em funcionalização, dependendo das condições de síntese que produziram a mesma estrutura de [Cu3(BTC)2] com hospedeiros, mas com diferentes espécies hóspedes coordenada em geral. Por análise de padrão de DRX foi possível identificar os picos característicos de CuO no método EQ do material obtido com fase secundária, mostrando que esta metodologia é bastante versátil dando lugar a este produto, embora o complexo [Cu3(BTC)2] tenha obtido bons rendimentos. Indepen- dentemente da fonte de energia aplicada, em todos os processos, a desejada MOE [Cu3(BTC)2] foi obtida. A fim de determinar se o método de síntese teve impacto diretamente sobre o comportamento eletroquímico do material, foi aplicada a voltametria cíclica (CV), para investigação. Os resultados eletroquímicos demonstraram que a resistência à contribuição farádica, aumenta na seguinte ordem: Cu-MOFSEQ < Cu-MOFEQ(TA) < Cu-MOFEQ(TM) e Cu-MOFLAL. Este comportamento pode ser associado com a presença de CuO em Cu-MOFEQ(TM) e de cobre em Cu-MOFLAL. No entanto, a MOE sintetizada à temperatura ambiente mostrou um teor menor de cobre, o que pode ser eletroquimicamente transformada, bem como a pureza, em comparação com os obtidos por método eletroquímico em temperatura moderada (TM) e a ablação a laser no estado líquido (LAL). Igual procedimento foi usado para os derivados de Cu-MOFEQ(RT): Cu(TFP)-MOF, and Cu(TPP).DMF-MOF. Eles apresentaram a seguinte ordem de crescimento: Cu(TFP)-MOF < Cu(TFP)DMF-MOF < Cu-MOF < Cu(DMF)-MOF. Este comportamento pode ser associado à presença da tetrafenilporfirina em Cu(TPP)-MOFEQ e Cu(TPP).DMF–MOFEQ. Seus comportamentos eletroquímicos apresentaram uma grande resistência faradáica mostrando o porquê dos seus efeitos de métodos.
In the elaboration of syntheses for metal-organic framework [Cu3(BTC)2] (commonly known as MOF-199 or HKUST-1), one route and two methods were developed: Electrochemical in room temperature (RT) and upper (HT), sonoelectrochemical and Laser ablation in Liquid (LAL); which afforded the desired material in moderate yields. Several characterization techniques (XRD, FT–IR, SEM and TGA) showed that HKUST-1 was obtained in every method. However, were found interesting differences in functionalization depending on the electrochemical synthesis conditions which produced the same [Cu3(BTC)2] host network but with different coordinative and bulk molecular guests. By XRD pattern analysis, it was possible to identify characteristic peaks of CuO and DMF in the EQ, obtained material as secondary phase, showing that this methodology is quite harsh giving place to this product, although the [Cu3(BTC)2] complex was obtained in good yield. Regardless the energy source applied, in all three cases the desired [Cu3(BTC)2] MOF was obtained. In order to determine if the method of synthesis had impacts directly on the electrochemical behavior of the material was applied cyclic voltammetry (CV), for investigation. The electrochemical results have shown that the resistance to the faradic contribution, increase in the following order: Cu–MOFSEQ < Cu–MOFEQ(RT) < Cu-MOFEQ(HT) < Cu–MOFLAL. This behavior can be associated to the presence of CuO in Cu-MOFEQ(HT) and Copper in Cu–MOFLAL. However, the synthesized MOF at room temperature showed a smaller content of copper, which could be electrochemically transformed, as well as purity, in comparison with those obtained by electrochemical (HT) and Laser ablation in Liquid (LAL) methods. The same procedure was used for derived of Cu-MOFEQ(RT): Cu(TFP)-MOF, and Cu(TPP).DMF-MOF. They presented the following growing order: Cu(TFP)-MOFEQ < Cu(TFP)DMF-MOFEQ < Cu-MOFEQ
Magalhães, Filipe Bento. "Capacitor MOS aplicado em sensor de imagem química." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-06072014-230841/.
Повний текст джерелаThe development of sensors and systems for environmental control has been shown to be an area of high scientific and technical interest. The main challenges in this area are related to the development of sensors capable of detecting many different substances. In this context, the MOS devices present themselves as versatile devices for chemical imaging with potential for detection and classification of different substances only using one single sensor. In the present work, was proposed a MOS sensor with a wing-vane geometric profile of its gate constituted of Pd, Au and Pt metals. The sensor\'s response showed to have high sensitivity to molecules rich on H atoms, such as H2 and NH3 gases. Capacitance measurements showed that the sensor has a nonlinear response for H2 and NH3 obeying the Langmuir isotherm law. The MOS sensor proved to be efficient in Chemical Imaging generation through the scanned light pulse technique. The chemical images of the H2 and NH3 gases showed different patterns when the N2 was used as carrier gas. The different patterns responses happened mainly due to geometric profile of the metallic gate. The sensor sensitivity showed dependence on the bias potential. In the capacitance measures, greater sensitivity was observed for potential near the flat-band voltage. In the chemical images, the greater sensitivity was observed for bias potential within depletion region. The sensor sensitivity was also dependent on the carrier gas. The sensor showed to be more sensitive with N2 as carrier gas than to dry air. However the desorption process of H+ have been more efficient in dry air. The results obtained in the present work suggest the possibility of manufacturing an optoelectronic nose using only a single MOS sensor.
Neri, Hipolito Javier. "DESARROLLO DE UN SENSOR FLUORESCENTE PARA SOLUCIONES DE DOPAMINA A PARTIR DE LA INCORPORACIÓN DE UNA MOLÉCULA SENSOR EN CRISTALES DE BIOMOF-1." Tesis de Licenciatura, Universidad Autónoma del Estado de México, 2015. http://hdl.handle.net/20.500.11799/95105.
Повний текст джерелаLa síntesis y obtención de la molécula sensor (DAP) y la estructura que la almacena (BioMOF-1) así como la inclusión de la molécula en los poros del cristal, fue exitosa y en ambos casos, siendo corroborados minuciosamente por técnicas como microscopia óptica y electrónica, difracción de rayos X de polvos y monocristal, espectroscopia infrarrroja, análisis termogravimétricos, análisis de adsorción de gases de tipo Langmuir, espectroscopia UV-vis y espectroscopia de emisión fluorescente. La disposición del complejo DAP-BioMOF-1 en películas de PVC flexibles permitió una fácil manipulación del material al ser analizado y utilizado en diversas pruebas evitando de este modo una pérdida de material tanto de BioMOF-1 como DAP al ser manipulado. Una característica fundamental que se consiguió al tener el sensor en esta configuración fue la eficiente, prolongada y controlada liberación de DAP en medios acuosos evitando el uso innecesario de grandes cantidades de 2, 3 diaminofenazina, por tanto, una reducción de material desperdiciado y de esta forma bajando los costos económicos del ensayo. La alta sensibilidad de la molécula sensor ha sido corroborada al detectar soluciones de dopamina con concentraciones nanomolares teniendo un comportamiento predecible que lo hace reproducible, es importante destacar que las concentraciones de DA son similares a las presentes en tejidos biológicos, además la inocuidad del cristal de BioMOF-1 así como su alta capacidad de modular la liberación del sensor hacen de este sistema una opción a tener en cuenta en la detección de dopamina in vivo.
NA
Nickerl, Georg, Irena Senkoska, and Stefan Kaskel. "Tetrazine functionalized zirconium MOF as an optical sensor for oxidizing gases." Royal Society of Chemistry, 2015. https://tud.qucosa.de/id/qucosa%3A36053.
Повний текст джерелаPreisová, Martina. "Marketingový mix výrobku určeného pro seniory." Master's thesis, Vysoká škola ekonomická v Praze, 2009. http://www.nusl.cz/ntk/nusl-11131.
Повний текст джерелаLababidi, Ahmad Montaser. "Measuring Stress in Thin Films by a Multi-beam Optical Sensor (MOS)." Thesis, Uppsala universitet, Materialfysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439565.
Повний текст джерелаAlolaywi, Haidar. "Electrochemical MoOx/Carbon Nanocomposite Gas Sensor for Formaldehyde Detection at Room Temperature." University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1596821142716346.
Повний текст джерелаBraga, Mauro Sergio. "Sensor de imagem para detecção de gases." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-28032008-175311/.
Повний текст джерелаThe aim of the present work is the development of a MOS device as a sensor of chemical image, for the detection and classification of hydrogen and ammonia gases, through the Scanning Light Pulse Technique (SLPT). The MOS device was fabricated onto silicon bulk (100) and resistivity of 10 -cm. The gate of the device was built from an Au-Pd bimetallic electrode, with nanometric thickness. It was proposed an X Y automatic position system for scanning the light pulsed beam, based on the PID control and on the Labview® software. The data acquisition process was also automated via virtual instrumentation defined by the Labview® software. From the C x V characteristic curves of the MOS capacitors, the device structural parameters were extracted, showing accordance with values defined in the initial project. Furthermore, it was determined the maximum depletion layer width. This parameter is important for the sensibility response of the sensor. The MOS device, in inert environment (N2), has shown photocurrent maximum sensibility for 0,6 V polarization, corresponding to the maximum depletion layer width. In H2 and NH3 environments, the maximum sensibility was dislocated for voltages lower than 0,6V, attributing it to the hydrogen atom adsorption at the metal/SiO2 interface. The chemical images obtained from the MOS sensor response, in SLPT operation mode for H2 and NH3 environments, respectively, showed characteristic patterns to each kind of gas, independent of the concentration used, allowing the complete classification of these gases. The results obtained in the present work suggest the possibility of implementing an electronic nose system, using only one sensor.
Книги з теми "MOx sensor"
Derval, Diana. The Right Sensory Mix. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12093-0.
Повний текст джерелаDerval, Diana. The Right Sensory Mix. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-63795-1.
Повний текст джерелаSimone, Antonio De. Senso e razionalità: Max Weber e il nostro tempo. Urbino: QuattroVenti, 1999.
Знайти повний текст джерелаAuditor, Missouri State. Audit report: Department of Health and Senior Services Office of the Director. Jefferson City, Mo.]: Missouri State Auditor, 2003.
Знайти повний текст джерелаCayetano, Pia S. My daily race: My life as a senator, mom and triathlete. Makati City: Compañero Rene Cayetano Foundation, 2011.
Знайти повний текст джерелаBakker, Anton. High-accuracy CMOS smart temperature sensors. Boston, MA: Kluwer Academic Publishers, 2000.
Знайти повний текст джерела"Ianfu mondai" wa Kankoku to Asahi no netsuzō da: 100-mon 100-tō. Tōkyō: WAC, 2012.
Знайти повний текст джерелаXin xing gao ji can mou ren cai yan jiu: Research on the new-type senior staff talents. Beijing: Guo fang da xue chu ban she, 2003.
Знайти повний текст джерелаBill, Martin. Ours brun, dis-moi--. 2nd ed. Namur: Mijade, 2004.
Знайти повний текст джерелаPironon, Jean. Le luth et le blason: Les sens, la sensation et le moi lyrique de Thomas Wyatt à Edmund Spenser (1527-1595). Berne: Peter Lang, 2009.
Знайти повний текст джерелаЧастини книг з теми "MOx sensor"
Censor-Hillel, Keren, Rina Levy, and Hadas Shachnai. "Fast Distributed Approximation for Max-Cut." In Algorithms for Sensor Systems, 41–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72751-6_4.
Повний текст джерелаDerval, Diana. "The Right Sensory Mix." In The Right Sensory Mix, 77–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12093-0_4.
Повний текст джерелаDerval, Diana. "Coming to Our Senses." In The Right Sensory Mix, 1–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12093-0_1.
Повний текст джерелаDerval, Diana. "Detecting Profitable Markets." In The Right Sensory Mix, 23–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12093-0_2.
Повний текст джерелаDerval, Diana. "Predicting Consumers’ Behavior." In The Right Sensory Mix, 49–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12093-0_3.
Повний текст джерелаDerval, Diana. "Increasing the Innovation Hit Rate." In The Right Sensory Mix, 103–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12093-0_5.
Повний текст джерелаDerval, Diana. "Sense of Status, Serious Gaming, and the Future of Work." In The Right Sensory Mix, 213–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-63795-1_8.
Повний текст джерелаDerval, Diana. "Polarized Light, Space Exploration, and the Future of Luxury." In The Right Sensory Mix, 59–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-63795-1_3.
Повний текст джерелаDerval, Diana. "Colors, the Microbiome, and the Future of Beauty." In The Right Sensory Mix, 89–120. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-63795-1_4.
Повний текст джерелаDerval, Diana. "Magnetic Sense, AI, and the Future of Mobility." In The Right Sensory Mix, 1–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-63795-1_1.
Повний текст джерелаТези доповідей конференцій з теми "MOx sensor"
Briand, D., L. Guillot, S. Raible, J. Kappler, and N. F. de Rooij. "Highly Integrated Wafer Level Packaged MOX Gas Sensors." In TRANSDUCERS '07 & Eurosensors XXI. 2007 14th International Conference on Solid-State Sensors, Actuators and Microsystems. IEEE, 2007. http://dx.doi.org/10.1109/sensor.2007.4300654.
Повний текст джерелаGeyik, U., U. Weimar, and N. Barsan. "P2.08 - Der Einfluss von PtOx auf WO3 MOx-Gassensoren." In 14. Dresdner Sensor-Symposium 2019. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2019. http://dx.doi.org/10.5162/14dss2019/p2.08.
Повний текст джерелаBicelli, S., A. Flammini, A. Depari, D. Marioli, A. Ponzoni, G. Sberveglieri, and A. Taroni. "Low-Power Carbon Monoxide MOX Sensors for Wireless Distributed Sensor Networks." In 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007. IEEE, 2007. http://dx.doi.org/10.1109/imtc.2007.379025.
Повний текст джерелаJeong-Ho Park, Kwang-Min Park, Tae-Wan Kim, Chong-Ook Park, and Hyung-Joun Yoo. "Interface circuit for three-electrode metal-oxide (MOX) gas sensor." In 2015 IEEE Sensors. IEEE, 2015. http://dx.doi.org/10.1109/icsens.2015.7370505.
Повний текст джерелаReimringer, W., T. Rachel, T. Conrad, and A. Schütze. "12 - MOX Sensor Platform in Outdoor Odor Nuisance Monitoring." In Fourth Scientific Meeting EuNetAir. COST Association, Avenue Louise 149, 1050 Brussels, Belgium, 2015. http://dx.doi.org/10.5162/4eunetair2015/12.
Повний текст джерелаFonollosa, J., L. Fernandez, A. Gutierrez-Galvez, and S. Marco. "P2.0.11 Temperature optimization of MOX sensor arrays for odorant discrimination." In 14th International Meeting on Chemical Sensors - IMCS 2012. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2012. http://dx.doi.org/10.5162/imcs2012/p2.0.11.
Повний текст джерелаJelicic, Vana, Dinko Oletic, Tomislav Sever, and Vedran Bilas. "Evaluation of MOX gas sensor transient response for low-power operation." In 2015 IEEE Sensors Applications Symposium (SAS). IEEE, 2015. http://dx.doi.org/10.1109/sas.2015.7133584.
Повний текст джерелаOletic, Dinko, Vana Jelicic, Dario Antolovic, and Vedran Bilas. "Energy-efficient atmospheric CO concentration sensing with on-demand operating MOX gas sensor." In 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6985119.
Повний текст джерелаMadrolle, S., P. Grangeat, and Ch Jutten. "Dual-temperature mode for quantitative analysis of gas mixtures with MOX sensor." In 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). IEEE, 2017. http://dx.doi.org/10.1109/isoen.2017.7968886.
Повний текст джерелаLeonardi, S. G., D. Aloisio, N. Donato, M. Latino, P. Russo, N. Pinna, and G. Neri. "Development of an amperometric H2O2 sensor based on MOx/reduced graphene oxide nanocomposites." In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6626978.
Повний текст джерелаЗвіти організацій з теми "MOx sensor"
Matzke, Brett D. Compensating For Changes in MOS Sensors. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/1089110.
Повний текст джерелаDay, Christopher, Stanley Young, Darcy Bullock, and Dennis So Ting Fong. Sensor Fusion and MOE Development for Off-Line Traffic Analysis of Real Time Data. Purdue University, December 2017. http://dx.doi.org/10.5703/1288284316556.
Повний текст джерелаLuo, Jing, Chen Zhang, Mengjie Xia, and Yuelian Chen. Acupoint catgut embedding reduces postoperative pain of mixed hemorrhoids: a meta-analysis of randomized controlled trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2022. http://dx.doi.org/10.37766/inplasy2022.2.0021.
Повний текст джерелаWarkander, Dan E. Unmanned Test and Evaluation of the Teledyne Analytical Instruments R-10DN Oxygen Sensor for Use in the MK 16 Mod 1 Underwater Breathing Apparatus. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada448759.
Повний текст джерелаStanek, S. J., and C. S. Hedricks. Evaluation of Analytical Industries Inc. Model Number PSR-11-33-NM Oxygen Sensors for Use With the MK 16 MOD 1 Underwater Breathing Apparatus. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada443585.
Повний текст джерелаBaral, Aniruddha, Jeffrey Roesler, M. Ley, Shinhyu Kang, Loren Emerson, Zane Lloyd, Braden Boyd, and Marllon Cook. High-volume Fly Ash Concrete for Pavements Findings: Volume 1. Illinois Center for Transportation, September 2021. http://dx.doi.org/10.36501/0197-9191/21-030.
Повний текст джерелаAsenath-Smith, Emily, Emma Ambrogi, Lee Moores, Stephen Newman, and Jonathon Brame. Leveraging chemical actinometry and optical radiometry to reduce uncertainty in photochemical research. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42080.
Повний текст джерелаYilmaz, Ihsan, and Kainat Shakil. Religious Populism and Vigilantism: The Case of the Tehreek-e-Labbaik Pakistan. European Center for Populism Studies (ECPS), January 2022. http://dx.doi.org/10.55271/pp0001.
Повний текст джерелаDavies, Will. Improving the engagement of UK armed forces overseas. Royal Institute of International Affairs, January 2022. http://dx.doi.org/10.55317/9781784135010.
Повний текст джерелаHarman, Gary E., and Ilan Chet. Enhancement of plant disease resistance and productivity through use of root symbiotic fungi. United States Department of Agriculture, July 2008. http://dx.doi.org/10.32747/2008.7695588.bard.
Повний текст джерела