Добірка наукової літератури з теми "Molecular Charge"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Molecular Charge".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Molecular Charge"

1

Zhu, Xin, Xiao Jie Li, Yang Liu, Xi Shan Guo, and Yin Fei Zheng. "Numerical Study of Single Molecular Charge Sensing by FET-Integrated Nanopore Biosensor." Materials Science Forum 1058 (April 5, 2022): 99–104. http://dx.doi.org/10.4028/p-8kmke2.

Повний текст джерела
Анотація:
This report studies the charge-based sensing modality of FET-embedded nanopore biosensors through FEM simulation. PNP equation is solved to analyze the mirror charge introduced by charged biomolecule while threading through the nanopore-FET sensor. Negative and positive charged molecules are analyzed respectively. Obvious local potential change induced by the presenting of charged molecules nearby is observed. In addition, the transport-induced descreening effect is observed under intensive bias, which might explain the capability of charge sensing even under high concentrations such as 1 M for FET-nanopore biosensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hinze, Juergen, F. Biegler-Konig, and A. G. Lowe. "Molecular charge density analysis." Canadian Journal of Chemistry 74, no. 6 (June 1, 1996): 1049–53. http://dx.doi.org/10.1139/v96-117.

Повний текст джерела
Анотація:
It is proposed to analyse the first-order reduced density matrix of a molecular wave function in terms of the first-order reduced density matrices of different states of the constituent atoms. With this an unambiguous partitioning of the molecular charge distribution in terms of the atomic charge distributions is obtained. Simple practical formulae are derived, such that in many ab initio molecular wave function calculations the analysis proposed can be carried out routinely. The results obtained should be useful for the interpretation of molecular wave functions in terms of their atomic constituents, as well as for the determination of atomic form factors to be used in X-ray molecular structure determination. Some simple examples are given, and the results obtained are compared with those obtained using other methods of analysis. Key words: charge density, density matrix, goodness-of-fit, correlation coefficient, standard deviation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alavi, Ali, Luis J. Alvarez, Stephen R. Elliott, and Ian R. McDonald. "Charge-transfer molecular dynamics." Philosophical Magazine B 65, no. 3 (March 1992): 489–500. http://dx.doi.org/10.1080/13642819208207645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Strohriegl, P., and J. V. Grazulevicius. "Charge-Transporting Molecular Glasses." Advanced Materials 14, no. 20 (October 16, 2002): 1439–52. http://dx.doi.org/10.1002/1521-4095(20021016)14:20<1439::aid-adma1439>3.0.co;2-h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wörner, Hans Jakob, Christopher A. Arrell, Natalie Banerji, Andrea Cannizzo, Majed Chergui, Akshaya K. Das, Peter Hamm, et al. "Charge migration and charge transfer in molecular systems." Structural Dynamics 4, no. 6 (November 2017): 061508. http://dx.doi.org/10.1063/1.4996505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Klumpp, Douglas A. "Molecular rearrangements of superelectrophiles." Beilstein Journal of Organic Chemistry 7 (March 23, 2011): 346–63. http://dx.doi.org/10.3762/bjoc.7.45.

Повний текст джерела
Анотація:
Superelectrophiles are multiply charged cationic species (dications, trications, etc.) which are characterized by their reactions with weak nucleophiles. These reactive intermediates may also undergo a wide variety of rearrangement-type reactions. Superelectrophilic rearrangements are often driven by charge–charge repulsive effects, as these densely charged ions react so as to maximize the distances between charge centers. These rearrangements involve reaction steps similar to monocationic rearrangements, such as alkyl group shifts, Wagner–Meerwein shifts, hydride shifts, ring opening reactions, and other skeletal rearrangements. This review will describe these types of superelectrophilic reactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hersam, M. C., and R. G. Reifenberger. "Charge Transport through Molecular Junctions." MRS Bulletin 29, no. 6 (June 2004): 385–90. http://dx.doi.org/10.1557/mrs2004.120.

Повний текст джерела
Анотація:
AbstractIn conventional solid-state electronic devices, junctions and interfaces play a significant if not dominant role in controlling charge transport. Although the emerging field of molecular electronics often focuses on the properties of the molecule in the design and understanding of device behavior, the effects of interfaces and junctions are often of comparable importance. This article explores recent work in the study of metal–molecule–metal and semiconductor–molecule–metal junctions. Specific issues include the mixing of discrete molecular levels with the metal continuum, charge transfer between molecules and semiconductors, electron-stimulated desorption, and resonant tunneling. By acknowledging the consequences of junction/interface effects, realistic prospects and limitations can be identified for molecular electronic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hopper, A. K. "MOLECULAR BIOLOGY:Nuclear Functions Charge Ahead." Science 282, no. 5396 (December 11, 1998): 2003–4. http://dx.doi.org/10.1126/science.282.5396.2003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fletcher, Liz. "Roche leads molecular diagnostics charge." Nature Biotechnology 20, no. 1 (January 2002): 6–7. http://dx.doi.org/10.1038/nbt0102-6b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jan van der Molen, Sense, and Peter Liljeroth. "Charge transport through molecular switches." Journal of Physics: Condensed Matter 22, no. 13 (March 17, 2010): 133001. http://dx.doi.org/10.1088/0953-8984/22/13/133001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Molecular Charge"

1

Renfrow, Steven N. (Steven Neal). "Charge State Distributions in Molecular Dissociation." Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278340/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Smith, P. E. "Charge calculations in molecular mechanics." Thesis, University of Liverpool, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Latt, Kyaw Zin. "Manipulation of Molecular Charge Density Waves and Molecular Transport Systems." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1557418915977344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tylleman, Benoît. "Molecular engineering of anthradithiophenes for charge transport." Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209650.

Повний текст джерела
Анотація:
L’électronique organique est un nouveau domaine de recherche qui combine les propriétés électriques de l’électronique avec les propriétés mécanique des matériaux organiques. De nouvelles applications telles que des écrans flexibles, de l’éclairage de surface ou des cellules photovoltaïques flexibles, qui ne sont pas possible avec l’électronique basée sur le silicium, sont envisagées. Les semi-conducteurs organiques sont les matériaux clés de ces dispositifs électroniques. Pour le design moléculaire, deux paramètres doivent être optimisés :l’énergie de réorganisation qui doit être minimisée et l’intégrale de transfert qui doit être maximisée. Avec un noyau aromatique rigide et étendu, les acènes linéaires tels que le pentacène et les anthradithiophènes (ADT) possèdent des énergies de réorganisation parmi les plus petites. Quant à l’intégrale de transfert, son intensité va dépendre de l’arrangement moléculaire qui ne peut malheureusement pas encore être prédit. Divers substituents peuvent être introduit sur le noyau aromatique afin de moduler l’arrangement moléculaire et ainsi maximiser l’intégrale de transfert.

Durant cette thèse, nous nous sommes intéressés à l’amélioration du transport de charge des anthradithiophènes par design moléculaire. Deux approches ont été envisagées :l’approche moléculaire et l’approche macromoléculaire. L’approche moléculaire se base sur les travaux de Takimiya sur les naphtodithiophènes. Dans ces travaux, il est montré que la mobilité de charge est supérieure lorsque l’isomère anti est utilisé plutôt que l’isomère syn. Les anthradithiophènes sont généralement utilisés en tant que mélange d’isomères syn et anti ;ceci est une conséquence de la voie de synthèse utilisée. Il est raisonnable de penser qu’utiliser des ADT isomériquement purs donnera des mobilités de charge plus élevées, à l’instar des naphtodithiophènes. Le premier objectif de cette thèse est donc de développer une méthodologie permettant d’obtenir des ADT isomériquement purs. L’approche macromoléculaire est basée sur les travaux théoriques d’Antoine Van Vooren sur le couplage électronique via pont éthylène (non conjugué). Selon ces calculs, le couplage électronique entre deux noyaux aromatiques est plus important lorsqu’ils sont reliés par un pont éthylène que lorsqu’ils sont indépendants. Le second objectif de cette thèse est de développer une méthodologie qui permet d’attacher deux ADTs via a pont éthylène.

Une stratégie de synthèse menant à l’anti-ADT a été développée. La quantité d’anti-ADT disponible via cette méthodologie est assez faible. Par conséquent, une autre méthodologie a été développée. En fonctionnalisant un des intermédiaires de réaction, il est possible de séparer les deux isomères et ainsi d’obtenir de plus grandes quantités d’anti-ADT et de syn-ADT. Les spectres d’absorption UV-vis du mélange et des différents isomères ont été comparés. Des études sur des dispositifs électroniques utilisant des ADT isomériquement purs sont en cours.

Une stratégie de synthèse menant à l’ADT ponté a été développée. Dans cette stratégie, le pont éthylène est synthétisé en premier et les entités anthradithiophènes générées dans un deuxième temps. L’ADT ponté a été obtenu à l’état de traces, détectées uniquement par spectrométrie de masse. Des efforts synthétique supplémentaire sont nécessaire afin d’obtenir l’ADT ponté dans des quantités suffisantes pour fabriquer des dispositifs électroniques. La fabrication de dispositifs électroniques est une étape cruciale dans la détermination de l’impact du pont sur la mobilité de charge.


Doctorat en Sciences
info:eu-repo/semantics/nonPublished

Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ghassemizadeh, Reyhaneh [Verfasser], and Michael [Akademischer Betreuer] Walter. "Ab initio study on molecular charge transport and conformational analysis of organic molecules." Freiburg : Universität, 2019. http://d-nb.info/1190560429/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Goryaynov, Alexander G. "Molecular Size and Charge Effects on Nucleocytoplasmic Transport Studied By Single-Molecule Microscopy." Bowling Green State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1357278635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bennett, M. A. "Charge exchange between light ions." Thesis, University of Newcastle Upon Tyne, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hudson, B. D. "Charge calculations : Theory and applications." Thesis, University of Liverpool, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372697.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fonari, Alexandr. "Theoretical description of charge-transport and charge-generation parameters in single-component and bimolecular charge-transfer organic semiconductors." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54323.

Повний текст джерела
Анотація:
In this dissertation, we employ a number of computational methods, including Ab Initio, Density Functional Theory, and Molecular Dynamics simulations to investigate key microscopic parameters that govern charge-transport and charge-generation in single-component and bimolecular charge-transfer organic semiconductors. First, electronic (transfer integrals, bandwidths, effective masses) and electron-phonon couplings of single-component organic semiconductors are discussed. In particular, we evaluate microscopic charge-transport parameters in a series of nonlinear acenes with extended pi-conjugated cores. Our studies suggest that high charge-carrier mobilities are expected in these materials, since large electronic couplings are obtained and the formation of self-localized polarons due to local and nonlocal electron-phonon couplings is unlikely. Next, we evaluate charge detrapping due to interaction with intra-molecular crystal vibrations in order to explain changes in experimentally measured electric conductivity generated by pulse excitations in the IR region of a photoresistor based on pentacene/C60 thin film. Here, we directly relate the nonlocal electron-phonon coupling constants with variations in photoconductivity. In terms of charge-generation from an excited manifold, we evaluate the modulation of the state couplings between singlet and triplet excited states due to crystal vibrations, in order to understand the effect of lattice vibrations on singlet fission in tetracene crystal. We find that the state coupling between localized singlet and correlated triplet states is much more strongly affected by the dynamical disorder due to lattice vibrations than the coupling between the charge-transfer singlet and triplet states. Next, the impact of Hartree-Fock exchange in the description of transport properties in crystalline organic semiconductors is discussed. Depending on the nature of the electronic coupling, transfer integrals and bandwidths can show a significant increase as a function of the amount of the Hartree-Fock exchange included in the functional. Similar trend is observed for lattice relaxation energy. It is also shown that the ratio between electronic coupling and lattice relaxation energy is practically independent of the amount of the Hartree-Fock exchange, making this quantity a good candidate for incorporation into tight-binding transport models. We also demonstrate that it is possible to find an amount of the Hartree-Fock exchange that recovers (quasi-particle) band structure obtained from a highly accurate G0W0 approach. Finally, a microscopic understanding of a phase transition in charge-carrier mobility from temperature independent to thermally activated in stilbene-tetrafluoro-tetracyanoquinodimethane crystal is provided.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stires, John C. "Charge transfer complexes in molecular electronics : approaching metallic conduction /." Diss., Connect to a 24 p. preview or request complete full text in PDF formate. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3250672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Molecular Charge"

1

May, Volkhard. Charge and energy transfer dynamics in molecular systems. 3rd ed. Weinheim: Wiley-VCH, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Oliver, Kühn, ed. Charge and energy transfer dynamics in molecular systems. 2nd ed. Weinheim: Wiley-VCH, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Oliver, Kühn, ed. Charge and energy transfer dynamics in molecular systems. 3rd ed. Weinheim: Wiley-VCH, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Siebbeles, Laurens D. A., and Ferdinand C. Grozema, eds. Charge and Exciton Transport through Molecular Wires. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Siebbeles, Laurens D. A., and Ferdinand Cornelius Grozema. Charge and exciton transport through molecular wires. Weinheim: Wiley-VCH, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Miniewicz, Andrazej. Search for molecular-ionic and molecular crystals exhibiting ferroelectric and electrooptic properties. Wrocław: Wydawnictwo Politechniki Wrocławskiej, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

May, Volkhard, and Oliver Kühn. Charge and Energy Transfer Dynamics in Molecular Systems. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oliver, Kühn, ed. Charge and energy transfer dynamics in molecular systems: A theoretical introduction. Berlin: Wiley-VCH, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tan, Shu Fen. Molecular Electronic Control Over Tunneling Charge Transfer Plasmons Modes. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8803-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

A, Nicolini Claudio, ed. Biophysics of electron transfer and molecular bioelectronics. New York: Plenum Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Molecular Charge"

1

Ward, Michael D. "Charge-Assisted Hydrogen-Bonded Networks." In Molecular Networks, 1–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/430_2008_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Peters, Nils, Martin Dichgans, Sankar Surendran, Josep M. Argilés, Francisco J. López-Soriano, Sílvia Busquets, Klaus Dittmann, et al. "CHARGE Syndrome." In Encyclopedia of Molecular Mechanisms of Disease, 312–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Peters, Nils, Martin Dichgans, Sankar Surendran, Josep M. Argilés, Francisco J. López-Soriano, Sílvia Busquets, Klaus Dittmann, et al. "CHARGE Association." In Encyclopedia of Molecular Mechanisms of Disease, 312. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_7575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ishii, Hiroyuki. "Charge Transport Simulations for Organic Semiconductors." In Molecular Technology, 1–23. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527823987.vol1_c1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grozema, Ferdinand C., and Laurens D. A. Siebbeles. "Introduction: Molecular Electronics and Molecular Wires." In Charge and Exciton Transport through Molecular Wires, 1–15. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633074.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhu, Tianyu, Troy Van Voorhis, and Piotr de Silva. "Charge Transfer in Molecular Materials." In Handbook of Materials Modeling, 227–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-44677-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhu, Tianyu, Troy Van Voorhis, and Piotr de Silva. "Charge Transfer in Molecular Materials." In Handbook of Materials Modeling, 1–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-42913-7_7-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schweiker, Katrina L., and George I. Makhatadze. "Protein Stabilization by the Rational Design of Surface Charge–Charge Interactions." In Methods in Molecular Biology, 261–83. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-367-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Heil, T. G. "Astrophysically Important Charge Transfer Reactions, Recent Theoretical Results." In Molecular Astrophysics, 712–13. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5432-8_50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wielopolski, Mateusz, Dirk M. Guldi, Timothy Clark, and Nazario Martín. "Charge Transport through Molecules: Organic Nanocables for Molecular Electronics." In Charge and Exciton Transport through Molecular Wires, 157–87. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633074.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Molecular Charge"

1

Costa, Rogério F., Antônio S. N. Aguiar, Igor D. Borges, Ricardo Ternavisk, Clodoaldo Valverde, Ademir J. Camargo, Delson Braz, Hamilton B. Napolitano, and Solemar S. Oliveira. "The influence of Chloride Shift Position on hydroxychlorochalcone." In VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol202037.

Повний текст джерела
Анотація:
This work describes molecular structures of chalcones 2'-Hydroxy-4',6'-dimethyl-2-chlorochalcone and 2'-Hydroxy-4',6'-dimethyl-4-chlorochalcone and overlap of these structures in order to detect the change in planarity. The Hirshfeld Surface analysis to investigate when the position of the atom the chlorine in the aromatic ring is changed and how does this change influence in the properties of the organic compound. The geometric molecular were obtained through the DFT/M06-2X/6-311++G(2d, 2p) theory level. Frontier Molecular Orbital, NBO and MEP map were determined, in order to observe the information related to charge transfer in the molecule. The interactions between the molecules were verified with the aid of QTAIM.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xu, Dongyan, Deyu Li, and Yongsheng Leng. "Molecular Dynamics Simulations of Water and Ion Structures Near Charged Surfaces." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42536.

Повний текст джерела
Анотація:
Extensive research has been devoted to nanofluidics in the past decade because of its potential applications in single molecule sensing and manipulations. Fundamental studies have attracted significant attention in this research field since the success of nanofluidic devices depends on a thorough understanding of the fluidic, ionic, and molecular behavior in highly confined nano-environments. In this paper, we report on molecular dynamics simulations of the effect of surface charge densities on the ion distribution and the water density profile close to a charged surface. We demonstrate that surface charges not only interact with mobile ions in the electrolyte, but also interact with water molecules due to their polarizability, and hence influence the orientation of water molecules in the near wall region. For the first time, we show that as the surface charge density increases, the water molecules within ∼ 5 Å of the {100} silicon surface will evolve from one layer into two layers. Meanwhile, the orientation of the water molecules is more aligned instead of randomly distributed. This layering effect may have important implications on electroosmotic flow through nanochannels and heat transfer across the solid-liquid interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cunningham, Ethan, Martin Beyer, Milan Oncak, and Christian van der Linde. "PHOTOINDUCED CHARGE TRANSFER PROCESSES." In 2021 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2021. http://dx.doi.org/10.15278/isms.2021.fj10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Banerjee, Soumik, Sohail Murad, and Ishwar K. Puri. "Carbon Nanotubes as Nano-Pumps: A Molecular Dynamics Investigation." In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96206.

Повний текст джерела
Анотація:
This paper focuses on the use of carbon nanotubes (CNT) for ion separation and encapsulation from a solution containing both positive and negatively charged ions. Metal ion separation from drinking water or during material processing applications can be an important issue. We use molecular dynamics simulations to demonstrate that a pair of carbon nanotubes with patterned positive and negative charges can form the basis of an effective device for the separation or encapsulation of ions. We consider three different charge patterns: i) Electrodes, where all the atoms of a CNT are charged with a finite surface charge density; ii) Alternate axial bands of positive and negative charges on each electrode; and iii) Alternate circumferential rings of positive and negative charges on the electrodes. The charge pattern determines the preferential intake of water and/or ions by a nanotube. As conventional electrodes they adsorb ions, but with an alternate band or ring charge pattern they adsorb the water molecules. Our simulations show that a charged CNT can be used as a nano-pump that provides purified water or ions from an impure solution.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shirota, Yasuhiko, Kenji Okumoto, Hitoshi Ohishi, Masatake Tanaka, Masato Nakao, Kenjiro Wayaku, Satoyuki Nomura, and Hiroshi Kageyama. "Charge transport in amorphous molecular materials." In Optics & Photonics 2005, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2005. http://dx.doi.org/10.1117/12.620255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shirota, Yasuhiko, Satoyuki Nomura, and Hiroshi Kageyama. "Charge transport in amorphous molecular materials." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Zakya H. Kafafi. SPIE, 1998. http://dx.doi.org/10.1117/12.332606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abramavicius, Darius, Vidmantas Gulbinas, and Leonas Valkunas. "Charge separation in molecular compounds from the charge transfer states." In Advanced Optical Materials and Devices, edited by Steponas P. Asmontas and Jonas Gradauskas. SPIE, 2001. http://dx.doi.org/10.1117/12.425482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yamaguchi, Yasutaka, Donatas Surblys, Satoshi Nakaoka, Koji Kuroda, Tadashi Nakajima, and Hideo Fujimura. "Molecular Analysis on the Dynamic Properties of Water Droplet at Solid-Liquid Interface Based on MD Simulations." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44474.

Повний текст джерела
Анотація:
Molecular dynamics simulations of single water or water-IPA (Isopropyl-alcohol) mixture droplets on a solid surface were performed. The interaction for solid-water molecules was modeled as the combination of L-J and Coulomb potentials, and the effects of Coulomb interaction were independently investigated by appending arbitrary electric charge as a parameter on the solid surface. The water droplet became more wettable both with positive and negative surface charges as the absolute value of the electric charge increased, and the cosine of the contact angle was roughly a linear function of the absolute value of the electric charge although the correlation was obviously different between positive and negative charge values. Multiple molecular orientations seemed possible as local equilibrium states near the adsorption layer on negatively charged surface, and the mean rotational diffusion was higher there. On the other hand, mean rotational diffusion was reduced in the vicinity of the positively charged surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xu, Dongyan, Deyu Li, Yongsheng Leng, and Yunfei Chen. "Molecular Dynamics Simulation of Water and Ion Profiles Near Charged (100) and (111) Silicon Surfaces." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52248.

Повний текст джерела
Анотація:
Fundamental studies in nanofluidics have attracted significant attention in the past decade since the success of nanofluidic devices depends on a thorough understanding of the fluidic, ionic, and molecular behaviors in highly confined nano-environments. In this work, molecular dynamics simulations of the effect of surface charge densities on the ion and water distribution in the near wall region has been performed for both (100) and (111) silicon surfaces. We demonstrate that surface charges not only interact with mobile ions in the electrolyte, but also interact with water molecules due to their polarizability and hence influence the orientation of water molecules close to the charged surface. It is shown that as the surface charge density increases, water molecules within ∼ 5 Å from the (100) silicon surface can evolve from one layer into two layers and meanwhile, the orientation of water molecules is more aligned instead of randomly distributed. However, no extra water layer is observed near a (111) silicon surface even under a surface charge density of as high as −0.2034 C/m2. The above phenomenon may be related to the different surface atom densities of (100) and (111) silicon surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Leng, Yaojian, and Clayton C. Williams. "Molecular charge mapping with electrostatic force microscope." In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, edited by Clayton C. Williams. SPIE, 1993. http://dx.doi.org/10.1117/12.146383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Molecular Charge"

1

Swanson, Jessica. CHARACTERIZING COUPLED CHARGE TRANSPORT WITH MULTISCALE MOLECULAR DYNAMICS. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1164073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

John F. Endicott. Photoinduced Charge and Energy Transfer Processes in Molecular Aggregates. Office of Scientific and Technical Information (OSTI), October 2009. http://dx.doi.org/10.2172/966130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bocarsly, A. B. (Photoinduced charge separation in solid-state and molecular systems: Year three progress report). Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5730107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bocarsly, A. B. [Photoinduced charge separation in solid-state and molecular systems: Year three progress report]. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10132347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Weinberg, G. M. Measurement of charge exchange cross sections for highly charged xenon and thorium ions with molecular hydrogen in a Penning Ion Trap. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/188635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Boudouris, Bryan W. Molecular Design and Device Application of Radical Polymers for Improved Charge Extraction in Organic Photovoltaic Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ada623539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pasternack, Gary R. Molecular Changes in pp32 in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada407388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pasternack, Gary R. Molecular Changes in pp32 in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada422982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Denton, M. Single molecule detection using charge-coupled device array technology. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/7237575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Glosli, James N., and Michael R. Philpott. Adsorption of Hydrated Halide Ions on Charged Electrodes. Molecular Dynamics Simulation. Fort Belvoir, VA: Defense Technical Information Center, April 1993. http://dx.doi.org/10.21236/ada263137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії