Добірка наукової літератури з теми "Molecular hybrid"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Molecular hybrid".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Molecular hybrid"
Kawashima, Etsuko, Yusuke Ohba, Yusuke Terui, and Kazuo Kamaike. "Design, Synthesis, and Analysis of Minor Groove Binder Pyrrolepolyamide-2′-Deoxyguanosine Hybrids." Journal of Nucleic Acids 2010 (2010): 1–13. http://dx.doi.org/10.4061/2010/235240.
Повний текст джерелаCoronado, Eugenio, and José R. Galán-Mascarós. "Hybrid molecular conductors." J. Mater. Chem. 15, no. 1 (2005): 66–74. http://dx.doi.org/10.1039/b415940n.
Повний текст джерелаHeermann, Dieter W., Peter Nielaba, and Mauro Rovere. "Hybrid molecular dynamics." Computer Physics Communications 60, no. 3 (October 1990): 311–18. http://dx.doi.org/10.1016/0010-4655(90)90030-5.
Повний текст джерелаŠiško, Metka, Anja Ivanuš, and Anton Ivančič. "Determination of Sambucus Interspecific Hybrid Structure using Molecular Markers." Agricultura 16, no. 1-2 (2019): 1–10. http://dx.doi.org/10.18690/agricultura.16.1-2.1-10.2019.
Повний текст джерелаLi, Jianhua, Suzanne Shoup, Jianhua Li, and Thomas S. Elias. "Molecular Confirmation of Intergeneric Hybrid ×Chitalpa tashkentensis (Bignoniaceae)." HortScience 41, no. 5 (August 2006): 1162–64. http://dx.doi.org/10.21273/hortsci.41.5.1162.
Повний текст джерелаTognarelli, Giulia, Marco A. L. Zuffi, Silvia Marracci, and Matilde Ragghianti. "Surveys on populations of green frogs (Pelophylax) of Western Tuscany sites with molecular and morphometric methods." Amphibia-Reptilia 35, no. 1 (2014): 99–105. http://dx.doi.org/10.1163/15685381-00002931.
Повний текст джерелаLi, X., L. Liu, Y. Gong, Y. Wang, B. Fu, X. Hou, X. Zhu, F. Yu, and H. Shen. "Molecular testing of cucumber hybrid genetic purity with RAPD marker." Seed Science and Technology 36, no. 2 (July 1, 2008): 440–46. http://dx.doi.org/10.15258/sst.2008.36.2.17.
Повний текст джерелаFreyre, Rosanna, and Erin Tripp. "Artificial Hybridization between U.S. Native Ruellia caroliniensis and Invasive Ruellia simplex: Crossability, Morphological Diagnosis, and Molecular Characterization." HortScience 49, no. 8 (August 2014): 991–96. http://dx.doi.org/10.21273/hortsci.49.8.991.
Повний текст джерелаSudha, R., K. Samsudeen, M. K. Rajesh, and V. Niral. "Molecular marker assisted confirmation of hybrids in coconut (Cocos nucifera L.)." Indian Journal of Genetics and Plant Breeding (The) 82, no. 03 (September 30, 2022): 369–72. http://dx.doi.org/10.31742/isgpb.82.3.15.
Повний текст джерелаGambini, JuanPablo. "Theranostic Hybrid Molecular Imaging." World Journal of Nuclear Medicine 13, no. 2 (2014): 73. http://dx.doi.org/10.4103/1450-1147.139129.
Повний текст джерелаДисертації з теми "Molecular hybrid"
Cai, Qiong. "Hybrid molecular dynamics simulation." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/10849.
Повний текст джерелаDallas, J. F. "Molecular evolution in a hybrid zone." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373243.
Повний текст джерелаBaxter, Carol Anne. "Molecular fragments and the hybrid basis." Thesis, University of Sheffield, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245545.
Повний текст джерелаPatti, Alessandro. "Molecular Modeling of Self-Assembling Hybrid Materials." Doctoral thesis, Universitat Rovira i Virgili, 2007. http://hdl.handle.net/10803/8551.
Повний текст джерелаEl presente estudio tiene como principal objetivo estudiar bajo cuales condiciones los sistemas formados por un surfactante, un precursor inorgánico y un solvente, se auto-organizan para dar lugar a estructuras híbridas muy ordenadas. En particular nos proponemos individuar cuales son las características más importantes que los precursores inorgánicos deberían tener para poder observar la formación de materiales mesoporosos ordenados.
Simulaciones Monte Carlo en el colectivo canónico han sido utilizadas para analizar la agregación de los surfactantes en estructuras complejas, como micelas, cilindros organizados en forma hexagonal, o laminas, a partir de configuraciones totalmente desordenadas. Con particular interés hemos analizado el rango de condiciones que llevan a la formación de las estructuras cilíndricas, y estas mismas estructuras han sido comparadas en función de algunas importantes características morfológicas, como el tamaño de poro, el grosor de las paredes, la presencia y accesibilidad de los grupos funcionales en los poros. El modelo usado representa las moléculas de surfactante y de precursor inorgánico como cadenas de segmentos en una red tridimensional que discretiza el espacio en sitios de volumen unitario. Este modelo no entra en el detalle de las características físicas y químicas de las moléculas, pero permite reproducir su agregación en estructuras complejas en un tiempo de cálculo muy razonable. La separación de fase ha sido también evaluada recorriendo a una teoría de campo medio, la quasi-chemical theory, que, aunque no pueda predecir la formación de estructuras ordenadas, ha sido muy útil para confirmar los resultados de las simulaciones, sobretodo cuando no se observa formación de fases ordenadas.
El estudio de surfactantes distintos, uno modelado por una cadena lineal y otro con una cabeza ramificada, nos ha permitido evaluar algunas diferencias estructurales de los materiales obtenidos. La ramificación de la cabeza, que merecería un estudio más profundo del que hemos descrito en este trabajo, ha evidenciado unas interesantes consecuencias en el tamaño de los poros. Este mismo surfactante con cabeza ramificada ha sido elegido para la síntesis de agregados cilíndricos utilizados como templates en la formación, agregación, y condensación de una capa de sílica modelada a través de un modelo atomístico. En particular, hemos aislado uno de los cilindros presentes en los cristales líquidos de estructura hexagonal, y a su alrededor hemos simulado la formación de una capa de sílica utilizando un modelo atomístico. De esta forma, hemos obtenido un poro típico de una estructura mesoporosa más realista, sin necesidad de asumir una forma mas o menos cilíndrica del template, por ser este generado de la auto-agregación del surfactante.
Surfactants are amphiphilic molecules with a solvophilic head and a solvophobic tail. When the surfactant concentration in a given solution is high enough, the molecules aggregate between them to shield the solvophobic part from the contact with the solvent. Such aggregates can show very different sizes and shapes, according to the surfactant and the conditions of the system. The surfactants self-assembly, being due to an energetic and entropic compromise of their molecular structure, is fundamental to observe the formation of very ordered liquid crystals. In the presence of an inorganic precursor and depending on the interactions established between such a precursor and the surfactant, it is possible to synthesize a hybrid material. Hybrid materials are the key step for the formation of periodic ordered mesoporous materials, which can be obtained by eliminating the organic soft matter (the surfactants) from the inorganic framework. Periodic ordered mesoporous materials represent an important family of porous materials as they find a large number of applications in several industrial fields, such as separations, catalysis, sensors, etc. In the last decade, the range of potential applications has increased with the possibility of functionalizing the pore walls by incorporating organic groups during the synthesis, or with post-synthesis treatments.
In this work, we are interested in studying the formation of ordered materials when hybrid organic-inorganic precursors are used. Lattice Monte Carlo simulations in the NVT ensemble have been used to study the equilibrium phase behavior and the synthesis of self-assembling ordered mesoporous materials formed by an organic template with amphiphilic properties and an inorganic precursor in a model solvent. Three classes of inorganic precursors have been modeled: terminal (R-Si-(OEt)3) and bridging ((EtO)3-Si-R-Si-(OEt)3)) organosilica precursors (OSPs), along with pure silica precursors (Si-(OEt)4). Each class has been studied by analyzing its solubility in the solvent and the solvophobicity of the inorganic group.
At high surfactant concentrations, periodic ordered structures, such as hexagonally-ordered cylinders or lamellas, can be obtained depending on the OSPs used. In particular, ordered structures were obtained in a wider range of conditions when bridging hydrophilic OSPs have been used, because a higher surfactant concentration was reached in the phase where the material was formed. Terminal and bridging OSPs produced ordered structures only when the organic group is solvophilic. In this case, a partial solubility between the precursor and the solvent or a lower temperature favored the formation of ordered phases.
With particular interest, we have analyzed the range of conditions leaving to the formation of cylindrical structures, which have been evaluated according to the pore size distribution, the pore wall thickness, the distribution and the accessibility of the functional organic groups around the pores. The phase behavior has been also evaluated by applying the quasi-chemical theory, which cannot predict the formation of ordered structures, but was very useful to confirm the results of simulations, especially when no ordered structures were observed.
The study of the phase and aggregation behavior of two different surfactants, one modeled by a linear chain of head segments and the other modeled by a branched-head, permitted us to evaluate some structural differences of the materials obtained.
Rahimi, Mohammad. "Hybrid Molecular Dynamics – Continuum Mechanics for Polymers." Phd thesis, TU Darmstadt, 2012. https://tuprints.ulb.tu-darmstadt.de/3292/1/Final.pdf.
Повний текст джерелаPatel, Chandan. "Hybrid molecular simulations of oxidative complex lesions." Thesis, Lyon, École normale supérieure, 2013. http://www.theses.fr/2013ENSL0835.
Повний текст джерелаDNA is continuously exposed to a vast number of damaging events triggered by endogenous and exogenous agents. Numerous experimental studies have provided key information regarding structural properties of some of the DNA lesions and their repair. However, they lack in mechanistic or energetic information pertaining to their formation. Computational Biochemistry has emerged as a powerful tool to understand biochemical reactions and electronic properties of large systems.In this thesis we study the formation of inter- and intra-strand cross-links. These tandem lesions pose a potent threat to genome integrity, because of their high mutagenic frequency. First, we discuss the formation of complex defects which arise from the attack of a pyrimidine radical onto guanine. In comparison with the reactivity of isolated nucleobases, our hybrid Car-Parrinello Molecular Dynamics simulations reveal that the reactivity of hydrogen-abstracted thymine and cytosine is reversed within a B-helix environment. Further, our data also suggest a more severe distortion of the B-helix for G[8-5]C.Second, we rationalize the higher reactivity of cytosine vs. purines toward the multistep formation of inter-strand crosslinks with a C4' oxidized a basic site, which is in qualitative agreement with experiments on isolated nucleobases, using explicit solvent simulations combined to density functional theory
Hall, Katherine Frances. "Hybrid computational methods for modelling molecular excited states." Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501445.
Повний текст джерелаTsavalas, John George. "A molecular level investigation of hybrid miniemulsion polymerization." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/11153.
Повний текст джерелаBorg, Matthew Karl. "Hybrid molecular-continuum modelling of nano-scale flows." Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=14367.
Повний текст джерелаAslan, Gürel Evren. "Hybrid nanostructured materials : from molecular assemblies to photovoltaic devices /." [S.l.] : [s.n.], 2009. http://opac.nebis.ch/cgi-bin/showAbstract.pl?sys=000274977.
Повний текст джерелаКниги з теми "Molecular hybrid"
Tchougréeff, Andrei L. Hybrid methods of molecular modeling. [Dordrecht]: Springer, 2008.
Знайти повний текст джерелаTchougréeff, Andrei L. Hybrid Methods of Molecular Modeling. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8189-7.
Повний текст джерелаSquirrell, Jane. Molecular genetic studies of species, cultivars, and somantic hybrids of rose. London: University of East London, 1998.
Знайти повний текст джерелаTchougréeff, Andrei L. Hybrid Methods of Molecular Modeling. Springer, 2010.
Знайти повний текст джерелаMoore, John W., and Conrad L. Stanitski. Chemistry: The Molecular Science, Hybrid Edition. Cengage Learning, 2014.
Знайти повний текст джерелаLaunay, Jean-Pierre, and Michel Verdaguer. The mastered electron: molecular electronics and spintronics, molecular machines. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0005.
Повний текст джерелаNakamura, Haruki, Gerard Kleywegt, Stephen K. Burley, and John L. Markley. Integrative Structural Biology with Hybrid Methods. Springer, 2019.
Знайти повний текст джерелаThorat, Nanasaheb D., and Raghvendra Ashok Bohara. Hybrid Nanostructures for Cancer Theranostics. Elsevier, 2018.
Знайти повний текст джерелаThorat, Nanasaheb D., and Raghvendra Ashok Bohara. Hybrid Nanostructures for Cancer Theranostics. Elsevier, 2018.
Знайти повний текст джерелаTwo-Hybrid Systems: Methods and Protocols (Methods in Molecular Biology). Humana Press, 2001.
Знайти повний текст джерелаЧастини книг з теми "Molecular hybrid"
Kushvaha, Saroj Kumar, and Kartik Chandra Mondal. "Molecular Hybrid Phosphors." In Hybrid Phosphor Materials, 73–104. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90506-4_3.
Повний текст джерелаLivneh, O., and E. Vardi. "Molecular Genetic Markers." In Hybrid Cultivar Development, 201–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-07822-8_8.
Повний текст джерелаKaul, M. L. H. "Male Sterility: Molecular Characterization." In Hybrid Cultivar Development, 46–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-07822-8_3.
Повний текст джерелаPratama, Satrya Fajri, Azah Kamilah Muda, Yun-Huoy Choo, and Ajith Abraham. "Preparation of ATS Drugs 3D Molecular Structure for 3D Moment Invariants-Based Molecular Descriptors." In Hybrid Intelligent Systems, 252–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76351-4_26.
Повний текст джерелаTong, Elizabeth, and Ghiam Yamin. "Introduction to Molecular Neuroimaging Applications." In Hybrid PET/MR Neuroimaging, 45–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82367-2_6.
Повний текст джерелаMcClain, William Martin. "Hybrid orbitals." In Symmetry Theory in Molecular Physics with Mathematica, 521–34. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b13137_41.
Повний текст джерелаBecker, Juliane, Sarah M. Schwarzenböck, and Bernd J. Krause. "FDG PET Hybrid Imaging." In Molecular Imaging in Oncology, 625–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_19.
Повний текст джерелаMaple, Jodi, and Simon G. Møller. "Yeast Two-Hybrid Screening." In Methods in Molecular Biology, 207–23. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-257-1_15.
Повний текст джерелаShea, K. J., J. Moreau, D. A. Loy, R. J. P. Corriu, and B. Boury. "Bridged Polysilsesquioxanes. Molecular-Engineering Nanostructured Hybrid Organic-Inorganic Materials." In Functional Hybrid Materials, 50–85. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch3.
Повний текст джерелаten Elshof, Johan E. "Hybrid Materials for Molecular Sieves." In Handbook of Sol-Gel Science and Technology, 1–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19454-7_94-1.
Повний текст джерелаТези доповідей конференцій з теми "Molecular hybrid"
Simic-Glavaski, B. "Molecular Electronic Devices Based On Electrooptical Behavior Of Heme-Like Molecules." In Optical and Hybrid Computing, edited by Harold H. Szu. SPIE, 1986. http://dx.doi.org/10.1117/12.964015.
Повний текст джерелаCarter, Forrest L. "Molecular Computing And The Chemical Elements Of Logic." In Optical and Hybrid Computing, edited by Harold H. Szu. SPIE, 1986. http://dx.doi.org/10.1117/12.964014.
Повний текст джерелаPalomares, Emilio. "Molecular Approaches to Energy Conversion." In International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.hopv.2022.158.
Повний текст джерелаLlobet, Antoni. "Hybrid molecular photoanodes for water splitting." In 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.191.
Повний текст джерелаNelson, Jenny. "Luminescence and molecular modelling as tools to probe structure-property-performance relationships at molecular heterojunctions." In International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.hopv.2022.191.
Повний текст джерелаArtero, Vincent. "Molecular-based H2-evolving photocathodes." In 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.077.
Повний текст джерелаStan, M. R., G. S. Rose, and M. M. Zielger. "Hybrid CMOS/Molecular Electronic Circuits." In 19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded Systems Design (VLSID'06). IEEE, 2006. http://dx.doi.org/10.1109/vlsid.2006.99.
Повний текст джерелаMilichko, Valentin A., Kristina S. Frizyuk, Pavel A. Dmitriev, Dmitry A. Zuev, George P. Zograf, Sergey V. Makarov, and Pavel A. Belov. "Hybrid nanocavity for molecular sensing." In 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). IEEE, 2017. http://dx.doi.org/10.1109/comcas.2017.8244858.
Повний текст джерелаHe, Chang. "Optimized molecular orientation and domain size enables efficient non-fullerene small-molecule organic solar cells." In 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.024.
Повний текст джерелаZhang, Rui, and Feng Gao. "Manipulating molecular organization in high-efficiency organic solar cells." In Organic, Hybrid, and Perovskite Photovoltaics XXIII, edited by Gang Li, Thuc-Quyen Nguyen, Ana Flávia Nogueira, Barry P. Rand, Ellen Moons, and Natalie Stingelin. SPIE, 2022. http://dx.doi.org/10.1117/12.2625152.
Повний текст джерелаЗвіти організацій з теми "Molecular hybrid"
George, Steven M. Hybrid Organic-Inorganic Films Grown Using Molecular Layer Deposition. Fort Belvoir, VA: Defense Technical Information Center, March 2011. http://dx.doi.org/10.21236/ada540366.
Повний текст джерелаMeza, J. C., and M. L. Martinez. A numerical study of hybrid optimization methods for the molecular conformation problems. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10175387.
Повний текст джерелаSamarth, Nitin. Acquisition of Molecular Beam Epitaxy System for Fabrication of Hybrid Magnetic/Semiconductor Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada384761.
Повний текст джерелаReisch, Bruce, Pinhas Spiegel-Roy, Norman Weeden, Gozal Ben-Hayyim, and Jacques Beckmann. Genetic Analysis in vitis Using Molecular Markers. United States Department of Agriculture, April 1995. http://dx.doi.org/10.32747/1995.7613014.bard.
Повний текст джерелаWagner, D. Ry, Eliezer Lifschitz, and Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, May 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Повний текст джерелаVeilleux, Richard E., Jossi Hillel, A. Raymond Miller, and David Levy. Molecular Analysis by SSR of Genes Associated with Alkaloid Synthesis in a Segregating Monoploid Potato Family. United States Department of Agriculture, May 1994. http://dx.doi.org/10.32747/1994.7570550.bard.
Повний текст джерелаAvni, Adi, and Kirankumar S. Mysore. Functional Genomics Approach to Identify Signaling Components Involved in Defense Responses Induced by the Ethylene Inducing Xyalanase Elicitor. United States Department of Agriculture, December 2009. http://dx.doi.org/10.32747/2009.7697100.bard.
Повний текст джерелаTel-Zur, Neomi, and Jeffrey J. Doyle. Role of Polyploidy in Vine Cacti Speciation and Crop Domestication. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697110.bard.
Повний текст джерелаEyal, Yoram, and Sheila McCormick. Molecular Mechanisms of Pollen-Pistil Interactions in Interspecific Crossing Barriers in the Tomato Family. United States Department of Agriculture, May 2000. http://dx.doi.org/10.32747/2000.7573076.bard.
Повний текст джерелаBlum, Abraham, Henry T. Nguyen, and N. Y. Klueva. The Genetics of Heat Shock Proteins in Wheat in Relation to Heat Tolerance and Yield. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568105.bard.
Повний текст джерела