Добірка наукової літератури з теми "Monoclonal antibody, immunocytokine, immunotherapy"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Monoclonal antibody, immunocytokine, immunotherapy".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Monoclonal antibody, immunocytokine, immunotherapy"
Singh, Harjeet, Lisa Marie A. Serrano, Simon Olivares, Michael Jensen, George McNamara, David Colcher, Andrew Raubitschek, and Laurence J. N. Cooper. "Combining Immunocytokine with Adoptive Immunotherapy To Treat B-Lineage Lymphomas." Blood 106, no. 11 (November 16, 2005): 343. http://dx.doi.org/10.1182/blood.v106.11.343.343.
Повний текст джерелаAiken, Taylor, Julie Voeller, Amy Erbe, Alexander Rakhmilevich, and Paul Sondel. "458 Antitumor mechanisms of local radiation and combination immunotherapy in an immunologically cold model of neuroblastoma." Journal for ImmunoTherapy of Cancer 8, Suppl 3 (November 2020): A486. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0458.
Повний текст джерелаAlderson, Kory L., and Paul M. Sondel. "Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity." Journal of Biomedicine and Biotechnology 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/379123.
Повний текст джерелаAiken, Taylor J., David Komjathy, Mat Rodriguez, Arika Feils, Stephen D. Gillies, Amy K. Erbe, Alexander L. Rakhmilevich, and Paul M. Sondel. "Short-course neoadjuvant intratumoral immunotherapy establishes immunologic memory in murine melanoma." Journal of Clinical Oncology 39, no. 15_suppl (May 20, 2021): e21561-e21561. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e21561.
Повний текст джерелаSchliemann, Christoph, Niklas Börschel, Christian Schwöppe, Rüdiger Liersch, Torsten Kessler, Martin Dreyling, Wolfram Klapper, et al. "Targeting Interleukin-2 to the Neovasculature Potentiates Rituximab‘s Activity Against Mantle Cell Lymphoma in Mice." Blood 120, no. 21 (November 16, 2012): 3716. http://dx.doi.org/10.1182/blood.v120.21.3716.3716.
Повний текст джерелаNiglio, Scot Anthony, Daniel da Motta Girardi, Lisa M. Cordes, Lisa Ley, Marissa Mallek, Olena Sierra Ortiz, Jacqueline Cadena, et al. "A phase I study of bintrafusp alfa (M7824) and NHS-IL12 (M9241) alone and in combination with stereotactic body radiation therapy (SBRT) in adults with metastatic non-prostate genitourinary malignancies." Journal of Clinical Oncology 39, no. 15_suppl (May 20, 2021): TPS4599. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.tps4599.
Повний текст джерелаBerdel, Andrew F., Christoph Rollig, Martin Wermke, Linus Angenendt, Leo Ruhnke, Jan-Henrik Mikesch, Teresa Hemmerle, et al. "A Phase I Trial of the Antibody-Cytokine Fusion Protein F16IL2 in Combination with Anti-CD33 Immunotherapy for Posttransplant AML Relapse." Blood 138, Supplement 1 (November 5, 2021): 2345. http://dx.doi.org/10.1182/blood-2021-145859.
Повний текст джерелаPelegrin, Mireia, Laurent Gros, Hanna Dreja, and Marc Piechaczyk. "Monoclonal Antibody-based Genetic Immunotherapy." Current Gene Therapy 4, no. 3 (September 1, 2004): 347–56. http://dx.doi.org/10.2174/1566523043346246.
Повний текст джерелаSchuster, James M., and Darell D. Bigner. "Immunotherapy and monoclonal antibody therapies." Current Opinion in Oncology 4, no. 3 (June 1992): 547–52. http://dx.doi.org/10.1097/00001622-199206000-00020.
Повний текст джерелаMehra, NarinderK. "Antibody therapy: Substitution-immunomodulation -monoclonal immunotherapy." Indian Journal of Medical Research 149, no. 4 (2019): 563. http://dx.doi.org/10.4103/ijmr.ijmr_2198_18.
Повний текст джерелаДисертації з теми "Monoclonal antibody, immunocytokine, immunotherapy"
Nadal, Lisa. "Isolation and validation of novel monoclonal antibodies targeting the tumor microenvironment for the selective delivery of cytokines payloads." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/323258.
Повний текст джерелаNicholson, Stephen. "Immune responses following monoclonal antibody therapy of ovarian cancer." Thesis, Imperial College London, 2000. http://hdl.handle.net/10044/1/8395.
Повний текст джерелаMehta, Payal. "Molecular Analysis of Regulation of Macrophage Fcγ Receptor Function: Implications for Tumor Immunotherapy". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313606589.
Повний текст джерелаGustafsson, Liljefors Maria. "Immunotherapy with the anti-EpCAM monoclonal antibody and cytokines in patients with colorectal cancer : a clinical and experimental study /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-499-6/.
Повний текст джерелаTurrini, Riccardo. "Targeting BARF1 for the therapeutic control of EBV-associated malignancies." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427092.
Повний текст джерелаIl virus di Epstein-Barr è un γ-herpesvirus che infetta preferenzialmente i linfociti B umani. Si stima che il 95% della popolazione mondiale sia infettata, ma normalmente tale infezione avviene nell’infanzia ed è asintomatica. Oltre ad essere l'agente causale di una malattia linfoproliferativa autolimitante, la mononucleosi infettiva, la presenza del virus è associata ad alcune neoplasie umane, caratterizzate da diversi pattern di espressione genetica. Alcune delle neoplasie EBV-associate sono il linfoma di Burkitt (BL) e alcune forme di carcinoma gastrico (GC), il linfoma di Hodgkin (HL) e il carcinoma nasofaringeo (NPC), e infine le malattie linfoproliferative post-trapianto (PTLD). Oltre ai geni di latenza, è nota l’espressione di diversi RNA non poliadenilati (EBER) e, soprattutto nei casi di NPC e di GC, l’espressione da parte delle cellule infettate di una proteina transmembrana del ciclo litico, BARF1. BARF1 è una proteina di 221 aminoacidi, con una porzione transmembrana al C-terminale. Solo recentemente ne è stato dimostrato il ruolo trasformante ed immortalizzante in cellule umane. Inoltre, il dominio extracellulare può essere tagliato, ed è in grado di agire in modo paracrino come fattore di crescita per le cellule adiacenti, possedendo infatti attività mitogena. In generale, tuttavia, le attività mitogene e mutagene non sono state ancora completamente elucidate, ma l’importanza di questa proteina nei pathway di progressione neoplastica e la sua espressione unicamente nelle cellule infettate (o in quelle che ne legano la forma secreta) la rendono un ottimo candidato come bersaglio per un approccio terapeutico delle neoplasie EBV-correlate. Esistono diversi orientamenti terapeutici nei confronti delle neoplasie EBV-relate; alcune strategie prevedono la riduzione del regime di immunosoppressione, soprattutto per il trattamento di PTLD, la somministrazione di farmaci antivirali, la terapia genica, l’uso di chemioterapici e approcci di immunoterapia. L’uso di linfociti T citotossici (CTL) autologhi o da donatori compatibili si è dimostrata efficace e generalmente priva di effetti collaterali, soprattutto in pazienti affetti da PTLD. Un altro aspetto dell’immunoterapia prevede l’utilizzo di anticorpi monoclonali (mAb), come già dimostrato in ambito clinico dall'utilizzo di rituximab. In questo progetto di Dottorato viene descritta la generazione e la valutazione in vitro di diversi anticorpi monoclonali specifici per BARF1. Inoltre, una volta dimostratane l'attività su colture cellulari in vitro, si è traslato l'approccio ad alcuni modelli pre-clinici sfruttando topi immunodeficienti portatori di tumore EBV-positivo. Anche in questi esperimenti è stato possibile dimostrare l'efficacia terapeutica degli anticorpi prodotti. Da un lato, l’utilizzo di mAb sia nella diagnosi che nella cura di neoplasie sta assumendo un’importanza crescente in ambito clinico, grazie alla specificità di azione di queste molecole e alla loro relativa facilità d’uso, soprattutto se paragonati all’immunoterapia cellulare adottiva. Dall’altro, BARF1, benchè non ne siano ancora state completamente studiate le funzioni e le interconnessioni con altre molecole o cellule, è sicuramente un target promettente per i tumori EBV-relati, in quanto, nonostante sia una proteina espressa durante il ciclo litico, è presente soprattutto nei casi di NPC e di GC, e possiede importanti funzioni trasformanti, anche con azione paracrina.
RIZZUTO, MARIA ANTONIETTA. "Exploiting Nanotechnology to Improve Cancer Immunotherapy and Overcome Biological Barriers." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241065.
Повний текст джерелаThe use of therapeutic monoclonal antibodies (mAbs) has revolutionized cancer treatment. During the last decades, mAbs became very appealing also for nanotechnology. Indeed, they have been exploited as targeting moieties for nanoparticles, thanks to their high binding efficacy and target selectivity. However, the functionalization of NPs with mAbs is usually performed with the aim to ameliorate targeting, rather than to overcome mAbs limitations. Moreover, the therapeutic implications of nanoconjugation are generally poorly considered. In this thesis, I focused on the study of cancers with no efficient therapies available, such as brain cancers and triple negative breast cancer (TNBC), with the final goal to exploit nanoparticle (NP) conjugation as a tool to improve antibody-based therapies. In particular my work aimed at increasing the spectrum of action of already existing mAbs, making them suitable for new applications, either as the whole protein or as fragments. In Chapter 1, I used a recombinant human ferritin (HFn) as nanovector to promote mAbs permeation across the BBB to activate the ADCC response against brain cancer. Glioblastoma and HER2+ metastatic breast cancer were selected as brain tumor models. HFn was used as delivery system thanks to the ability to cross the BBB upon interaction with its receptor. Then, cetuximab or trastuzumab were linked to HFn and the maintenance of the cytotoxic activity of NPs was confirmed by in vitro assays. Next, we tested the ability of HFn- mAb to cross an in vitro model of BBB. Results showed that HFn-mAb proved to be effective in BBB crossing and that, after permeation, mAbs retained their biological activity against the targets, as assessed by MTS and ADCC assays. i These preliminary results support the use of HFn as efficient carrier to enhance mAbs permeation into the brain, without affecting their activity. In Chapter 2, half-chain fragments of cetuximab were conjugated to colloidal NPs (HC-CTX-NPs) to be investigated as surrogates of mAbs in TNBC. Three TNBC cell lines were selected according to EGFR expression and to diverse cetuximab sensitivity. The molecular mechanisms of action of HC-CTX- NPs, including cell targeting, interference with signaling pathways, proliferation, cell cycle, apoptosis and ADCC response, were investigated in TNBC cells. We found that HC-CTX-NPs were able to enhance the therapeutic efficacy and improve the target selectivity against sensitive, but unexpectedly also resistant, TNBC cells. Viability assays and signaling transduction modulation suggested that HC-CTX-NPs not only improved the antibody activity but also exerted different mechanisms of action to circumvent CTX resistance. Our results provide robust evidence of the potential of HC-CTX-NPs in the treatment of TNBC, which could improve curative efficiency, reducing dosages in both sensitive and resistant tumors.
Laporte, Jérôme. "Nouveaux anticorps monoclonaux contre les Yersinia pour le diagnostic et l’immunothérapie." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA114834/document.
Повний текст джерелаThree bacteria of the genus Yersinia are pathogenic for the human: Yersinia pestis (the plague bacillus) and the enteropathogenic bacteria: Yersinia pseudotuberculosis and Yersinia enterocolitica. Yersinia pestis is responsible for more than 20,000 human cases of plague declared to the World Health Organization (WHO) during the ten last years in different areas from Africa, Asia and America. Mistakenly considered today as a disease from the past, on the contrary, the plague is re-emerging. Even if it doesn’t occur as a massive epidemic, it still lays down a challenge to the world for its important severity, its quick spreading, the appearance of antimicrobial resistance and a potential use for terrorism. Under the circumstances, the immunotherapy against Y. pestis could be a good option to treat bubonic and pneumonic plague. One the aims of this thesis was to produce murine monoclonal antibodies against the three proteins of the injectisom (YscF, YscC, LcrV), a key virulence factor of Yersinia. The obtained antibodies were characterized and for certain, the epitopes were identified. Then, in collaboration with Elisabeth Carniel from Institut Pasteur, their therapeutic effect was evaluated in vivo with a bubonic plague model in mice. The antibodies generated against the proteins from the injectisom are now evaluated in a diagnosis test for a fast detection of Y. pestis in different biological samples. Yersinia enterocolitica and Yersinia pseudotuberculosis, the two enteropathogenic Yersinia species for humans, have a worldwide distribution and are among the most frequent agents of human diarrhea in temperate and cold countries. However, research of enteropathogenic Yersinia is not consistently performed in medical laboratories because of their specific growth characteristics, which makes their isolation from the stool samples difficult. Moreover, current procedures for isolation are expensive and time consuming, which leads to underestimation of the incidence of yersiniosis and prescriptions of inappropriate antibiotic treatments. One the aims of this thesis was to produce different murine monoclonal antibodies against the main pathogenic biotypes and serotypes of Y. pseudotuberculosis and Y. enterocolitica for the development of fast, sensitive, specific and easy-to-use immunoassays (ELISA and dipsticks), useful for both human and veterinary diagnosis
Sandin, Linda. "Immunomodulatory Therapy of Solid Tumors : With a Focus on Monoclonal Antibodies." Doctoral thesis, Uppsala universitet, Klinisk immunologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-210080.
Повний текст джерелаHeitzmann-Daverton, Adèle. "Utilisation d'un anticorps monoclonal anti-Tn en immunothérapie des cancers." Phd thesis, Université René Descartes - Paris V, 2013. http://tel.archives-ouvertes.fr/tel-00923181.
Повний текст джерелаFagerqvist, Therese. "Studies of α-synuclein Oligomers-with Relevance to Lewy Body Disorders". Doctoral thesis, Uppsala universitet, Institutionen för folkhälso- och vårdvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-204466.
Повний текст джерелаКниги з теми "Monoclonal antibody, immunocytokine, immunotherapy"
1960-, Grossbard Michael L., ed. Monoclonal antibody-based therapy of cancer. New York: Dekker, 1998.
Знайти повний текст джерелаA, Foon Kenneth, and Morgan Alton C, eds. Monoclonal antibody therapy of human cancer. Boston: Nijhoff, 1985.
Знайти повний текст джерелаRodriguez, Andrės Felipe. Successful immunotherapy to malignant cells with monoclonal antibody to suppressor T cells. [New Haven: s.n.], 1988.
Знайти повний текст джерелаFrost & Sullivan., ed. U.S. monoclonal antibody markets: Manufacturers struggling for regulatory approval. Mountain View, Calif: Frost & Sullivan, 1994.
Знайти повний текст джерела1927-, Baldwin R. W., Byers Vera S, and Mann Ronald D. 1928-, eds. Monoclonal antibodies and immunoconjugates. Carnforth, Lancs, UK: Parthenon Pub. Group, 1990.
Знайти повний текст джерелаLuiten, Rosalie Margaretha. New chimeric monoclonal antibodies against human carcinomas: IgE and bispecific antibody-mediated therapy. [Leiden: University of Leiden, 1998.
Знайти повний текст джерелаGray, Lynn. Dynamic antibody industry, including polyclonals and monoclonals. Norwalk, CT: Business Communications Co., 2002.
Знайти повний текст джерелаMagerstadt, Michael. Antibody conjugates and malignant disease. Boca Raton: CRC Press, 1991.
Знайти повний текст джерелаW, Baldwin R., Byers Vera S, and Mann R. D. 1928-, eds. Monoclonal antibodies and immunoconjugates in cancer treatment. Carnforth: Parthenon Publishing, 1990.
Знайти повний текст джерелаRotheim, Philip. The dynamic antibody industry, including polyclonals and monoclonals. Norwalk, CT: Business Communications Co., 1992.
Знайти повний текст джерелаЧастини книг з теми "Monoclonal antibody, immunocytokine, immunotherapy"
Mittendorf, Elizabeth A., and Sabitha Prabhakaran. "Monoclonal Antibody Therapy." In Immunotherapy in Translational Cancer Research, 12–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781118684535.ch2.
Повний текст джерелаBorghaei, Hossein, Matthew K. Robinson, and Louis M. Weiner. "Monoclonal Antibody Therapy of Cancer." In Immunotherapy of Cancer, 487–502. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1-59745-011-1:487.
Повний текст джерелаGray, Juliet C., and Paul M. Sondel. "Overview of Monoclonal Antibody Therapies." In Immunotherapy for Pediatric Malignancies, 65–78. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43486-5_4.
Повний текст джерелаRader, Christoph. "Monoclonal Antibody Therapy for Cancer." In Experimental and Applied Immunotherapy, 59–83. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-980-2_3.
Повний текст джерелаHamblin, T. J. "Modifications of Monoclonal Antibody for Immunotherapy." In Immunotherapy of Disease, 143–66. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1844-3_7.
Повний текст джерелаPescovitz, Mark D. "Rituximab, an Anti-CD20 Monoclonal Antibody." In Immunotherapy in Transplantation, 362–77. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781444355628.ch24.
Повний текст джерелаEmbleton, M. J., and R. W. Baldwin. "MONOCLONAL ANTIBODY TARGETING FOR CANCER IMMUNOTHERAPY." In Proceedings of the Third Symposium, Lyon, France, June 26–28, 1985, edited by Jacques Bienvenu, J. A. Grimaud, and Philippe Laurent, 529–42. Berlin, Boston: De Gruyter, 1986. http://dx.doi.org/10.1515/9783110860757-066.
Повний текст джерелаGouda, Gayatri, Manoj Kumar Gupta, Ravindra Donde, Lambodar Behera, and Ramakrishna Vadde. "Monoclonal Antibody Therapy Against Gastrointestinal Tract Cancers." In Immunotherapy for Gastrointestinal Malignancies, 97–111. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6487-1_7.
Повний текст джерелаReisfeld, R. A. "Immunotherapy of Melanoma with Monoclonal Antibody-Drug Conjugates." In Human Melanoma, 399–412. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74496-9_28.
Повний текст джерелаMasuho, Yasuhiko, Yoh-Ichi Matsumoto, Tohru Sugano, Takami Tomiyama, Satoshi Sasaki, and Tamotsu Koyama. "Development of a Human Monoclonal Antibody against Cytomegalovirus with the Aim of a Passive Immunotherapy." In Therapeutic Monoclonal Antibodies, 187–207. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-11894-6_12.
Повний текст джерелаТези доповідей конференцій з теми "Monoclonal antibody, immunocytokine, immunotherapy"
Lin, Haishan, and Richard Zhang. "Abstract B73: Development of anti-human CLDN18.2 monoclonal antibody as cancer therapeutics." In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 27-30, 2018; Miami Beach, FL. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm18-b73.
Повний текст джерелаAlrishedan, NS, W. Bodmer, V. Liebe lastun, V. Golubovskaya, J. Wu, A. Bransi, P. Umana, C. Klein, and R. Mateus Seidl. "P01.01 PLAP as target for cancer immunotherapy – development and preclinical characterization of bispecific monoclonal antibody in colorectal cancer immunotherapy." In iTOC9 – 9th Immunotherapy of Cancer Conference, September 22–24, 2022 – Munich, Germany. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-itoc9.13.
Повний текст джерелаMick, Rosemarie, David Bajor, Lee Richman та Robert Vonderheide. "Abstract A10: Soluble CD25 and C-reactive protein predict overall survival in melanoma patients receiving anti-CD40 monoclonal antibody CP-870,893 (αCD40) and anti-CTLA4 monoclonal antibody tremelimumab". У Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-a10.
Повний текст джерелаWelt, Rachel S., Jonathan A. Welt, Virginia Raymond, David Kostyal, and Sydney Welt. "Abstract PO020: Anti-membrane-IgM monoclonal antibody, mAb4, inhibits the BCRC, modulating downstream signaling pathways." In Abstracts: AACR Virtual Special Conference: Tumor Immunology and Immunotherapy; October 19-20, 2020. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/2326-6074.tumimm20-po020.
Повний текст джерелаKim, Haemi, Kyoung-Jin Kim, Myeong Jin Yoon, Jenny Choih, Eun Ji Cho, Hak-Jun Jung, Kwanghyun Lee, et al. "488 GNUV201, a novel human and mouse cross-reactive PD-1 monoclonal antibody for cancer immunotherapy." In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0488.
Повний текст джерелаSalameh, Ahmad, Jerri Caldeira, Valeria Rolih, Elisabetta Bolli, Laura Conti, and Michael Perrine. "Abstract B37: Development of a monoclonal antibody targeting xCT/SLC7A11 expressed in metastatic cancer cells." In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-b37.
Повний текст джерелаMacedo, Luciana F., Elizabeth Kaiser, Haiyan Jiang, Hillary Millar, Diana Wiley, Adam Cotty, Fred Kaplan, et al. "Abstract A190: Colon tumor cells expressing CD24 have oncogenic properties and are inhibited by monoclonal antibody immunotherapy." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-a190.
Повний текст джерелаMitsunaga, Makoto, Mikako Ogawa, Nobuyuki Kosaka, Peter L. Choyke, and Hisataka Kobayashi. "Abstract 3618: Target-specific photo-activatable immunotherapy (PIT) for cancer based on a monoclonal antibody-photosensitizer conjugate." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3618.
Повний текст джерелаStecha, Pete, Denise Garvin, Julia Gilden, Jun Wang, Jamison Grailer, Jim Hartnett, Vanessa Ott, Frank Fan, Mei Cong, and Zhijie Jey Cheng. "Abstract 5658: A homogenous PBMC ADCC bioassay enables bridging studies with ADCC reporter bioassays in immunotherapy monoclonal antibody development." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-5658.
Повний текст джерелаStecha, Pete, Denise Garvin, Julia Gilden, Jun Wang, Jamison Grailer, Jim Hartnett, Gopal B. Krishnan, Frank Fan, Mei Cong, and Zhijie Jey Cheng. "Abstract 506: A homogenous PBMC ADCC bioassay enables bridging studies with ADCC reporter bioassays in immunotherapy monoclonal antibody development." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-506.
Повний текст джерела