Добірка наукової літератури з теми "Motion reconstruction"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Motion reconstruction".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Motion reconstruction"

1

Cavadas, P. C., A. Pérez-García, A. Thione, and C. Lorca-García. "Single-stage reconstruction of flexor tendons with vascularized tendon transfers." Journal of Hand Surgery (European Volume) 40, no. 3 (January 15, 2014): 259–68. http://dx.doi.org/10.1177/1753193413520277.

Повний текст джерела
Анотація:
The reconstruction of finger flexor tendons with vascularized flexor digitorum superficialis (FDS) tendon grafts (flaps) based on the ulnar vessels as a single stage is not a popular technique. We reviewed 40 flexor tendon reconstructions (four flexor pollicis longus and 36 finger flexors) with vascularized FDS tendon grafts in 38 consecutive patients. The donor tendons were transferred based on the ulnar vessels as a single-stage procedure (37 pedicled flaps, three free flaps). Four patients required composite tendon and skin island transfer. Minimum follow-up was 12 months, and functional results were evaluated using a total active range of motion score. Multiple linear regression analysis was performed to evaluate the factors that could be associated with the postoperative total active range of motion. The average postoperative total active range of motion (excluding the thumbs) was 178.05° (SD 50°). The total active range of motion was significantly lower for patients who were reconstructed with free flaps and for those who required composite tendon and skin island flap. Age, right or left hand, donor/motor tendon and pulley reconstruction had no linear effect on total active range of motion. Overall results were comparable with a published series on staged tendon grafting but with a lower complication rate. Vascularized pedicled tendon grafts/flaps are useful in the reconstruction of defects of finger flexor tendons in a single stage, although its role in the reconstructive armamentarium remains to be clearly established.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lau, Benjamin K. F., Tess Reynolds, Paul J. Keall, Jan-Jakob Sonke, Shalini K. Vinod, Owen Dillon, and Ricky T. O’Brien. "Reducing 4DCBCT imaging dose and time: exploring the limits of adaptive acquisition and motion compensated reconstruction." Physics in Medicine & Biology 67, no. 6 (March 7, 2022): 065002. http://dx.doi.org/10.1088/1361-6560/ac55a4.

Повний текст джерела
Анотація:
Abstract This study investigates the dose and time limits of adaptive 4DCBCT acquisitions (adaptive-acquisition) compared with current conventional 4DCBCT acquisition (conventional-acquisition). We investigate adaptive-acquisitions as low as 60 projections (∼25 s scan, 6 projections per respiratory phase) in conjunction with emerging image reconstruction methods. 4DCBCT images from 20 patients recruited into the adaptive CT acquisition for personalized thoracic imaging clinical study (NCT04070586) were resampled to simulate faster and lower imaging dose acquisitions. All acquisitions were reconstructed using Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), motion compensated FDK (MCFDK), motion compensated MKB (MCMKB) and simultaneous motion estimation and image reconstruction (SMEIR) algorithms. All reconstructions were compared against conventional-acquisition 4DFDK-reconstruction using Structural SIMilarity Index (SSIM), signal-to-noise ratio (SNR), contrast-to-noise-ratio (CNR), tissue interface sharpness diaphragm (TIS-D), tissue interface sharpness tumor (TIS-T) and center of mass trajectory (COMT) for difference in diaphragm and tumor motion. All reconstruction methods using 110-projection adaptive-acquisition (11 projections per respiratory phase) had a SSIM of greater than 0.92 relative to conventional-acquisition 4DFDK-reconstruction. Relative to conventional-acquisition 4DFDK-reconstruction, 110-projection adaptive-acquisition MCFDK-reconstructions images had 60% higher SNR, 10% higher CNR, 30% higher TIS-T and 45% higher TIS-D on average. The 110-projection adaptive-acquisition SMEIR-reconstruction images had 123% higher SNR, 90% higher CNR, 96% higher TIS-T and 60% higher TIS-D on average. The difference in diaphragm and tumor motion compared to conventional-acquisition 4DFDK-reconstruction was within submillimeter accuracy for all acquisition reconstruction methods. Adaptive-acquisitions resulted in faster scans with lower imaging dose and equivalent or improved image quality compared to conventional-acquisition. Adaptive-acquisition with motion compensated-reconstruction enabled scans with as low as 110 projections to deliver acceptable image quality. This translates into 92% lower imaging dose and 80% less scan time than conventional-acquisition.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Atkinson, David, and Derek L. G. Hill. "Reconstruction after rotational motion." Magnetic Resonance in Medicine 49, no. 1 (December 31, 2002): 183–87. http://dx.doi.org/10.1002/mrm.10333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sch�ffter, Tobias, Volker Rasche, and Ingwer C. Carlsen. "Motion compensated projection reconstruction." Magnetic Resonance in Medicine 41, no. 5 (May 1999): 954–63. http://dx.doi.org/10.1002/(sici)1522-2594(199905)41:5<954::aid-mrm15>3.0.co;2-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Quan, Hongyan, and Maomao Wu. "Reconstruction of fluid surface using physical property." International Journal of Modeling, Simulation, and Scientific Computing 06, no. 01 (March 2015): 1550006. http://dx.doi.org/10.1142/s1793962315500063.

Повний текст джерела
Анотація:
A novel technique for reconstructing fluid surface from video is introduced. Both fluid motion vectors as well as Lattice Boltzmann Method (LBM) are employed in the study. Region-based correlation method is used to initialize motion vectors field, after clustering fluid motion vector results can be obtained. Then the height geometry information of fluid surface can be calculated from fluid motion vector further. At last, the distribution of fluid particle is interpolated and the height field can be further refined. Reconstruction results are demonstrated with several challenge videos. The experimental results show that the method is convenient and efficient. The calculation results can reflect the characteristics of the fluid movement, and it is a valid method for reconstructing fluid surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lewis, J. L., W. D. Lew, J. A. Hill, P. Hanley, K. Ohland, S. Kirstukas, and R. E. Hunter. "Knee Joint Motion and Ligament Forces Before and After ACL Reconstruction." Journal of Biomechanical Engineering 111, no. 2 (May 1, 1989): 97–106. http://dx.doi.org/10.1115/1.3168361.

Повний текст джерела
Анотація:
The goal of this in vitro study was to investigate the initial postoperative mechanical state of the knee with various types of anterior cruciate ligament (ACL) reconstructions. An experimental knee testing system was developed for the in vitro measurement of ligament forces and three-dimensional joint motion as external loads were applied to fresh knee specimens. Two groups of knee specimens were tested. In test series #1, two intraarticular reconstructions were performed in each of five specimens using semifree and free patellar tendon grafts with bone blocks. In test series #2, a more carefully controlled intraarticular reconstruction was performed in five specimens using a semifree composite graft consisting of the semitendinosus and gracilis tendons augmented with the Ligament Augmentation Device. Ligament force and joint motion data were collected as anteriorly directed tibial loads were applied to the normal joint, the joint with a cut ACL and the reconstructed joint. These knee joint states were compared on the basis of ACL or graft forces, joint motion and load sharing by the collateral ligaments. The dominate result of the study was that the forces and motions defining the mechanical state of the knee after the ACL reconstructions in both test series were highly variable and abnormal when compared to the normal knee state. The higher level of surgical control series #2 did not decrease this variability. There was a poor correlation between motion of the reconstructed knee relative to normal, and the ACL graft force. There was little consistent difference in force and motion results between the surgical procedures tested.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ehrhardt, J., T. Frenzel, D. Säring, W. Lu, D. Low, H. Handels, and R. Werner. "Motion Artifact Reducing Reconstruction of 4D CT Image Data for the Analysis of Respiratory Dynamics." Methods of Information in Medicine 46, no. 03 (2007): 254–60. http://dx.doi.org/10.1160/me9040.

Повний текст джерела
Анотація:
Summary Objectives: Respiratory motion represents a major problem in radiotherapy of thoracic and abdominal tumors. Methods for compensation require comprehensive knowledge of underlying dynamics. Therefore, 4D (= 3D + t) CT data can be helpful. But modern CT scanners cannot scan a large region of interest simultaneously. So patients have to be scanned in segments. Commonly used approaches for reconstructing the data segments into 4D CT images cause motion artifacts. In orderto reduce the artifacts, a new method for 4D CT reconstruction is presented. The resulting data sets are used to analyze respiratory motion. Methods: Spatiotemporal CT image sequences of lung cancer patients were acquired using a multi-slice CT in cine mode during free breathing. 4D CT reconstruction was done by optical flow based temporal interpolation. The resulting 4D image data were compared with data generated bythe commonly used nearest neighbor reconstruction. Subsequent motion analysis is mainly concerned with tumor mobility. Results: The presented optical flow-based method enables the reconstruction of 3D CT images at arbitrarily chosen points of the patient’s breathing cycle. A considerable reduction of motion artifacts has been proven in eight patient data sets. Motion analysis showed that tumor mobility differs strongly between the patients. Conclusions: Due to the proved reduction of motion artifacts, the optical flow-based 4D CT reconstruction offers the possibility of high-quality motion analysis. Because the method is based on an interpolation scheme, it additionally has the potential to enable the reconstruction of 4D CT data from a lesser number of scans.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

LIN, G. T., P. C. AMADIO, K. N. AN, W. P. COONEY, and E. Y. S. CHAO. "Biomechanical Analysis of Finger Flexor Pulley Reconstruction." Journal of Hand Surgery 14, no. 3 (June 1989): 278–82. http://dx.doi.org/10.1016/0266-7681_89_90081-8.

Повний текст джерела
Анотація:
Fifty cadaver digits were used to study the mechanical properties of five different methods of pulley reconstruction and the effectiveness of three different pulley reconstructive arrangements in restoring a normal relationship between tendon excursion and joint motion. All reconstructed pulleys showed less stiffness and more displacement before failure than normal intact pulleys. Although reconstruction using a length of another tendon woven through the remaining fibrous rim of the pulley and both double and triple tendon graft loops around bone absorbed more energy to failure than a normal pulley, only the triple loop around bone could withstand as much load before failure as a normal pulley. No reconstruction restored a normal tendon excursion/joint motion relationship, but reconstruction of the A2 and A4 pulleys restored a more normal relationship than either the “belt loop” reconstruction or a combination belt loop, A2 and A4 reconstruction.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Feuer, A., A. Allouche, and G. C. Goodwin. "Motion-aided sampling and reconstruction." IEE Proceedings - Vision, Image, and Signal Processing 152, no. 1 (2005): 115. http://dx.doi.org/10.1049/ip-vis:20051188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Motta, Pierorazio, Laura Bruno, Alberto Maderni, Piermario Tosco, and Umberto Mariotti. "Acromioclavicular motion after surgical reconstruction." Knee Surgery, Sports Traumatology, Arthroscopy 20, no. 6 (August 3, 2011): 1012–18. http://dx.doi.org/10.1007/s00167-011-1627-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Motion reconstruction"

1

Rautenbach, Pieter Albertus. "Facial Feature Reconstruction using Structure from Motion." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Clift, Louis G. "Robotic 3D reconstruction utilising structure from motion." Thesis, University of Essex, 2017. http://repository.essex.ac.uk/20734/.

Повний текст джерела
Анотація:
Sensing the real-world is a well-established and continual problem in the field of robotics. Investigations into autonomous aerial and underwater vehicles have extended this challenge into sensing, mapping and localising in three dimensions. This thesis seeks to understand and tackle the challenges of recovering 3D information from an environment using vision alone. There is a well-established literature on the principles of doing this, and some impressive demonstrations; but this thesis explores the practicality of doing vision-based 3D reconstruction using multiple, mobile robotic platforms, the emphasis being on producing accurate 3D models. Typically, robotic platforms such as UAVs have a single on-board camera, restricting which method of visual 3D recovery can be employed. This thesis specifically explores Structure from Motion, a monocular 3D reconstruction technique which produces detailed and accurate, although slow to calculate, 3D reconstructions. It examines how well proof-of-concept demonstrations translate onto the kinds of robotic systems that are commonly deployed in the real world, where local processing is limited and network links have restricted capacity. In order to produce accurate 3D models, it is necessary to use high-resolution imagery, and the difficulties of working with this on remote robotic platforms is explored in some detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Santoro, Michael. "Valid motion estimation for super-resolution image reconstruction." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44765.

Повний текст джерела
Анотація:
In this thesis, a block-based motion estimation algorithm suitable for Super-Resolution (SR) image reconstruction is introduced. The motion estimation problem is formulated as an energy minimization problem that consists of both a data and regularization term. To handle cases when motion estimation fails, a block-based validity method is introduced, and is shown to outperform all other validity methods in the literature in terms of hybrid de-interlacing. By combining the validity metric into the energy minimization framework, it is shown that 1) the motion vector error is made less sensitive to block size, 2) a more uniform distribution of motion-compensated blocks results, and 3) the overall motion vector error is reduced. The final motion estimation algorithm is shown to outperform several state-of-the-art motion estimation algorithms in terms of both endpoint error and interpolation error, and is one of the fastest algorithms in the Middlebury benchmark. With the new motion estimation algorithm and validity metric, it is shown that artifacts are virtually eliminated from the POCS-based reconstruction of the high-resolution image.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Reyes, Aguirre Mauricio Antonio. "Respiratory motion compensation in emission tomography." Nice, 2005. http://www.theses.fr/2005NICE4081.

Повний текст джерела
Анотація:
L'objectif de cette thèse sont les corrections liées aux problèmes des mouvements respiratoires en tomographie d'émission. Il a été prouve que les mouvements respiratoires produisent des images floues, ce qui affecte la détection des lésions, les diagnostics, les traitements, etc. La solution proposée a été conçue pour opérer sans aucun dispositif externe. Cette méthode présente un schéma de la correction du mouvement basée sur un modèle inclus dans la reconstruction d'image. Le modèle prend en compte les déplacements et déformations des éléments d'émissions (voxels), lequel permet de considérer les déformations non rigides produites dans le thorax pendant la respiration. De plus, le model de voxel choisit, permet une amélioration aux calculs par rapport aux méthodes classiques. Deux models d'estimation etaitent développes. Un premier model simplifie consiste a adapter un model de respiration connu sur l'anatomie du patient. Le model initial décrit a travers un champ de déplacement les déformations du poumon produit entre les états de respiration extreme. Ce champ de déplacement est ensuite adapte sur l'anatomie du patient. La deuxième méthode a été conçu pour prendre en compte le manque de robustesse provoque par l'utilisation d'un seul sujet quand on construit les champs de déplacement connus. Incorporation de la variation des sujets dans un model statistique de respiration a été développe. La méthodologie a été développe dans un cadre de reconstruction d'image 3D et a été teste avec des données simules et réels
This thesis work deals with the problem of respiratory motion correction in emission tomography. It has been proven that respiratory motion renders blurred reconstructed images, affecting lesions detection, diagnosis, treatment, etc. The proposed approach was designed to work without any external tracking devices. It presents a retrospective scheme of motion correction based on a motion model plugged to the image reconstruction step. The model takes into account displacements and elastic deformations of emission elements (voxels), which allows to consider the non-rigid deformations produced in the thorax during respiration. Furthermore, the chosen voxel modeling improves computations, outperforming classical methods of voxel/detector-tube. Two estimation models were investigated and developed. A first simplified model consists on adapting a known respiratory motion model, obtained from a single subject, to the patient anatomy. The initial known model describes by means of a displacement vector field, the lungs deformations produced between extremal respiratory states. This displacement vector field is further adapted by means of an affine transformation to the patient's anatomy, yielding a displacement vector field that matches the thoracic cavity of the patient. The second method deals with the possible lack of robustness caused by the fact of using a single subject when constructing the known displacement vector field of the simplified method. Incorporation of subject variability into a statistical respiratory motion model was developed. The whole methodology was developed under a 3D framework and tested against simulated and real data
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhong, Huang. "3D metric reconstruction from uncalibrated circular motion image sequences." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37043791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sigfridsson, Andreas. "Multidimensional MRI of Cardiac Motion : Acquisition, Reconstruction and Visualization." Licentiate thesis, Linköping : Linköpings universitet, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhong, Huang, and 鐘煌. "3D metric reconstruction from uncalibrated circular motion image sequences." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37043791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Donati, Marco <1978&gt. "3-D reconstruction of the human skeleton during motion." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/389/.

Повний текст джерела
Анотація:
L’analisi del movimento umano ha come obiettivo la descrizione del movimento assoluto e relativo dei segmenti ossei del soggetto e, ove richiesto, dei relativi tessuti molli durante l’esecuzione di esercizi fisici. La bioingegneria mette a disposizione dell’analisi del movimento gli strumenti ed i metodi necessari per una valutazione quantitativa di efficacia, funzione e/o qualità del movimento umano, consentendo al clinico l’analisi di aspetti non individuabili con gli esami tradizionali. Tali valutazioni possono essere di ausilio all’analisi clinica di pazienti e, specialmente con riferimento a problemi ortopedici, richiedono una elevata accuratezza e precisione perché il loro uso sia valido. Il miglioramento della affidabilità dell’analisi del movimento ha quindi un impatto positivo sia sulla metodologia utilizzata, sia sulle ricadute cliniche della stessa. Per perseguire gli obiettivi scientifici descritti, è necessario effettuare una stima precisa ed accurata della posizione e orientamento nello spazio dei segmenti ossei in esame durante l’esecuzione di un qualsiasi atto motorio. Tale descrizione può essere ottenuta mediante la definizione di un modello della porzione del corpo sotto analisi e la misura di due tipi di informazione: una relativa al movimento ed una alla morfologia. L’obiettivo è quindi stimare il vettore posizione e la matrice di orientamento necessari a descrivere la collocazione nello spazio virtuale 3D di un osso utilizzando le posizioni di punti, definiti sulla superficie cutanea ottenute attraverso la stereofotogrammetria. Le traiettorie dei marker, così ottenute, vengono utilizzate per la ricostruzione della posizione e dell’orientamento istantaneo di un sistema di assi solidale con il segmento sotto esame (sistema tecnico) (Cappozzo et al. 2005). Tali traiettorie e conseguentemente i sistemi tecnici, sono affetti da due tipi di errore, uno associato allo strumento di misura e l’altro associato alla presenza di tessuti molli interposti tra osso e cute. La propagazione di quest’ultimo ai risultati finali è molto più distruttiva rispetto a quella dell’errore strumentale che è facilmente minimizzabile attraverso semplici tecniche di filtraggio (Chiari et al. 2005). In letteratura è stato evidenziato che l’errore dovuto alla deformabilità dei tessuti molli durante l’analisi del movimento umano provoca inaccuratezze tali da mettere a rischio l’utilizzabilità dei risultati. A tal proposito Andriacchi scrive: “attualmente, uno dei fattori critici che rallentano il progresso negli studi del movimento umano è la misura del movimento scheletrico partendo dai marcatori posti sulla cute” (Andriacchi et al. 2000). Relativamente alla morfologia, essa può essere acquisita, ad esempio, attraverso l’utilizzazione di tecniche per bioimmagini. Queste vengono fornite con riferimento a sistemi di assi locali in generale diversi dai sistemi tecnici. Per integrare i dati relativi al movimento con i dati morfologici occorre determinare l’operatore che consente la trasformazione tra questi due sistemi di assi (matrice di registrazione) e di conseguenza è fondamentale l’individuazione di particolari terne di riferimento, dette terne anatomiche. L’identificazione di queste terne richiede la localizzazione sul segmento osseo di particolari punti notevoli, detti repere anatomici, rispetto ad un sistema di riferimento solidale con l’osso sotto esame. Tale operazione prende il nome di calibrazione anatomica. Nella maggior parte dei laboratori di analisi del movimento viene implementata una calibrazione anatomica a “bassa risoluzione” che prevede la descrizione della morfologia dell’osso a partire dall’informazione relativa alla posizione di alcuni repere corrispondenti a prominenze ossee individuabili tramite palpazione. Attraverso la stereofotogrammetria è quindi possibile registrare la posizione di questi repere rispetto ad un sistema tecnico. Un diverso approccio di calibrazione anatomica può essere realizzato avvalendosi delle tecniche ad “alta risoluzione”, ovvero attraverso l’uso di bioimmagini. In questo caso è necessario disporre di una rappresentazione digitale dell’osso in un sistema di riferimento morfologico e localizzare i repere d’interesse attraverso palpazione in ambiente virtuale (Benedetti et al. 1994 ; Van Sint Jan et al. 2002; Van Sint Jan et al. 2003). Un simile approccio è difficilmente applicabile nella maggior parte dei laboratori di analisi del movimento, in quanto normalmente non si dispone della strumentazione necessaria per ottenere le bioimmagini; inoltre è noto che tale strumentazione in alcuni casi può essere invasiva. Per entrambe le calibrazioni anatomiche rimane da tenere in considerazione che, generalmente, i repere anatomici sono dei punti definiti arbitrariamente all’interno di un’area più vasta e irregolare che i manuali di anatomia definiscono essere il repere anatomico. L’identificazione dei repere attraverso una loro descrizione verbale è quindi povera in precisione e la difficoltà nella loro identificazione tramite palpazione manuale, a causa della presenza dei tessuti molli interposti, genera errori sia in precisione che in accuratezza. Tali errori si propagano alla stima della cinematica e della dinamica articolare (Ramakrishnan et al. 1991; Della Croce et al. 1999). Della Croce (Della Croce et al. 1999) ha inoltre evidenziato che gli errori che influenzano la collocazione nello spazio delle terne anatomiche non dipendono soltanto dalla precisione con cui vengono identificati i repere anatomici, ma anche dalle regole che si utilizzano per definire le terne. E’ infine necessario evidenziare che la palpazione manuale richiede tempo e può essere effettuata esclusivamente da personale altamente specializzato, risultando quindi molto onerosa (Simon 2004). La presente tesi prende lo spunto dai problemi sopra elencati e ha come obiettivo quello di migliorare la qualità delle informazioni necessarie alla ricostruzione della cinematica 3D dei segmenti ossei in esame affrontando i problemi posti dall’artefatto di tessuto molle e le limitazioni intrinseche nelle attuali procedure di calibrazione anatomica. I problemi sono stati affrontati sia mediante procedure di elaborazione dei dati, sia apportando modifiche ai protocolli sperimentali che consentano di conseguire tale obiettivo. Per quanto riguarda l’artefatto da tessuto molle, si è affrontato l’obiettivo di sviluppare un metodo di stima che fosse specifico per il soggetto e per l’atto motorio in esame e, conseguentemente, di elaborare un metodo che ne consentisse la minimizzazione. Il metodo di stima è non invasivo, non impone restrizione al movimento dei tessuti molli, utilizza la sola misura stereofotogrammetrica ed è basato sul principio della media correlata. Le prestazioni del metodo sono state valutate su dati ottenuti mediante una misura 3D stereofotogrammetrica e fluoroscopica sincrona (Stagni et al. 2005), (Stagni et al. 2005). La coerenza dei risultati raggiunti attraverso i due differenti metodi permette di considerare ragionevoli le stime dell’artefatto ottenute con il nuovo metodo. Tale metodo fornisce informazioni sull’artefatto di pelle in differenti porzioni della coscia del soggetto e durante diversi compiti motori, può quindi essere utilizzato come base per un piazzamento ottimo dei marcatori. Lo si è quindi utilizzato come punto di partenza per elaborare un metodo di compensazione dell’errore dovuto all’artefatto di pelle che lo modella come combinazione lineare degli angoli articolari di anca e ginocchio. Il metodo di compensazione è stato validato attraverso una procedura di simulazione sviluppata ad-hoc. Relativamente alla calibrazione anatomica si è ritenuto prioritario affrontare il problema associato all’identificazione dei repere anatomici perseguendo i seguenti obiettivi: 1. migliorare la precisione nell’identificazione dei repere e, di conseguenza, la ripetibilità dell’identificazione delle terne anatomiche e della cinematica articolare, 2. diminuire il tempo richiesto, 3. permettere che la procedura di identificazione possa essere eseguita anche da personale non specializzato. Il perseguimento di tali obiettivi ha portato alla implementazione dei seguenti metodi: • Inizialmente è stata sviluppata una procedura di palpazione virtuale automatica. Dato un osso digitale, la procedura identifica automaticamente i punti di repere più significativi, nella maniera più precisa possibile e senza l'ausilio di un operatore esperto, sulla base delle informazioni ricavabili da un osso digitale di riferimento (template), preliminarmente palpato manualmente. • E’ stato poi condotto uno studio volto ad indagare i fattori metodologici che influenzano le prestazioni del metodo funzionale nell’individuazione del centro articolare d’anca, come prerequisito fondamentale per migliorare la procedura di calibrazione anatomica. A tale scopo sono stati confrontati diversi algoritmi, diversi cluster di marcatori ed è stata valutata la prestazione del metodo in presenza di compensazione dell’artefatto di pelle. • E’stato infine proposto un metodo alternativo di calibrazione anatomica basato sull’individuazione di un insieme di punti non etichettati, giacenti sulla superficie dell’osso e ricostruiti rispetto ad un TF (UP-CAST). A partire dalla posizione di questi punti, misurati su pelvi coscia e gamba, la morfologia del relativo segmento osseo è stata stimata senza identificare i repere, bensì effettuando un’operazione di matching dei punti misurati con un modello digitale dell’osso in esame. La procedura di individuazione dei punti è stata eseguita da personale non specializzato nell’individuazione dei repere anatomici. Ai soggetti in esame è stato richiesto di effettuare dei cicli di cammino in modo tale da poter indagare gli effetti della nuova procedura di calibrazione anatomica sulla determinazione della cinematica articolare. I risultati ottenuti hanno mostrato, per quel che riguarda la identificazione dei repere, che il metodo proposto migliora sia la precisione inter- che intraoperatore, rispetto alla palpazione convenzionale (Della Croce et al. 1999). E’ stato inoltre riscontrato un notevole miglioramento, rispetto ad altri protocolli (Charlton et al. 2004; Schwartz et al. 2004), nella ripetibilità della cinematica 3D di anca e ginocchio. Bisogna inoltre evidenziare che il protocollo è stato applicato da operatori non specializzati nell’identificazione dei repere anatomici. Grazie a questo miglioramento, la presenza di diversi operatori nel laboratorio non genera una riduzione di ripetibilità. Infine, il tempo richiesto per la procedura è drasticamente diminuito. Per una analisi che include la pelvi e i due arti inferiori, ad esempio, l’identificazione dei 16 repere caratteristici usando la calibrazione convenzionale richiede circa 15 minuti, mentre col nuovo metodo tra i 5 e i 10 minuti.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Assalih, Hassan. "3D reconstruction and motion estimation using forward looking sonar." Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2647.

Повний текст джерела
Анотація:
Autonomous Underwater Vehicles (AUVs) are increasingly used in different domains including archaeology, oil and gas industry, coral reef monitoring, harbour’s security, and mine countermeasure missions. As electromagnetic signals do not penetrate underwater environment, GPS signals cannot be used for AUV navigation, and optical cameras have very short range underwater which limits their use in most underwater environments. Motion estimation for AUVs is a critical requirement for successful vehicle recovery and meaningful data collection. Classical inertial sensors, usually used for AUV motion estimation, suffer from large drift error. On the other hand, accurate inertial sensors are very expensive which limits their deployment to costly AUVs. Furthermore, acoustic positioning systems (APS) used for AUV navigation require costly installation and calibration. Moreover, they have poor performance in terms of the inferred resolution. Underwater 3D imaging is another challenge in AUV industry as 3D information is increasingly demanded to accomplish different AUV missions. Different systems have been proposed for underwater 3D imaging, such as planar-array sonar and T-configured 3D sonar. While the former features good resolution in general, it is very expensive and requires huge computational power, the later is cheaper implementation but requires long time for full 3D scan even in short ranges. In this thesis, we aim to tackle AUV motion estimation and underwater 3D imaging by proposing relatively affordable methodologies and study different parameters affecting their performance. We introduce a new motion estimation framework for AUVs which relies on the successive acoustic images to infer AUV ego-motion. Also, we propose an Acoustic Stereo Imaging (ASI) system for underwater 3D reconstruction based on forward looking sonars; the proposed system features cheaper implementation than planar array sonars and solves the delay problem in T configured 3D sonars.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lima, Da Cruz Gastao Jose. "Advanced motion corrected reconstruction techniques for magnetic resonance imaging." Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/advanced-motion-corrected-reconstruction-techniques-for-magnetic-resonance-imaging(aba4fac3-44e4-4592-a039-07f15a741ce9).html.

Повний текст джерела
Анотація:
Magnetic Resonance Imaging (MRI) is a powerful imaging modality with excellent soft tissue contrast and high spatial resolution without the need for ionising radiation. However, the acquisition process is inherently slow, which imposes practical constraints on the modality. Scan times are particularly long in three-dimensional high spatial resolution imaging. This diculty has recently been alleviated by accelerated acquisitions, combined with Parallel Imaging or Compressed Sensing reconstructions. Patient motion is one of the major obstacles in clinical MRI, as physiological motion is typically faster than the acquisition process. Motion occurring during a scan will corrupt the acquired data and introduce image artefacts in the reconstructed image. Unavoidable types of motion such as respiratory motion must be considered for a successful MR examination. The problem of respiratory motion is most predominant in abdominal and cardiac imaging. To tackle this concern, motion corrupted data is commonly rejected using the so-called gated data acquisition. However, scan times are increased further as rejected data needs to be re-acquired. A more ecient approach to this problem is to acquire motion corrupted data and attempt to correct this data afterwards. Novel approaches for respiratory motion correction are developed in this thesis. The proposed framework estimates complex, non-rigid motion from the data itself. The motion information is then incorporated into the reconstruction to remove motion-related artefacts. This non-rigid motion correction framework is adapted to three different applications: 3D accelerated abdominal imaging, 3D coronary lumen and vessel wall imaging, and 3D whole-heart water/fat imaging. In the rst application, the framework is combined with Parallel Imaging and Compressed Sensing to enable high acceleration factors. The proposed method reduced scan times by 2.6x when compared with the gated acquisition while maintaining similar image quality. In the second application, the framework is combined with interleaved image navigators to add high temporal resolution motion correction. This method also presented similar coronary lumen quality to the gated, despite a 1.6x reduction in scan time. Additionally, it presented signi cantly superior vessel wall quality when compared to translation correction. In the third application, the framework is combined with Parallel Imaging, Compressed Sensing and interleaved image navigators. Initial results indicate the proposed approach produces signi - cantly superior water and fat images than translation correction.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Motion reconstruction"

1

Theory of reconstruction from image motion. Berlin: Springer-Verlag, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maybank, Stephen. Theory of reconstruction from image motion. Berlin: Springer-Verlag, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maybank, Stephen. Theory of Reconstruction from Image Motion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77557-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maybank, Stephen. Theory of Reconstruction from Image Motion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

The Magnificent Ambersons: A reconstruction. Berkeley: University of California Press, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dawood, Shezad. Feature: Reconstruction. London: Book Works, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Feature: Reconstruction. London: Book Works, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dawood, Shezad. Feature: Reconstruction. London: Book Works, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dawood, Shezad. Feature: Reconstruction. London: Book Works, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Blood cinema: The reconstruction of national identity in Spain. Berkeley: University of California Press, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Motion reconstruction"

1

Kokaram, Anil C. "Large Area Reconstruction." In Motion Picture Restoration, 201–26. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-3485-5_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yamane, Katsu, and Wataru Takano. "Human Motion Reconstruction." In Springer Handbook of Robotics, 1819–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32552-1_68.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Yueh-Tung, Cheng-Hsien Han, Hao-Wei Jeng, and Hao-Chuan Wang. "Crowdsourcing 3D Motion Reconstruction." In Smart Graphics, 170–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11650-1_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kokaram, Anil C. "Model Based Reconstruction for Missing Data." In Motion Picture Restoration, 151–200. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-3485-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maybank, Stephen. "Reconstruction from Image Correspondences." In Theory of Reconstruction from Image Motion, 17–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77557-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maybank, Stephen. "Reconstruction from Image Velocities." In Theory of Reconstruction from Image Motion, 119–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77557-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maybank, Stephen. "Reconstruction from Minimal Data." In Theory of Reconstruction from Image Motion, 173–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77557-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Guanghui, and Q. M. Jonathan Wu. "Stratified Euclidean Reconstruction." In Guide to Three Dimensional Structure and Motion Factorization, 141–60. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-046-5_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cohen, Isaac, and Mun Wai Lee. "3D Body Reconstruction for Immersive Interaction." In Articulated Motion and Deformable Objects, 119–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36138-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gallardo, Mathias, Toby Collins, and Adrien Bartoli. "Non-Rigid Structure-from-Motion and Shading." In Advances in Photometric 3D-Reconstruction, 115–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51866-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Motion reconstruction"

1

Krayevoy, Vladislav, and Alla Sheffer. "Boneless motion reconstruction." In ACM SIGGRAPH 2005 Sketches. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1187112.1187259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ishikawa, Takahito, Yosuke Kazama, Eiji Sugisaki, and Shigeo Morishima. "Hair motion reconstruction using motion capture system." In SIGGRAPH07: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2007. http://dx.doi.org/10.1145/1280720.1280806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhu, Yingying, Mark Cox, and Simon Lucey. "3D motion reconstruction for real-world camera motion." In 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2011. http://dx.doi.org/10.1109/cvpr.2011.5995650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kap-Ho Seo, Seungsub Oh, Yongsik Park, Sung Ho Park, and Jin-Ho Suh. "Human motion reconstruction based on inertial motion sensors." In 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2011). IEEE, 2011. http://dx.doi.org/10.1109/urai.2011.6145848.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yu, Fisher, and David Gallup. "3D Reconstruction from Accidental Motion." In 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2014. http://dx.doi.org/10.1109/cvpr.2014.509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ha, Sehoon, Yunfei Bai, and C. Karen Liu. "Human motion reconstruction from force sensors." In the 2011 ACM SIGGRAPH/Eurographics Symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2019406.2019424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wu, Yuanxin. "Rigid motion reconstruction by functional iteration." In 2017 DGON Inertial Sensors and Systems (ISS). IEEE, 2017. http://dx.doi.org/10.1109/inertialsensors.2017.8171501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Krylov, Roman, and Alexander Zamyatin. "Algebraic reconstruction technique with motion compensation." In SPIE Medical Imaging, edited by Robert M. Nishikawa and Bruce R. Whiting. SPIE, 2013. http://dx.doi.org/10.1117/12.2007645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wong, K., S. Mendonca, and R. Cipolla. "Reconstruction and Motion Estimation from Apparent Contours under Circular Motion." In British Machine Vision Conference 1999. British Machine Vision Association, 1999. http://dx.doi.org/10.5244/c.13.9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Turner, Richard, Natasha Banerjee, and Sean Banerjee. "Using Video Motion Vectors for Structure from Motion 3D Reconstruction." In 19th International Conference on Signal Processing and Multimedia Applications. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0011263600003289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Motion reconstruction"

1

De Sapio, Vincent. The application of quaternions and other spatial representations to the reconstruction of re-entry vehicle motion. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/990959.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії