Добірка наукової літератури з теми "Molecular electronics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Molecular electronics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Molecular electronics"

1

Zotti, Linda A. "Molecular Electronics." Applied Sciences 11, no. 11 (May 25, 2021): 4828. http://dx.doi.org/10.3390/app11114828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McCreery, Richard. "Molecular Electronics." Electrochemical Society Interface 13, no. 1 (March 1, 2004): 25–30. http://dx.doi.org/10.1149/2.f05041if.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mirkin, C. A., and M. A. Ratner. "Molecular Electronics." Annual Review of Physical Chemistry 43, no. 1 (October 1992): 719–54. http://dx.doi.org/10.1146/annurev.pc.43.100192.003443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bloor, D. "Molecular Electronics." Physica Scripta T39 (January 1, 1991): 380–85. http://dx.doi.org/10.1088/0031-8949/1991/t39/061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Heath, James R. "Molecular Electronics." Annual Review of Materials Research 39, no. 1 (August 2009): 1–23. http://dx.doi.org/10.1146/annurev-matsci-082908-145401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

JACOBY, MITCH. "MOLECULAR ELECTRONICS." Chemical & Engineering News 80, no. 24 (June 17, 2002): 4. http://dx.doi.org/10.1021/cen-v080n024.p004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Joachim, C., and M. A. Ratner. "Molecular electronics." Proceedings of the National Academy of Sciences 102, no. 25 (June 14, 2005): 8800. http://dx.doi.org/10.1073/pnas.0504046102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bhunia, C. T. "Molecular Electronics." IETE Technical Review 13, no. 1 (January 1996): 11–15. http://dx.doi.org/10.1080/02564602.1996.11416569.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Munn, Robert. "Molecular Electronics." Physics Bulletin 39, no. 5 (May 1988): 202–4. http://dx.doi.org/10.1088/0031-9112/39/5/021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bell, D. A. "Molecular electronics." Physics Bulletin 39, no. 8 (August 1988): 303. http://dx.doi.org/10.1088/0031-9112/39/8/003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Molecular electronics"

1

Rajagopal, Senthil Arun. "SINGLE MOLECULE ELECTRONICS AND NANOFABRICATION OF MOLECULAR ELECTRONIC DEVICES." Miami University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=miami1155330219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jäckel, Frank. "Self assembly and electronic properties of conjugated molecules: towards mono molecular electronics." [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975579010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Peters, Ben. "Switchable molecular electronics." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Qian, Xiaofeng. "Electronic structure and transport in molecular and nanoscale electronics." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44783.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2008.
Includes bibliographical references (p. 239-256).
Two approaches based on first-principles method are developed to qualitatively and quantitatively study electronic structure and phase-coherent transport in molecular and nanoscale electronics, where both quantum mechanical nature of electrons and dimensionality of systems play the critical roles in their electronic, magnetic and optical properties. Our first approach is based on Green's function method with ab initio quasiatomic orbitals within Landauer formalism. To efficiently and accurately apply Green's function method, we develop a minimal basis-set of quasiatomic orbitals from plane-wave density functional theory (DFT) results. This minimal basis-set resembles quasi-angular momentum characteristics in solid state systems and it further validates Slater's original idea of linear combinations of atomic orbitals. Based on their ab initio tight-binding matrices, the accuracy, efficiency and stability of our scheme are demonstrated by various examples, including band structure, Fermi surface, Mülliken charge, bond order, and quasiatomic-orbitals-projected band structure and quasiatomic-orbitals-projected Fermi surface. Remarkably these quasiatomic orbitals reveal the symmetry and chemical bonding nature of different molecular, surface and solid systems. With this minimal basis-set, quantum conductance and density of states of coherent electron transport are calculated by Green's function method in the Landauer formalism. Several molecular and nanoscale systems are investigated including atomic wires, benzene dithiolate, phenalenyl dithiolate and carbon nanotube with and without different types of defects.
(cont.) Conductance eigenchannel decomposition, phase-encoded conductance eigenchannel visualization, and local current mapping are applied to achieve deeper understandings of electron transport mechanism, including spin dependence, dimensionality dependence, defect dependence, and quantum loop current induced by time-reversal symmetry breaking. Our second approach naturally arises due to the fact that electron transport is an excited state process. Time-dependent density functional theory (TDDFT) is a fundamental approach to account for dynamical correlations of wave functions and correct band gap in DFT. In our second approach, we mainly focus on the mathematical formulation and algorithm development of TDDFT with ultrasoft pseudopotentials and projector augmented wave method. Calculated optical absorption spectrum gives correct positions and shapes of excitation peaks compared to experimental results and other TDDFT results with norm-conserving pseudopotentials. Our method is further applied to study Fermi electron transmission through benzene dithiolate molecular junction sandwiched by two gold chains. It is first verified that group velocity of Fermi electron in the gold chain obtained by TDDFT agrees with that from band structure theory. Then under rigid band and zero bias approximations, a tiny Fermi electron wave packet from the chain is injected into the molecular junction. Transmission coefficient evaluated after the scattering process is around 5%. This is in agreement with the result from Green's function method. The two methods also show similar characteristic propagation channel. This nice agreement verifies that Green's function approach based on DFT reaches the TDDFT result without dynamical electron correlations in the linear response region.
(cont.) With further development, our quasiatomic orbitals can serve as a minimal basis-set to combine non-equilibrium Green's function and TDDFT together with GW quasi-particle corrections. The unified method will provide a more accurate and efficient way to explore various molecular and nanoscale electronic devices such as chemical sensor, electromechanical device, magnetic memory, and optical electronics.
by Xiaofeng Qian.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Larade, Brian. "Theory of molecular electronics." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38496.

Повний текст джерела
Анотація:
One of the central problems of molecular electronics is to understand electron conduction properties when a functional molecule is interfaced with external electrodes and put under external bias and gate potentials. These properties are influenced by the molecule-electrode interaction as well as by the structure of the functional region of the device. In this thesis, we investigate from first-principles the transport properties of a number of molecular-scale systems, and try to relate the observed features to both the atomic and electronic structure.
We start with a detailed analysis of transport through carbon atomic wires, and find that the equilibrium conductance is sensitive to charge transfer doping, and that the I-V characteristics exhibit negative differential resistance at high bias due to a shift of conduction channels relative to the states of the electrodes.
Using a Sc3N C80 metallofullerene device, we address several general questions about quantum transport through molecular systems and provide strong evidence that transport in such molecular devices is mediated by molecular electronic states which have been renormalized by the device environment.
The possibility of inducing nuclear dynamics in single-molecule Au-C 60-Au transistors via inelastic, resonance-mediated tunneling current is examined using a method based on the combination of a theory of current-triggered dynamics[1] and our nonequilibrium Green's function approach of computing electron transport properties.
We investigate several single molecule field-effect transistors consisting of conjugated molecules in contact with metallic electrodes. The source-drain current is found to be sensitive to the external gate potential and the molecular structure; with modulations of the current as large as several thousand fold.
Given a proposed operation principle, we obtain quantitative results on the rectification properties for an organic molecule rectifying diode. The I-V characteristic shows clear rectification behavior, and is explained from the simple picture of shifting of molecular levels due to substituents and an externally applied bias voltage.
Finally, we report a formulation combining density functional theory with the Keldysh nonequilibrium Green's function, for calculating quantum mechanical forces under external bias and during electron transport. We present an example force calculation consisting of a single atom point contact.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ryno, Sean Michael. "Molecular-scale understanding of electronic polarization in organic molecular crystals." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53919.

Повний текст джерела
Анотація:
Organic electronic materials, possessing conjugated π-systems, are extensively used as the active layers in organic electronic devices, where they are responsible for charge transport. In this dissertation, we employ a combination of quantum-mechanical and molecular- mechanics methods to provide insight into how molecular structure, orientation, packing, and local molecular environment influence the energetic landscape experienced by an excess charge in these organic electronic materials. We begin with an overview of charge transport in organic electronic materials with a focus on electronic polarization while discussing recent models, followed by a review of the computational methods employed throughout our investigations. We provide a bottom-up approach to the problem of describing electronic polarization by first laying the framework of our model and comparing calculated properties of bulk materials to available experimental data and previously proposed models. We then explore the effects of changing the electronic structure of our systems though perfluorination, and investigate the effects of modifying the crystalline packing through the addition of bulky functional groups while investigating how the non-bonded interactions between molecular neighbors change in different packing motifs. As interfaces are common in organic electronics and important processes such as charge transport and charge separation occur at these interfaces, we model organic-vacuum and organic-organic interfaces to determine the effect changing the environment from bulk to interface has on the electronic polarization. We first investigate the effects of removing polarizable medium adjacent to the charge carrier and then, by modeling a realistic organic- organic interface in a model solar cell, probe the environment of each molecular site at the interface to gain a more complete understanding of the complex energetic landscape. Finally, we conclude with a study of the non-bonded interactions in linear oligoacene dimers, model π-conjugated materials, to assess the impact of dimer configuration and acene length on the intermolecular interaction energy, and highlight the importance of dispersion and charge penetration to these systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Elise Yu-Tzu. "Electronic structure and quantum conductance of molecular and nano electronics." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65270.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 129-137).
This thesis is dedicated to the application of a large-scale first-principles approach to study the electronic structure and quantum conductance of realistic nanomaterials. Three systems are studied using Landauer formalism, Green's function technique and maximally localized Wannier functions. The main focus of this thesis lies on clarifying the effect of chemical modifications on electron transport at the nanoscale, as well as on predicting and designing new type of molecular and nanoelectronic devices. In the first study, we suggest and investigate a quantum interference effect in the porphyrin family molecules. We show that the transmission through a porphyrin molecule at or near the Fermi level varies by orders of magnitude following hydrogen tautomerization. The switching behavior identified in porphyrins implies new application directions in single molecular devices and molecular-size memory elements. Moving on from single molecules to a larger scale, we study the effect of chemical functionalizations to the transport properties of carbon nanotubes. We propose several covalent functionalization schemes for carbon nanotubes which display switchable on/off conductance in metallic tubes. The switching action is achieved by reversible control of bond-cleavage chemistry in [1+2] cycloadditions, via the 8p 3 8s p 2 rehybridization it induces; this leads to remarkable changes of conductance even at very low degrees of functionalization. Several strategies for real-time control on the conductance of carbon nanotubes are then proposed. Such designer functional groups would allow for the first time direct control of the electrical properties of metallic carbon nanotubes, with extensive applications in nanoscale devices. In the last part of the thesis we address the issue of low electrical conductivity observed in carbon nanotube networks. We characterize intertube tunneling between carbon nanotube junctions with or without a covalent linker, and explore the possibility of improving intertube coupling and enhance electrical tunneling by transition metal adsorptions on CNT surfaces. The strong hybridization between transition metal d orbitals with the CNT [pi] orbitals serves as an excellent electrical bridge for a broken carbon nanotube junction. The binding and coupling between a transition metal atom and sandwiching nanotubes can be even stronger in case of nitrogendoped carbon nanotubes. Our studies suggest a more effective strategy than the current cross-linking methods used in carbon nanotube networks.
by Elise Yu-Tzu Li.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wiles, Alan Andrew. "Redox active molecules with molecular electronics and synthetic applications." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4878/.

Повний текст джерела
Анотація:
Redox active molecules are ubiquitous to nature and have properties that make them coveted targets for applications in areas of synthesis as well as for the development of materials. This thesis describes the synthesis and characterisation of several flavin donor-acceptor dyads designed around an oligothiophene donor backbone and a flavin acceptor moiety. These show potential applications as optoelectronic materials. It also describes the synthesis of a ferrocene-flavin tetracyanobutadiene super-acceptor compound which showed preliminary evidence of non-linear-optic effects. Finally, a novel method was developed to investigate the redox umpolung activated reactions of vinylferrocene. The vinyl group of vinylferrocene was activated by polarity inversion of ferrocene to ferrocenium and was able to undergo Diels-Alder cycloadditions with cyclobutadiene and furan, as well as, Markovnikov addition of thiols. These reactions were then used to explore the use of vinylferrocene as a redox auxiliary and as a redox active tag in polymers and have the potential to be used in nanoparticles as well as biological systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ruttkowski, Eike. "Device development for molecular electronics /." Göttingen : Sierke, 2007. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016480628&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vezzoli, Andrea. "Environmental effects in molecular electronics." Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2031980/.

Повний текст джерела
Анотація:
Researchers have looked at the possibility of using single molecules as functional building blocks in electronics circuits since the 1970s. The field of molecular electronics, despite its experimental and theoretical challenges, has continued to grow incessantly from a simple scientific curiosity to an emerging field with hundreds of publications per year. Thanks to the development of scanning probe microscopy a variety of techniques currently used to characterise the electrical properties of single molecules has been developed, and molecular systems mimicking the behaviour of traditional electronic components, such as transistors or rectifiers, have been prepared. Despite the obvious fact that supramolecular interactions must play a role in the charge transfer process, only a small number of reports on the subject have been published. In this thesis a set of molecular wires with an oligothiophene central unit, sandwiched between two insulating chains, has been used to probe the effect of such interactions on molecular conductance using several scanning tunnelling microscopy techniques. It has been found that the side-chain length has little effect on molecular conductance, but the presence of water in the surrounding environment triggers an increase in conductance and a switch in the behaviour from activationless to thermally-activated. Furthermore, upon exposure to electron-withdrawing small molecules, these oligothiophene molecular wires form charge transfer complexes, with conductance enhanced by a factor up to 100. Measurements performed in UHV confirmed the observed behaviour, and theoretical calculations were performed to explain it in the coherent tunnelling regime. A gateway state arising from coupling of the molecular backbone to the sulfur contacts accounts for the observed shallow decay of conductance with length, while shifting of transport resonances upon interaction with water and the appearance of interference features upon charge transfer complexation explained the temperature dependence and the conductance enhancement, with experimental observation closely matched by DFT calculations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Molecular electronics"

1

Kristof, Sienicki, ed. Molecular electronics and molecular electronic devices. Boca Raton, FL: CRC Press, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hong, Felix T., ed. Molecular Electronics. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7482-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lazarev, P. I., ed. Molecular Electronics. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3392-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Joshua, Jortner, Ratner Mark A. 1942-, and International Union of Pure and Applied Chemistry., eds. Molecular electronics. Osney Mead, Oxford [England]: Blackwell Science, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1947-, Ashwell Geoffrey J., ed. Molecular electronics. Taunton, Somerset, England: Research Studies Press, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chiu, Chien-Yang. Putting Molecules into Molecular Electronics. [New York, N.Y.?]: [publisher not identified], 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cuniberti, Gianaurelio, Klaus Richter, and Giorgos Fagas, eds. Introducing Molecular Electronics. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/3-540-31514-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Guo, Xuefeng, ed. Molecular-Scale Electronics. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03305-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mitsumasa, Iwamoto, ed. Nano-molecular electronics. Tokyo: Japanese Journal of Applied Physics, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

R, Reimers Jeffrey, and United Engineering Foundation (U.S.), eds. Molecular electronics III. New York, N.Y: New York Academy of Sciences, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Molecular electronics"

1

Petty, Michael C., Takashi Nagase, Hitoshi Suzuki, and Hiroyoshi Naito. "Molecular Electronics." In Springer Handbook of Electronic and Photonic Materials, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48933-9_51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zwolak, Michael, and Massimiliano Di Ventra. "Molecular Electronics." In Introduction to Nanoscale Science and Technology, 261–82. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/1-4020-7757-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ghosh, Subhasis. "Molecular Electronics." In Advanced Structured Materials, 235–60. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6214-8_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Launay, J. P. "Molecular Electronics." In Granular Nanoelectronics, 413–23. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3689-9_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nagahara, Larry A. "Molecular Electronics." In Printed Organic and Molecular Electronics, 615–67. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9074-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Petty, Michael. "Molecular Electronics." In Springer Handbook of Electronic and Photonic Materials, 1219–39. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29185-7_53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Goodsell, David S. "Molecular Electronics." In Atomic Evidence, 77–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32510-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ngo, Christian, and Marcel H. Van de Voorde. "Molecular Electronics." In Nanotechnology in a Nutshell, 165–78. Paris: Atlantis Press, 2014. http://dx.doi.org/10.2991/978-94-6239-012-6_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yamada, Toyo Kazu. "Single Molecular Spintronics." In Electronic Processes in Organic Electronics, 403–16. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55206-2_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pope, Martin, and Charlese E. Swenberg. "Molecular electronics." In Electronic Processes in Organic Crystals and Polymers, 1172–81. Oxford University PressNew York, NY, 1999. http://dx.doi.org/10.1093/oso/9780195129632.003.0019.

Повний текст джерела
Анотація:
Abstract Molecular electronics as a discipline is practiced by essentially two groups of investigators, and these groups define the field. One group studies the electronic properties of molecular materials without primary focus on the number of molecules involved and the other attempts to reduce the size of the molecular domain that will carry out the electronic task to that of a single molecule, or a few molecules. At present, there is much greater activity in the former group, although there is an inevitable blurring of distinctions between the two groups. Molecular electronics includes liquid-crystal displays, NLO devices, electrophotography, electroluminescence, photoconductive and photovoltaic devices, ferroelectrics, sensors, batteries, and, more recently, metallic, magnetic, and superconductive systems. An introduction to the developments in this field is provided by Petty (1996).
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Molecular electronics"

1

Butts, Michael, Andrée DeHon, and Seth Copen Goldstein. "Molecular electronics." In the 2002 IEEE/ACM international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/774572.774636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

MÜLLER, KARL-HEINZ. "TOWARDS MOLECULAR ELECTRONICS: CONDUCTION OF SINGLE MOLECULES." In Oz Nano 03. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702692_0023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Greenbaum, E. "Biological molecular electronics." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.95317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lyshevski, M. A. "Molecular Fluidic Electronics." In 2006 Sixth IEEE Conference on Nanotechnology. IEEE, 2006. http://dx.doi.org/10.1109/nano.2006.247599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pal, Amlan J. "From organic electronics to molecular electronics." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4709872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Keukes, Phil. "Defect tolerant molecular electronics." In the 33rd annual ACM/IEEE international symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/360128.360131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vilan, Ayelet, David Cahen, Dinesh K. Aswal, and Anil K. Debnath. "Molecular Electronics—Current Challenges." In INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010). AIP, 2010. http://dx.doi.org/10.1063/1.3530527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

PANTELIDES, SOKRATES T., MASSIMILIANO DI VENTRA, and NORTON D. LANG. "SIMULATIONS OF MOLECULAR ELECTRONICS." In Papers Presented at MMN 2000. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810861_0083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Terao, J. "(Invited) Functionalized Insulated Molecular Wires for Molecular Electronics." In 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.e-1-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hall, Drew A., Nagaraj Ananthapad Manabhan, Chulmin Choi, Le Zheng, Paul P. Pan, Carl W. Fuller, Pius P. Padayatti, et al. "A CMOS Molecular Electronics Chip for Single-Molecule Biosensing." In 2022 IEEE International Solid- State Circuits Conference (ISSCC). IEEE, 2022. http://dx.doi.org/10.1109/isscc42614.2022.9731770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Molecular electronics"

1

Pearl, Thomas P. Nanoscale Electronics from a Molecular Perspective. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada559736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tour, James M., Ruilian Wu, and Jeffry S. Schumm. Approaches to Orthogonally Fused Conducting Polymers for Molecular Electronics. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dentinger, Paul M., Gregory F. Cardinale, Luke L. Hunter, and Albert Alec Talin. A Molecular- and Nano-Electronics Test (MONET) platform fabricated using extreme ultraviolet lithography. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/918247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Barron, Andrew R. Group III Materials: Molecular Design of New Phases with Applications in Electronics and Optoelectronics,. Fort Belvoir, VA: Defense Technical Information Center, July 1996. http://dx.doi.org/10.21236/ada310607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pantelides, Sokrates T., Mark A. Reed, James S. Murday, and Ari Aviram. Materials Research Society Symposium Proceedings Volume 582. Molecular Electronics. Symposium held November 29-December 2, 1999, Boston, Massachusetts, U.S.A. Fort Belvoir, VA: Defense Technical Information Center, December 1999. http://dx.doi.org/10.21236/ada389363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Datta, S., R. P. Andres, D. B. Janes, C. P. Kubiak, and R. G. Reifenberger. Electronic Conduction in Molecular Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada344360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kasha, Michael. Energy Transformation in Molecular Electronic Systems. Office of Scientific and Technical Information (OSTI), May 1999. http://dx.doi.org/10.2172/8186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lopez, Rafael, Ignacio Ema, Guillermo Ramirez, and Jaime Fernandez Rico. Molecular Slater Integrals for Electronic Energy Calculations. Fort Belvoir, VA: Defense Technical Information Center, October 2010. http://dx.doi.org/10.21236/ada531785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Langhoff, P. W., J. A. Boatz, R. J. Hinde, and J. A. Sheehy. Atomic Spectral Methods for Molecular Electronic Structure Calculations. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada429238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kresin, Vitaly. Delocalized electrons in atomic and molecular nanoclusters. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1417266.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії