Добірка наукової літератури з теми "Modulo geometrico"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Modulo geometrico".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Modulo geometrico"
Kaneko, Hajime. "Distribution of Geometric Sequences Modulo 1." Results in Mathematics 52, no. 1-2 (July 21, 2008): 91–109. http://dx.doi.org/10.1007/s00025-008-0287-3.
Повний текст джерелаSovrano, Valeria Anna, and Giorgio Vallortigara. "Dissecting the Geometric Module." Psychological Science 17, no. 7 (July 2006): 616–21. http://dx.doi.org/10.1111/j.1467-9280.2006.01753.x.
Повний текст джерелаBekti, Novita, Winda Dwi, Nofefta Gola, Reni Raudhotus, Lailatul Nuraini, and Firdha Kusuma Ayu Anggraeni. "PENGEMBANGAN MODUL INTERAKTIF BERBASIS MACROMEDIA FLASH 8 PADA MATERI OPTIK GEOMETRI." ORBITA: Jurnal Kajian, Inovasi dan Aplikasi Pendidikan Fisika 7, no. 1 (May 5, 2021): 123. http://dx.doi.org/10.31764/orbita.v7i1.3971.
Повний текст джерелаDunn, Corey, and Zoë Smith. "Algebraic restrictions on geometric realizations of curvature models." Archivum Mathematicum, no. 3 (2021): 175–94. http://dx.doi.org/10.5817/am2021-3-175.
Повний текст джерелаSeppala, M., and T. Sorvali. "Geometric moduli for klein surfaces." Rocky Mountain Journal of Mathematics 19, no. 3 (September 1989): 939–46. http://dx.doi.org/10.1216/rmj-1989-19-3-939.
Повний текст джерелаELSENHANS, ANDREAS-STEPHAN, and JÖRG JAHNEL. "On the computation of the Picard group for K3 surfaces." Mathematical Proceedings of the Cambridge Philosophical Society 151, no. 2 (June 10, 2011): 263–70. http://dx.doi.org/10.1017/s0305004111000326.
Повний текст джерелаDemchyshyn, Anatoliy, and Ganna Smakovska. "Research of Geometric and Information Models for Awning Structures." Mathematical and computer modelling. Series: Technical sciences 23 (December 6, 2022): 36–44. http://dx.doi.org/10.32626/2308-5916.2022-23.36-44.
Повний текст джерелаLapkovsky, Serhii, Liudmyla Danylova, Volodymyr Frolov, Vasyl Prykhodko, and Maksym Gladskyi. "GEOMETRIC ASPECT OF CHOOSING MODELS OF BASIC TECHNOLOGICAL EQUIPMENT." Technical Sciences and Technologies, no. 4(30) (2022): 40–49. http://dx.doi.org/10.25140/2411-5363-2022-4(30)-40-49.
Повний текст джерелаZhang, Zi Li, Jiang Yuan, Wei Hu Zhou, Ya Wei Wang, and Yan Xu. "Design and Implementation of Software System for Large-Scale Coordinate Measurement Based on the Laser Tracker." Applied Mechanics and Materials 103 (September 2011): 320–26. http://dx.doi.org/10.4028/www.scientific.net/amm.103.320.
Повний текст джерелаBecker, Katrin, Melanie Becker, Cumrun Vafa, and Johannes Walcher. "Moduli stabilization in non-geometric backgrounds." Nuclear Physics B 770, no. 1-2 (May 2007): 1–46. http://dx.doi.org/10.1016/j.nuclphysb.2007.01.034.
Повний текст джерелаДисертації з теми "Modulo geometrico"
Van, Bloemestein Ulric Patrick. "Seasonal movement and activity patterns of the endangered geometric tortoise, Psammobates geometricus." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Повний текст джерелаCentazzo, Alessandro. "Strategie di riorientamento nei bambini: uno studio in stanze grandi e piccole e in ambienti virtuali." Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/10069.
Повний текст джерелаLa maggior parte delle specie animali è capace di recuperare l’orientamento dopo essere stata passivamente disorientata e lo fa utilizzando le informazioni provenienti dall’ambiente, informazioni che possono essere di tipo geometrico (come per esempio la forma di una superficie contornata da margini) o di tipo non-geometrico come per esempio punti di riferimento –landmark- o, in una stanza, il colore diverso di una parete. Nel nostro lavoro abbiamo indagato la capacità di riorientamento di bambini a partire dai 6 anni. Il compito consisteva nel trovare, dopo essere stati disorientati, un oggetto che i bambini avevano visto nascondere in prossimità di un angolo di una stanza rettangolare (in prossimità di ogni angolo era presente una struttura che fingeva da nascondiglio) nella quale una parete aveva un colore diverso dalle altre. Abbiamo cercato di capire come venissero utilizzate le informazioni geometriche e non-geometriche quando queste venivano messe in conflitto tra loro (affine transformation). Per fare ciò, il colore diverso della parete veniva cambiato (passando dal lato lungo a quello corto o viceversa) tra la fase di addestramento, nella quale il soggetto vedeva dove veniva nascosto l’oggetto da cercare, e la fase di ricerca, nella quale l’oggetto doveva essere ritrovato. La nostra ricerca si è articolata in più fasi. In un primo momento abbiamo pensato di riprodurre gli esperimenti presenti in letteratura e indicativi di un utilizzo più consistente delle informazioni geometriche negli ambienti piccoli rispetto a quelli grandi. A differenza da quanto riportato in letteratura non abbiamo trovato differenze tra la stanza grande e quella piccola: in entrambe i bambini prediligono le informazioni geometriche. Successivamente abbiamo impegnato i bambini nel medesimo compito ma in stanze con caratteristiche diverse. Abbiamo utilizzato stanze nelle quali il nascondiglio aveva dimensioni dimezzate rispetto alle stanze precedenti, oppure non era presente, e stanze nelle quali abbiamo diminuito il rapporto tra le lunghezze dei lati lungo e corto (stanze che abbiamo chiamato “quasi-quadrate”). Tra le diverse tipologie di stanza è stata calcolata un’analisi della varianza che ha messo in luce che la forma (e non la dimensione) della stanza e la presenza o assenza dei nascondigli sono le due variabili che condizionano maggiormente le scelte dei soggetti. In particolare, i bambini prediligono le informazioni geometriche quando non sono presenti i nascondigli e quando le stanze sono “quasi-quadrate”. Dai nostri dati emerge che i bambini sono in grado di utilizzare tutte le informazioni a disposizione. Il prediligere un tipo piuttosto che l’altro dipende dalle caratteristiche dell’ambiente e probabilmente dalla stima di quanto una determinata informazione è affidabile per recuperare l’orientamento. La teoria della combinazione adattativa è quella che sembra spiegare meglio i risultati che abbiamo trovato.
XXV - Ciclo
1972
MIRAGLIOTTA, ELISA. "La previsione geometrica: un modello per analizzare un processo cognitivo inerente il problem-solving in geometria." Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2020. http://hdl.handle.net/11380/1200566.
Повний текст джерелаThe purpose of the research is to study cognitive aspects of how geometric predictions are produced during problem-solving activities in Euclidean geometry. The process of geometric prediction is seen as a specific visuo-spatial ability involved in geometrical reasoning. Indeed, when solvers engage in solving a geometrical problem, they can imagine the consequences of transformations of the figure; such transformations can be more or less coherent with the theoretical constraints given by the problem, and the products of such transformations can hinder or promote the problem-solving process. Previous research has stressed the dual nature of geometrical objects, intertwining a conceptual component and a figural component. Interpreting geometrical reasoning in terms of a dialectic between these two aspects (Fischbein, 1993), this study aims at gaining insight into the cognitive process of geometric prediction, a process through which a figure is manipulated, and its change is imagined, while certain properties are maintained invariant. This process is described through a model of prediction-generation elaborated cyclically by observing, analyzing through a microgenetic approach, and re-analyzing solvers’ resolution of prediction open problems in a paper-and-pencil environment and in a Dynamic Geometry Environment (DGE). The prediction open problems designed were proposed during task-based interviews to participants selected on a voluntary basis. Participants were a total of 37 Italian high school students and undergraduate, graduate and PhD students in mathematics. Data are composed of video and audio recordings, transcriptions, solvers’ drawings. The final version of the model provides a description of the prediction processes accomplished by a solver who engages in the resolution of prediction open problems proposed in this study; it provides a lens through which solvers’ productions can be analyzed and it provides insight into prediction processes. In particular, it sheds light onto the key role played by theoretical elements that are introduced by the solvers during the resolution process and the key role played by the solver’s theoretical control. The study has implications for the design of activities, especially at the high school level, with the educational objective of fostering students’ geometrical reasoning and in particular their theoretical control over the geometrical figures.
Caruso, Monica. "Geometrie non euclidee: dalla negazione del V postulato all'interpretazione geometrica del cosmo." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Знайти повний текст джерелаAlqahtani, Lamia Saeed M. "Geometric flows on soliton moduli spaces." Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/4967/.
Повний текст джерелаFerro, Dennis Eduardo Zavaleta. "Some geometric aspects of non-linear sigma models /." São Paulo, 2016. http://hdl.handle.net/11449/151647.
Повний текст джерелаResumo: We review some relevant examples for String Theory of non-linear sigma models. These are bosonic strings propagating in curved background, the Wess-Zumino-Witten model and superstrings in flat and AdS superspace. The mathematical tools required for the study of these models (e.g. topological quantization, Cartan geometry, Lie superalgebras and geometry on coset spaces) are also described. Throughout the dissertation we have focused on classical aspects of these models such as the construction of the action and its symmetries where conditions for holomorphic symmetry of the bosonic string case were found.
Mestre
Nandihalli, Sunil S. "A B-spline geometric modeling methodology for free surface simulation." Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-04072004-185017.
Повний текст джерелаLundkvist, Christian. "Moduli spaces of zero-dimensional geometric objects." Doctoral thesis, Stockholm : Matematik, Kungliga Tekniska högskolan, 2009. http://www.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:223079.
Повний текст джерелаTarasca, Nicola. "Geometric cycles on moduli spaces of curves." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16518.
Повний текст джерелаThe aim of this thesis is the explicit computation of certain geometric cycles in moduli spaces of curves. In recent years, divisors of $\Mbar_{g,n}$ have been extensively studied. Computing classes in codimension one has yielded important results on the birational geometry of the spaces $\Mbar_{g,n}$. We give an overview of the subject in Chapter 1. On the contrary, classes in codimension two are basically unexplored. In Chapter 2 we consider the locus in the moduli space of curves of genus 2k defined by curves with a pencil of degree k. Since the Brill-Noether number is equal to -2, such a locus has codimension two. Using the method of test surfaces, we compute the class of its closure in the moduli space of stable curves. The aim of Chapter 3 is to compute the class of the closure of the effective divisor in $\M_{6,1}$ given by pointed curves [C,p] with a sextic plane model mapping p to a double point. Such a divisor generates an extremal ray in the pseudoeffective cone of $\Mbar_{6,1}$ as shown by Jensen. A general result on some families of linear series with adjusted Brill-Noether number 0 or -1 is introduced to complete the computation.
Vieira, Erica Pinheiro. "Produção digital de maquetes arquitetonicas : um estudo exploratorio." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/257720.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo
Made available in DSpace on 2018-08-10T23:07:07Z (GMT). No. of bitstreams: 1 Vieira_EricaPinheiro_M.pdf: 5079109 bytes, checksum: ed92461f98d5f0d28c0fb6e2b52c30df (MD5) Previous issue date: 2007
Resumo: Este trabalho consiste em um estudo exploratório sobre a produção digital de maquetes arquitetônicas. Inicialmente, foi realizada uma revisão bibliográfica com a finalidade de conhecer os novos métodos de produção digital de maquetes, incluindo software de modelagem e equipamentos de prototipagem rápida. Nesse estudo inicial, além de explorar os principais equipamentos, processos, aplicações e materiais, identificou-se dois arquitetos renomados que fazem uso dessa tecnologia nos seus processos de projeto: Frank Gehry e Norman Foster. Deste estudo verificou-se processos distintos de projeto e diferentes abordagens sobre a utilização dessas ferramentas, o que motivou a realização de experimentos para exemplificar como produzir digitalmente maquetes arquitetônicas. O Museu Guggenheim de Bilbao, de Frank Gehry, foi escolhido como variável fixa para realização dos experimentos de produção digital de maquetes, por ser um modelo de grande complexidade, permitindo testar os limites dos equipamentos de prototipagem rápida disponíveis no Laboratório de Prototipagem para Arquitetura e Construção (LAPAC) da FEC ¿ Unicamp e no Centro de Pesquisas Renato Archer (CenPRA). Além disso, foram testadas diferentes técnicas e materiais, inclusive materiais alternativos, com o objetivo de viabilização econômica. Os resultados comprovaram que o processo de produção digital de maquetes arquitetônicas é viável em termos de procedimentos, de custo, de materiais disponíveis no mercado, qualidade das maquetes produzidas e rapidez na execução. A partir das conclusões obtidas nos experimentos realizados foi elaborado um caderno de recomendações para a confecção de maquetes que será utilizado pelos usuários do LAPAC e que servirá como importante ferramenta de auxílio para os iniciantes na produção digital de maquetes arquitetônicas. Espera-se que os resultados desta pesquisa possam auxiliar a estabelecer diretrizes para a incorporação dessas técnicas e equipamentos em disciplinas de projeto e na prática de arquitetura
Abstract: The present work is an exploratory study about the digital fabrication of architectural models. It started with a literature review, with the aim of getting in contact with the new digital methods for making models and prototypes, from modeling software to rapid prototyping equipment, processes, materials and applications. Still in this initial study the work of two well-known architects, Frank Gehry and Norman Foster, who use rapid prototyping techniques in their design process, was analyzed. From this part of the research it was possible to conclude that the different approaches that architects have to the design process is reflected in the way they use digital techniques for making their models. The second part of the research consisted of a series of experiments with the objective of illustrating the digital production of architectural models. For these experiments, Frank Gehry's Guggenheim Museum in Bilbao was chosen as a fixed variable for the production of models, due to its geometric complexity, which allowed to push the use of the available rapid prototyping equipment to their limits. Only the equipment available at FEC-UNICAMP's (Laboratório de Prototipagem para Arquitetura e Construção - LAPAC) and CENPRA's (Laboratório de Prototipagem Rápida do Centro de Pesquisas Renato Archer) laboratories were used. They consisted of a 3d printer, a fusion deposition modeller (FDM) machine, and a laser cutter. Different techniques and materials were tested in these machines, with the objective of evaluating the quality and economic viability of the resulting models. The results showed that the digital production of architectural models is viable for use in Brazilian architecture schools, in terms of procedures, cost, availability of materials, time spent and quality of the models. Finally, a manual with recommendations and tips was produced, with the aim of helping students build their own models using rapid prototyping equipment. We hope that the results of this research will help guiding the incorporation of these techniques in architecture education and practice in Brazil
Mestrado
Arquitetura e Construção
Mestre em Engenharia Civil
Книги з теми "Modulo geometrico"
T, Ivancevic Tijana, ed. Handbook of geometrical methods for scientists and engineers. Hauppauge, NY: Nova Science Publishers, 2009.
Знайти повний текст джерелаSibley, Thomas Q. The geometric viewpoint: A survey of geometries. Reading, Mass: Addison-Wesley, 1998.
Знайти повний текст джерелаKlain, Daniel A. Introduction to geometric probability. Cambridge, UK: Cambridge University Press, 1997.
Знайти повний текст джерела1934-, Fogarty John, and Kirwan Frances Clare 1959-, eds. Geometric invariant theory. 3rd ed. Berlin: Springer-Verlag, 1994.
Знайти повний текст джерелаSilva, Ana Cannas da. Geometric models for noncommutative algebras. Providence, R.I: American Mathematical Society, 1999.
Знайти повний текст джерелаLeila, Schneps, and Lochak P, eds. Geometric Galois actions. Cambridge: Cambridge University Press, 1997.
Знайти повний текст джерелаMathematik, Max-Planck-Institut für, ed. Deformation spaces: Perspectives on algebro-geometric moduli. Wiesbaden: Vieweg+Teubner, 2010.
Знайти повний текст джерелаЧастини книг з теми "Modulo geometrico"
McGregor, Anthony. "Geometric Module." In Encyclopedia of Animal Cognition and Behavior, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47829-6_895-1.
Повний текст джерелаMcGregor, Anthony. "Geometric Module." In Encyclopedia of Animal Cognition and Behavior, 2936–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-55065-7_895.
Повний текст джерелаWelling, Ilari, Markku Tahkokorpi, Frank Fleuren, and Marc Drieskens. "Geometric models." In Broadband Access Networks, 63–73. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5795-1_6.
Повний текст джерелаChekhov, L. "Discretized Moduli Spaces and Matrix Models." In Algebraic and Geometric Methods in Mathematical Physics, 187–206. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-0693-3_9.
Повний текст джерелаBanchs, Rafael E. "Geometrical Models." In Text Mining with MATLAB®, 175–203. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4151-9_8.
Повний текст джерелаBanchs, Rafael E. "Geometrical Models." In Text Mining with MATLAB®, 211–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87695-1_9.
Повний текст джерелаShoikhet, David, and Mark Elin. "Geometric Background." In Linearization Models for Complex Dynamical Systems, 1–15. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0509-0_1.
Повний текст джерелаHan, Jiyuan, and Jeff A. Viaclovsky. "Local Moduli of Scalar-flat Kähler ALE Surfaces." In Geometric Analysis, 113–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34953-0_7.
Повний текст джерелаJuan, Juan A. "Geometric Object Models." In Computer Vision: Theory and Industrial Applications, 267–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48675-3_7.
Повний текст джерелаBai, Y., X. Han, and J. L. Prince. "Geometric Deformable Models." In Handbook of Biomedical Imaging, 83–104. Boston, MA: Springer US, 2015. http://dx.doi.org/10.1007/978-0-387-09749-7_5.
Повний текст джерелаТези доповідей конференцій з теми "Modulo geometrico"
Fei, Yanqiong, and Xin Zhang. "Self-Repairing Process in Self-Reconfigurable Robots Based on Geometrical Characteristics." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47198.
Повний текст джерелаHussain, Muhammad. "A Comparison of Efficient Decimation Algorithms for Polygonal Models." In Geometric Modeling and Imaging (GMAI '07). IEEE, 2007. http://dx.doi.org/10.1109/gmai.2007.2.
Повний текст джерелаKleine, Felipe Augusto de Souza, Danyllo de Lima Guedes, Felipe Santos de Castro, Daniel Carvalho, and João Lucas Dozzi Dantas. "Maneuverability Towing Tank Experiments With Manifold Models: Part I — Static Tests." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77036.
Повний текст джерелаBytsenko, A. A., Piotr Kielanowski, Victor Buchstaber, Anatol Odzijewicz, Martin Schlichenmaier, and Theodore Voronov. "Deformations of Geometric Structures in Topological Sigma Models." In XXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3527424.
Повний текст джерелаMiller, Perry L., and James H. Oliver. "Extensible Architecture for Geometric-Model Database Translation." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/cie-48235.
Повний текст джерелаNesterenko, M., J. Patera, Piotr Kielanowski, S. Twareque Ali, Anatol Odzijewicz, Martin Schlichenmaier, and Theodore Voronov. "Quasicrystal Models in Cryptography." In XXVIII WORKSHOP ON GEOMETRICAL METHODS IN PHYSICS. AIP, 2009. http://dx.doi.org/10.1063/1.3275587.
Повний текст джерелаVarady, T., and P. Benko. "Reverse engineering B-rep models from multiple point clouds." In Proceedings Geometric Modeling and Processing 2000. Theory and Applications. IEEE, 2000. http://dx.doi.org/10.1109/gmap.2000.838234.
Повний текст джерела"GEOMETRICAL CONSTRAINTS FOR LIGAND POSITIONING." In International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003166002040209.
Повний текст джерелаTang, Min, Dinesh Manocha, and Ruofeng Tong. "Multi-core collision detection between deformable models." In 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1629255.1629303.
Повний текст джерелаWu, Wen-bin, Kan Wang, and Qing Li. "Matrix Method of Characteristics Based on Modular Ray Tracing." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-15278.
Повний текст джерелаЗвіти організацій з теми "Modulo geometrico"
Watterberg, P. A. Geometric simplification of analysis models. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/750027.
Повний текст джерелаSmida, Abdallah, and Ameh Hamici. A Geometric Model For Extended Particles. GIQ, 2012. http://dx.doi.org/10.7546/giq-8-2007-302-311.
Повний текст джерелаToda, Magdalena, and Bhagya Athukorallage. Geometric Models for Secondary Structures in Proteins. GIQ, 2015. http://dx.doi.org/10.7546/giq-16-2015-282-300.
Повний текст джерелаTurk, Greg, F. S. Nooruddin, James F. O'Brien, and Gary Yngve. Volumetric Representation and Manipulation of Geometric Models. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada389494.
Повний текст джерелаSarti, Alessandro, Ravi Malladi, and J. A. Sethian. Subjective surfaces: a geometric model for boundary completion. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/764400.
Повний текст джерелаGENERAL ELECTRIC CO SCHENECTADY NY. Representation and Recognition with Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, November 1992. http://dx.doi.org/10.21236/ada263235.
Повний текст джерелаLangberg, N. A., and D. S. Stoffer. Moving Average Models with Bivariate Exponential and Geometric Distributions. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada160178.
Повний текст джерелаLangberg, Naftali A., and David S. Stoffer. Moving Average Models with Bivariate Exponential and Geometric Distributions. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada169953.
Повний текст джерелаZEHNER, Björn. Constructing Geometric Models of the Subsurface for Finite Element Simulation. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0069.
Повний текст джерелаBlock, H. W., N. A. Langberg, and D. S. Stoffer. Bivariate Exponential and Geometric Autoregressive and Autoregressive Moving Average Models. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada185591.
Повний текст джерела