Добірка наукової літератури з теми "Monoid"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Monoid".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Monoid"

1

Ceccherini-Silberstein, Tullio, and Michel Coornaert. "On surjunctive monoids." International Journal of Algebra and Computation 25, no. 04 (May 21, 2015): 567–606. http://dx.doi.org/10.1142/s0218196715500113.

Повний текст джерела
Анотація:
A monoid M is called surjunctive if every injective cellular automata with finite alphabet over M is surjective. We show that all finite monoids, all finitely generated commutative monoids, all cancellative commutative monoids, all residually finite monoids, all finitely generated linear monoids, and all cancellative one-sided amenable monoids are surjunctive. We also prove that every limit of marked surjunctive monoids is itself surjunctive. On the other hand, we show that the bicyclic monoid and, more generally, all monoids containing a submonoid isomorphic to the bicyclic monoid are non-surjunctive.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kim, Hwankoo, Myeong Og Kim, and Young Soo Park. "Some Characterizations of Krull Monoids." Algebra Colloquium 14, no. 03 (September 2007): 469–77. http://dx.doi.org/10.1142/s1005386707000429.

Повний текст джерела
Анотація:
In this paper, Kaplansky-type theorems are given to characterize GCD-monoids and valuation monoids. Also, (unique) r-factorable monoids are defined and it is shown that S is a Krull monoid if and only if S is a unique t-factorable (resp., w-factorable) monoid if and only if S is a t-factorable (resp., w-factorable) t-Prüfer monoid.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lee, Edmond. "Varieties generated by 2-testable monoids." Studia Scientiarum Mathematicarum Hungarica 49, no. 3 (September 1, 2012): 366–89. http://dx.doi.org/10.1556/sscmath.49.2012.3.1211.

Повний текст джерела
Анотація:
The smallest monoid containing a 2-testable semigroup is defined to be a 2-testable monoid. The well-known Brandt monoid B21 of order six is an example of a 2-testable monoid. The finite basis problem for 2-testable monoids was recently addressed and solved. The present article continues with the investigation by describing all monoid varieties generated by 2-testable monoids. It is shown that there are 28 such varieties, all of which are finitely generated and precisely 19 of which are finitely based. As a comparison, the sub-variety lattice of the monoid variety generated by the monoid B21 is examined. This lattice has infinite width, satisfies neither the ascending chain condition nor the descending chain condition, and contains non-finitely generated varieties.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Polo, Harold. "Approximating length-based invariants in atomic Puiseux monoids." Algebra and Discrete Mathematics 33, no. 1 (2022): 128–39. http://dx.doi.org/10.12958/adm1760.

Повний текст джерела
Анотація:
A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization invariants of these two classes of monoids are related through a limiting process. This allows us to extend results from numerical to Puiseux monoids. We illustrate the versatility of this technique by recovering various known results about Puiseux monoids.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang, W., and J. Li. "Affinely spanned quasi-stochastic algebraic monoids." International Journal of Algebra and Computation 27, no. 08 (December 2017): 1061–72. http://dx.doi.org/10.1142/s0218196717500497.

Повний текст джерела
Анотація:
A linear algebraic monoid over an algebraically closed field [Formula: see text] of characteristic zero is called (row) quasi-stochastic if each row of each matrix element is of sum one. Any linear algebraic monoid over [Formula: see text] can be embedded as an algebraic submonoid of the maximum affinely spanned quasi-stochastic monoid of some degree [Formula: see text]. The affinely spanned quasi-stochastic algebraic monoids form a basic class of quasi-stochastic algebraic monoids. An initial study of structure of affinely spanned quasi-stochastic algebraic monoids is conducted. Among other things, it is proved that the Zariski closure of a parabolic subgroup of the unit group of an affinely spanned quasi-stochastic algebraic monoid is affinely spanned.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cain, Alan J., and António Malheiro. "Deciding conjugacy in sylvester monoids and other homogeneous monoids." International Journal of Algebra and Computation 25, no. 05 (August 2015): 899–915. http://dx.doi.org/10.1142/s0218196715500241.

Повний текст джерела
Анотація:
We give a combinatorial characterization of conjugacy in the sylvester monoid, showing that conjugacy is decidable for this monoid. We then prove that conjugacy is undecidable in general for homogeneous monoids and even for multihomogeneous monoids.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schwab, Emil Daniel. "Gauge Inverse Monoids." Algebra Colloquium 27, no. 02 (May 7, 2020): 181–92. http://dx.doi.org/10.1142/s1005386720000152.

Повний текст джерела
Анотація:
The paper introduces a class of inverse (sub)monoids which contains Jones–Lawson’s gauge inverse (sub)monoid. The aim is to give examples and the basic properties of these monoids. Jones–Lawson’s gauge inverse monoid, as an inverse submonoid of the polycyclic monoid, is the prototype in our development line. The generalization leads also to Meakin–Sapir type results involving bijections between special congruences and special wide inverse submonoids.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cain, Alan J., António Malheiro, and Fábio M. Silva. "The monoids of the patience sorting algorithm." International Journal of Algebra and Computation 29, no. 01 (February 2019): 85–125. http://dx.doi.org/10.1142/s0218196718500649.

Повний текст джерела
Анотація:
The left patience sorting ([Formula: see text][Formula: see text]PS) monoid, also known in the literature as the Bell monoid, and the right patient sorting ([Formula: see text]PS) monoid are introduced by defining certain congruences on words. Such congruences are constructed using insertion algorithms based on the concept of decreasing subsequences. Presentations for these monoids are given. Each finite-rank [Formula: see text]PS monoid is shown to have polynomial growth and to satisfy a nontrivial identity (dependent on its rank), while the infinite rank [Formula: see text]PS monoid does not satisfy any nontrivial identity. Each [Formula: see text][Formula: see text]PS monoid of finite rank has exponential growth and does not satisfy any nontrivial identity. The complexity of the insertion algorithms is discussed. [Formula: see text]PS monoids of finite rank are shown to be automatic and to have recursive complete presentations. When the rank is [Formula: see text] or [Formula: see text], they are also biautomatic. [Formula: see text][Formula: see text]PS monoids of finite rank are shown to have finite complete presentations and to be biautomatic.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Behrisch, Mike, and Edith Vargas-García. "Centralising Monoids with Low-Arity Witnesses on a Four-Element Set." Symmetry 13, no. 8 (August 11, 2021): 1471. http://dx.doi.org/10.3390/sym13081471.

Повний текст джерела
Анотація:
As part of a project to identify all maximal centralising monoids on a four-element set, we determine all centralising monoids witnessed by unary or by idempotent binary operations on a four-element set. Moreover, we show that every centralising monoid on a set with at least four elements witnessed by the Mal’cev operation of a Boolean group operation is always a maximal centralising monoid, i.e., a co-atom below the full transformation monoid. On the other hand, we also prove that centralising monoids witnessed by certain types of permutations or retractive operations can never be maximal.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

GABBAY, MURDOCH J., and PETER H. KROPHOLLER. "Imaginary groups: lazy monoids and reversible computation." Mathematical Structures in Computer Science 23, no. 5 (May 15, 2013): 1002–31. http://dx.doi.org/10.1017/s0960129512000849.

Повний текст джерела
Анотація:
We use constructions in monoid and group theory to exhibit an adjunction between the category of partially ordered monoids and lazy monoid homomorphisms and the category of partially ordered groups and group homomorphisms such that the unit of the adjunction is injective. We also prove a similar result for sets acted on by monoids and groups.We introduce the new notion of a lazy homomorphism for a function f between partially ordered monoids such that f(m ○ m′) ≤ f(m) ○ f(m′).Every monoid can be endowed with the discrete partial ordering (m ≤ m′ if and only if m=m′), so our constructions provide a way of embedding monoids into groups. A simple counterexample (the two-element monoid with a non-trivial idempotent) and some calculations show that one can never hope for such an embedding to be a monoid homomorphism, so the price paid for injecting a monoid into a group is that we must weaken the notion of a homomorphism to this new notion of a lazy homomorphism.The computational significance of this is that a monoid is an abstract model of computation – or at least of ‘operations’ – and, similarly, a group models reversible computations/operations. With this reading, the adjunction with its injective unit gives a systematic high-level way of faithfully translating an irreversible system into a ‘lazy’ reversible one.Informally, but perhaps informatively, we can describe this work as follows: we give an abstract analysis of how we can sensibly add ‘undo’ (in the sense of ‘control-Z’).
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Monoid"

1

Render, Elaine. "Rational monoid and semigroup automata." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/rational-monoid-and-semigroup-automata(0aff0c17-b6f9-4bc8-95d1-ff98da059d42).html.

Повний текст джерела
Анотація:
We consider a natural extension to the definition of M-automata which allows the automaton to make use of more of the structure of the monoid M, and by removing the reliance on an identity element, allows the definition of S-automata for S an arbitrary semigroup. In the case of monoids, the resulting automata are equivalent to valence automata with rational target sets which arise in the theory of regulated rewriting. We focus on the polycyclic monoids, and show that for polycyclic monoids of rank 2 or more they accept precisely the context-free languages. The case of the bicyclic monoid is also considered. In the process we prove a number of interesting results about rational subsets in polycyclic monoids; as a consequence we prove the decidability of the rational subset membership problem, and the closure of the class of rational subsets under intersection and complement. In the case of semigroups, we consider the important class of completely simple and completely 0-simple semigroups, obtaining a complete characterisation of the classes of languages corresponding to such semigroups, in terms of their maximal subgroups. In the process, we obtain a number of interesting results about rational subsets of Rees matrix semigroups.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cevik, Ahmet Sinan. "Minimality of group and monoid presentations." Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Salt, Brittney M. "MONOID RINGS AND STRONGLY TWO-GENERATED IDEALS." CSUSB ScholarWorks, 2014. https://scholarworks.lib.csusb.edu/etd/31.

Повний текст джерела
Анотація:
This paper determines whether monoid rings with the two-generator property have the strong two-generator property. Dedekind domains have both the two-generator and strong two-generator properties. How common is this? Two cases are considered here: the zero-dimensional case and the one-dimensional case for monoid rings. Each case is looked at to determine if monoid rings that are not PIRs but are two-generated have the strong two-generator property. Full results are given in the zero-dimensional case, however only partial results have been found for the one-dimensional case.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lima, Lucinda Maria de Carvalho. "The local automorphism monoid of an independence algebra." Thesis, University of York, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Catarino, Paula Maria Machado Cruz. "The monoid of orientation-preserving mappings on a chain." Thesis, University of Essex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Oltmanns, Helga. "Homological classification of monoids by projectivities of right acts." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960378634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ramasu, Pako. "Internal monoid actions in a cartesian closed category and higher-dimensional group automorphisms." Doctoral thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/20248.

Повний текст джерела
Анотація:
The notion of cat¹-group which was introduced by Loday is equivalent to the notions of crossed module and of internal category in the category of groups. This notion of cat¹-groups and their morphisms admits natural generalization to catⁿ-groups, which give rise to n-fold categories in the category of groups. There is also a characterization of catⁿ-groups in terms of crossed n-cubes which was given by Ellis and Steiner. The category Catⁿ (Groups) of internal n-fold categories in the category of groups is a cartesian closed category, however given an object X in Catⁿ (Groups), calculating corresponding action representing object Aut (X) directly would require an enormous calculations. The main purpose of the thesis is to describe that object avoiding such calculations as much as possible. The main tool used in the thesis, apart from the theory of cartesian closed categories, is Loday's theory of catⁿ-groups. We de ne a catⁿ-group X as an additive Mₙ-group X , and then construct the corresponding Aut (X), where Mₙ is a monoid. Since the category of catⁿ-groups is equivalent to Catⁿ (Groups) and since the cartesian closed category Sets Mₙ of Mₙ-sets is much easier to handle than the cartesian closed category of n-fold categories, we shall work just with catⁿ-groups. To assert that, Aut (X) is an action representing object in Sets Mₙ , is to as- sert that, there is a canonical bijection between B-actions of catⁿ-group B on X and the internal group homomorphism B --> Aut (X). Thus, we confirm the construction of Aut (X) by establishing that bijection. Finally, as one of the results of this work, we give the comparison between our cat¹-group Aut (X) and Norrie's actor crossed module (D (G;Z) ;Aut (Z;G;p) w) of a crossed module (Z;G;p) in dimension one.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Duchamp, Gérard. "Algorithmes sur les polynomes en variables non commutatives." Paris 7, 1987. http://www.theses.fr/1987PA077069.

Повний текст джерела
Анотація:
Etude des monoides libres et de leurs algebres. Presentation de nouvelles caracterisations des bisections reconnaissables; de la caracterisation des mots pouvant appartenir au support d'un polynome de lie et de l'etude de quelques proprietes algebriques de polynomes en variables partiallement commutatives. Etude du treillis des congruences regulieres sur le monoide bicyclique
Стилі APA, Harvard, Vancouver, ISO та ін.
9

East, James Phillip Hinton. "On Monoids Related to Braid Groups and Transformation Semigroups." School of Mathematics and Statistics, 2006. http://hdl.handle.net/2123/2438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

East, James Phillip Hinton. "On Monoids Related to Braid Groups and Transformation Semigroups." Thesis, The University of Sydney, 2005. http://hdl.handle.net/2123/2438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Monoid"

1

Debré, P., and P. Debré. Jacques Monod. Paris: Flammarion, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Phate monoi. Athēna: Kedros, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Renner, Lex Ellery. Linear algebraic monoids. Berlin: Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Putcha, Mohan S. Linear algebraic monoids. Cambridge [England]: Cambridge University Press, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Monoi: Paradise imagined. Milan: Skira, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Monkie. Rotterdam: Lemniscaat, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Brusse, Jacques. Ambroise Monod, le Recup'Art. [Paris]: Ereme, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Badawi, Ayman, and Jim Coykendall, eds. Rings, Monoids and Module Theory. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-8422-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Steinberg, Benjamin. Representation Theory of Finite Monoids. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43932-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Théodore Monod: Archives d'une vie. Paris: Muséum national d'histoire naturelle, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Monoid"

1

Bruns, Winfried, and Joseph Gubeladze. "Monoid algebras." In Springer Monographs in Mathematics, 123–63. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b105283_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Akin, Ethan. "Monoid Actions." In Recurrence in Topological Dynamics, 11–22. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-2668-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Duplij, Steven, Steven Duplij, Paulius Miškinis, Steven Duplij, Allen Parks, Cosmas Zachos, Artur Sergyeyev, et al. "Free Monoid." In Concise Encyclopedia of Supersymmetry, 155. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lozano, Yolanda, Steven Duplij, Malte Henkel, Malte Henkel, Euro Spallucci, Steven Duplij, Malte Henkel, et al. "Semigroup (Monoid)." In Concise Encyclopedia of Supersymmetry, 365. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_484.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Johansen, Pål Hermunn, Magnus Løberg, and Ragni Piene. "Monoid Hypersurfaces." In Geometric Modeling and Algebraic Geometry, 55–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72185-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hunt, John. "Monoid Pattern." In Scala Design Patterns, 297–300. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02192-8_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Colcombet, Thomas, Sam van Gool, and Rémi Morvan. "First-order separation over countable ordinals." In Lecture Notes in Computer Science, 264–84. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99253-8_14.

Повний текст джерела
Анотація:
AbstractWe show that the existence of a first-order formula separating two monadic second order formulas over countable ordinal words is decidable. This extends the work of Henckell and Almeida on finite words, and of Place and Zeitoun on $$\omega $$ ω -words. For this, we develop the algebraic concept of monoid (resp. $$\omega $$ ω -semigroup, resp. ordinal monoid) with aperiodic merge, an extension of monoids (resp. $$\omega $$ ω -semigroup, resp. ordinal monoid) that explicitly includes a new operation capturing the loss of precision induced by first-order indistinguishability. We also show the computability of FO-pointlike sets, and the decidability of the covering problem for first-order logic on countable ordinal words.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dehornoy, Patrick. "The Geometry Monoid." In Braids and Self-Distributivity, 285–330. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8442-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Czaja, Ludwik. "Monoid of Processes." In Cause-Effect Structures, 97–103. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20461-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Duplij, Steven, Joshua Feinberg, Moshe Moshe, Soon-Tae Hong, Omer Faruk Dayi, Omer Faruk Dayi, Francois Gieres, et al. "Bicyclic Semigroup (Monoid)." In Concise Encyclopedia of Supersymmetry, 57. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Monoid"

1

DELGADO, MANUEL, and VíTOR H. FERNANDES. "ABELIAN KERNELS, SOLVABLE MONOIDS AND THE ABELIAN KERNEL LENGTH OF A FINITE MONOID." In Proceedings of the Workshop. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702616_0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rosales, José Carlos, Pedro A. García-Sánchez, and Juan Ignacio García-García. "How to check if a finitely generated commutative monoid is a principal ideal commutative monoid." In the 2000 international symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/345542.345655.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Andrade, Antonio, and Tariq Shah. "Ascending chains of monoid and encoding." In XXXI Simpósio Brasileiro de Telecomunicações. Sociedade Brasileira de Telecomunicações, 2013. http://dx.doi.org/10.14209/sbrt.2013.159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vemuri, Nageswara Rao, and Balasubramaniam Jayaram. "Homomorphisms on the monoid of fuzzy implications." In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Andrade, Antonio, and Tariq Shah. "Ascending chain of monoid rings and encoding." In XXIX Simpósio Brasileiro de Telecomunicações. Sociedade Brasileira de Telecomunicações, 2011. http://dx.doi.org/10.14209/sbrt.2011.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

MUNN, W. D. "ON MCALISTER'S MONOID AND ITS CONTRACTED ALGEBRA." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708700_0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

OTTO, FRIEDRICH. "RELATIVE MONOID PRESENTATIONS AND FINITE DERIVATION TYPE." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708700_0017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ateş, Firat, Eylem G. Karpuz, A. Sinan Çevik, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "The Efficiency of the Semi-Direct Products of Free Abelian Monoid with Rank n by the Infinite Cyclic Monoid." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Madlener, Klaus, and Birgit Reinert. "Computing Gröbner bases in monoid and group rings." In the 1993 international symposium. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/164081.164139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Singh, Shubh Narayan, and K. V. Krishna. "L-Primitive Words in Submonoids of a Free Monoid." In International Conference on Recent Advances in Mathematics, Statistics and Computer Science 2015. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814704830_0029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Monoid"

1

Raychev, Nikolay. Hyper-n-Dimensional Neural Network Model with Desargues Monoids. Web of Open Science, April 2020. http://dx.doi.org/10.37686/emj.v1i1.28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wayland, B. B. Catalytic hydrogenation of carbon monoxide. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/5260923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sawruk, Nicholas W. Optically Pumped Carbon Monoxide Cascade Laser. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada437976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Geoffroy, G. L. Mechanistic studies of carbon monoxide reduction. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6178880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Krause, Travis R., Joseph G. Sebranek, and Mark S. Honeyman. Carbon Monoxide Packaging for Fresh Pork. Ames (Iowa): Iowa State University, January 2004. http://dx.doi.org/10.31274/ans_air-180814-70.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pitts, William M. Carbon monoxide production in compartment fires:. Gaithersburg, MD: National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.ir.5568.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Persily, Andrew K. Carbon monoxide dispersion in residential buildings:. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5906.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Springston, Stephen. Carbon Monoxide Analyzer (CO-ANALYZER) Instrument Handbook. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1495422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Biraud, S. CO (Carbon Monoxide Mixing Ratio System) Handbook. Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1019542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Linteris, Gregory T., Marc D. Rumminger, and Valeri Babushok. Premixed carbon monoxide-nitrous oxide-hydrogen flames :. Gaithersburg, MD: National Institute of Standards and Technology, 1999. http://dx.doi.org/10.6028/nist.ir.6374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії