Добірка наукової літератури з теми "Models of neural elements"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Models of neural elements".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Models of neural elements"
Bainbridge, William Sims. "Neural Network Models of Religious Belief." Sociological Perspectives 38, no. 4 (December 1995): 483–95. http://dx.doi.org/10.2307/1389269.
Повний текст джерелаYaish, Ofir, and Yaron Orenstein. "Computational modeling of mRNA degradation dynamics using deep neural networks." Bioinformatics 38, no. 4 (November 26, 2021): 1087–101. http://dx.doi.org/10.1093/bioinformatics/btab800.
Повний текст джерелаSeeliger, K., L. Ambrogioni, Y. Güçlütürk, L. M. van den Bulk, U. Güçlü, and M. A. J. van Gerven. "End-to-end neural system identification with neural information flow." PLOS Computational Biology 17, no. 2 (February 4, 2021): e1008558. http://dx.doi.org/10.1371/journal.pcbi.1008558.
Повний текст джерелаWang, Zhaojun, Jiangning Wang, Congtian Lin, Yan Han, Zhaosheng Wang, and Liqiang Ji. "Identifying Habitat Elements from Bird Images Using Deep Convolutional Neural Networks." Animals 11, no. 5 (April 27, 2021): 1263. http://dx.doi.org/10.3390/ani11051263.
Повний текст джерелаBoriskov, Petr, and Andrei Velichko. "Switch Elements with S-Shaped Current-Voltage Characteristic in Models of Neural Oscillators." Electronics 8, no. 9 (August 22, 2019): 922. http://dx.doi.org/10.3390/electronics8090922.
Повний текст джерелаMarchesin, Stefano, Alberto Purpura, and Gianmaria Silvello. "Focal elements of neural information retrieval models. An outlook through a reproducibility study." Information Processing & Management 57, no. 6 (November 2020): 102109. http://dx.doi.org/10.1016/j.ipm.2019.102109.
Повний текст джерелаDe Wolf, E. D., and L. J. Franel. "Neural Networks That Distinguish Infection Periods of Wheat Tan Spot in an Outdoor Environment." Phytopathology® 87, no. 1 (January 1997): 83–87. http://dx.doi.org/10.1094/phyto.1997.87.1.83.
Повний текст джерелаCid, Juan M., Jesús García, Javier Monge, and Juan Zapata. "Design of microwave devices by segmentation, finite elements, reduced-order models, and neural networks." Microwave and Optical Technology Letters 49, no. 3 (January 26, 2007): 655–59. http://dx.doi.org/10.1002/mop.22248.
Повний текст джерелаYuille, Alan L. "Generalized Deformable Models, Statistical Physics, and Matching Problems." Neural Computation 2, no. 1 (March 1990): 1–24. http://dx.doi.org/10.1162/neco.1990.2.1.1.
Повний текст джерелаFujiwara, Yusuke, Yoichi Miyawaki, and Yukiyasu Kamitani. "Modular Encoding and Decoding Models Derived from Bayesian Canonical Correlation Analysis." Neural Computation 25, no. 4 (April 2013): 979–1005. http://dx.doi.org/10.1162/neco_a_00423.
Повний текст джерелаДисертації з теми "Models of neural elements"
Andrzej, Tuchołka. "Methodology for assessing the construction of machine elements using neural models and antipatterns : doctoral dissertation." Rozprawa doktorska, [s.n.], 2020. http://dlibra.tu.koszalin.pl/Content/1317.
Повний текст джерелаMiocinovic, Svjetlana. "THEORETICAL AND EXPERIMENTAL PREDICTIONS OF NEURAL ELEMENTS ACTIVATED BY DEEP BRAIN STIMULATION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1181758206.
Повний текст джерелаTomov, Petar Georgiev. "Interplay of dynamics and network topology in systems of excitable elements." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17464.
Повний текст джерелаIn this work we study global dynamical phenomena which emerge as a result of the interplay between network topology and single-node dynamics in systems of excitable elements. We first focus on relatively small structured networks with comprehensible complexity in terms of graph-symmetries. We discuss the constraints posed by the network topology on the dynamical flow in the phase space of the system and on the admissible synchronized states. In particular, we are interested in the stability properties of flow invariant polydiagonals and in the evolutions of attractors in the parameter spaces of such systems. As a suitable theoretical framework describing excitable elements we use the Kuramoto and Shinomoto model of sinusoidally coupled “active rotators”. We investigate plane hexagonal lattices of different size with periodic boundary conditions. We study general conditions posed on the adjacency matrix of the networks, enabling the Watanabe-Strogatz reduction, and discuss different examples. Finally, we present a generic analysis of bifurcations taking place on the submanifold associated with the Watanabe-Strogatz reduced system. In the second part of the work we investigate a global dynamical phenomenon in neuronal networks known as self-sustained activity (SSA). We consider networks of hierarchical and modular topology, comprising neurons of different cortical electrophysiological cell classes. In the investigated neural networks we show that SSA states with spiking characteristics, similar to the ones observed experimentally, can exist. By analyzing the dynamics of single neurons, as well as the phase space of the whole system, we explain the importance of inhibition for sustaining the global oscillatory activity of the network. Furthermore, we show that both network architecture, in terms of modularity level, as well as mixture of excitatory-inhibitory neurons, in terms of different cell classes, have influence on the lifetime of SSA.
Wadagbalkar, Pushkar. "Real-time prediction of projectile penetration to laminates by training machine learning models with finite element solver as the trainer." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1592169428128864.
Повний текст джерелаCitipitioglu, Ahmet Muhtar. "Development and assessment of response and strength models for bolted steel connections using refined nonlinear 3D finite element analysis." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31691.
Повний текст джерелаCommittee Chair: Haj-Ali, Rami; Committee Co-Chair: Leon, Roberto; Committee Co-Chair: White, Donald; Committee Member: DesRoches, Reginald; Committee Member: Gentry, Russell. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Паржин, Юрій Володимирович. "Моделі і методи побудови архітектури і компонентів детекторних нейроморфних комп'ютерних систем". Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/34755.
Повний текст джерелаDissertation for the degree of Doctor of Technical Sciences in the specialty 05.13.05 – Computer systems and components. – National Technical University "Kharkiv Polytechnic Institute", Ministry of Education and Science of Ukraine, Kharkiv, 2018. The thesis is devoted to solving the problem of increasing the efficiency of building and using neuromorphic computer systems (NCS) as a result of developing models for constructing their components and a general architecture, as well as methods for their training based on the formalized detection principle. As a result of the analysis and classification of the architecture and components of the NCS, it is established that the connectionist paradigm for constructing artificial neural networks underlies all neural network implementations. The detector principle of constructing the architecture of the NCS and its components was substantiated and formalized, which is an alternative to the connectionist paradigm. This principle is based on the property of the binding of the elements of the input signal vector and the corresponding weighting coefficients of the NCS. On the basis of the detector principle, multi-segment threshold information models for the components of the detector NCS (DNCS): block-detectors, block-analyzers and a novelty block were developed. As a result of the developed method of counter training, these components form concepts that determine the necessary and sufficient conditions for the formation of reactions. The method of counter training of DNCS allows reducing the time of its training in solving practical problems of image recognition up to one epoch and reducing the dimension of the training sample. In addition, this method allows to solve the problem of stability-plasticity of DNCS memory and the problem of its overfitting based on self-organization of a map of block-detectors of a secondary level of information processing under the control of a novelty block. As a result of the research, a model of the network architecture of DNCS was developed, which consists of two layers of neuromorphic components of the primary and secondary levels of information processing, and which reduces the number of necessary components of the system. To substantiate the increase in the efficiency of constructing and using the NCS on the basis of the detector principle, software models were developed for automated monitoring and analysis of the external electromagnetic environment, as well as recognition of the manuscript figures of the MNIST database. The results of the study of these systems confirmed the correctness of the theoretical provisions of the dissertation and the high efficiency of the developed models and methods.
Паржин, Юрій Володимирович. "Моделі і методи побудови архітектури і компонентів детекторних нейроморфних комп'ютерних систем". Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/34756.
Повний текст джерелаDissertation for the degree of Doctor of Technical Sciences in the specialty 05.13.05 – Computer systems and components. – National Technical University "Kharkiv Polytechnic Institute", Ministry of Education and Science of Ukraine, Kharkiv, 2018. The thesis is devoted to solving the problem of increasing the efficiency of building and using neuromorphic computer systems (NCS) as a result of developing models for constructing their components and a general architecture, as well as methods for their training based on the formalized detection principle. As a result of the analysis and classification of the architecture and components of the NCS, it is established that the connectionist paradigm for constructing artificial neural networks underlies all neural network implementations. The detector principle of constructing the architecture of the NCS and its components was substantiated and formalized, which is an alternative to the connectionist paradigm. This principle is based on the property of the binding of the elements of the input signal vector and the corresponding weighting coefficients of the NCS. On the basis of the detector principle, multi-segment threshold information models for the components of the detector NCS (DNCS): block-detectors, block-analyzers and a novelty block were developed. As a result of the developed method of counter training, these components form concepts that determine the necessary and sufficient conditions for the formation of reactions. The method of counter training of DNCS allows reducing the time of its training in solving practical problems of image recognition up to one epoch and reducing the dimension of the training sample. In addition, this method allows to solve the problem of stability-plasticity of DNCS memory and the problem of its overfitting based on self-organization of a map of block-detectors of a secondary level of information processing under the control of a novelty block. As a result of the research, a model of the network architecture of DNCS was developed, which consists of two layers of neuromorphic components of the primary and secondary levels of information processing, and which reduces the number of necessary components of the system. To substantiate the increase in the efficiency of constructing and using the NCS on the basis of the detector principle, software models were developed for automated monitoring and analysis of the external electromagnetic environment, as well as recognition of the manuscript figures of the MNIST database. The results of the study of these systems confirmed the correctness of the theoretical provisions of the dissertation and the high efficiency of the developed models and methods.
Levin, Robert Ian. "Dynamic Finite Element model updating using neural networks." Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264075.
Повний текст джерелаStevenson, King Douglas Beverley. "Robust hardware elements for weightless artificial neural networks." Thesis, University of Central Lancashire, 2000. http://clok.uclan.ac.uk/1884/.
Повний текст джерелаVenkov, Nikola A. "Dynamics of neural field models." Thesis, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517742.
Повний текст джерелаКниги з теми "Models of neural elements"
De Wilde, Philippe. Neural Network Models. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-84628-614-8.
Повний текст джерелаDe Wilde, Philippe. Neural Networks Models. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0034478.
Повний текст джерелаK, Mohan Chilukuri, and Ranka Sanjay, eds. Elements of artificial neural networks. Cambridge, Mass: MIT Press, 1997.
Знайти повний текст джерелаDomany, Eytan. Models of Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991.
Знайти повний текст джерелаDomany, Eytan, J. Leo van Hemmen, and Klaus Schulten, eds. Models of Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-97171-6.
Повний текст джерелаDomany, Eytan, J. Leo van Hemmen, and Klaus Schulten, eds. Models of Neural Networks. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-4320-5.
Повний текст джерелаDomany, Eytan. Models of Neural Networks I. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.
Знайти повний текст джерелаNeural network models: An analysis. London: Springer, 1996.
Знайти повний текст джерелаPhysical models of neural networks. Singapore: World Scientific, 1990.
Знайти повний текст джерелаvan Hemmen, J. Leo, Jack D. Cowan, and Eytan Domany, eds. Models of Neural Networks IV. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21703-1.
Повний текст джерелаЧастини книг з теми "Models of neural elements"
Troiano, Amedeo, Fernando Corinto, and Eros Pasero. "A Memristor Circuit Using Basic Elements with Memory Capability." In Recent Advances of Neural Network Models and Applications, 117–24. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04129-2_12.
Повний текст джерелаArle, Jeffrey E., Longzhi Mei, and Kristen W. Carlson. "Robustness in Neural Circuits." In Brain and Human Body Modeling 2020, 213–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_12.
Повний текст джерелаDel Moral Hernandez, Emilio. "Studying Neural Networks of Bifurcating Recursive Processing Elements — Quantitative Methods for Architecture Design." In Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence, 546–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45720-8_65.
Повний текст джерелаKashchenko, Serguey. "Model of the Neural System with Diffusive Interaction of Elements." In Lecture Notes in Morphogenesis, 125–45. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19866-8_7.
Повний текст джерелаMontesinos López, Osval Antonio, Abelardo Montesinos López, and Jose Crossa. "Artificial Neural Networks and Deep Learning for Genomic Prediction of Binary, Ordinal, and Mixed Outcomes." In Multivariate Statistical Machine Learning Methods for Genomic Prediction, 477–532. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89010-0_12.
Повний текст джерелаMontesinos López, Osval Antonio, Abelardo Montesinos López, and Jose Crossa. "Artificial Neural Networks and Deep Learning for Genomic Prediction of Continuous Outcomes." In Multivariate Statistical Machine Learning Methods for Genomic Prediction, 427–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89010-0_11.
Повний текст джерелаRiel, Stefanie, Mohammad Bashiri, Werner Hemmert, and Siwei Bai. "Computational Models of Brain Stimulation with Tractography Analysis." In Brain and Human Body Modeling 2020, 101–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_6.
Повний текст джерелаSoloviev, Arcady, Boris Sobol, Pavel Vasiliev, and Alexander Senichev. "Generative Artificial Neural Network Model for Visualization of Internal Defects of Structural Elements." In Springer Proceedings in Materials, 587–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45120-2_48.
Повний текст джерелаZgonc, Kornelija, Jan D. Achenbach, and Yung-Chung Lee. "Crack Sizing Using a Neural Network Classifier Trained with Data Obtained from Finite Element Models." In Review of Progress in Quantitative Nondestructive Evaluation, 779–86. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1987-4_97.
Повний текст джерелаBecking, Daniel, Maximilian Dreyer, Wojciech Samek, Karsten Müller, and Sebastian Lapuschkin. "ECQ$$^{\text {x}}$$: Explainability-Driven Quantization for Low-Bit and Sparse DNNs." In xxAI - Beyond Explainable AI, 271–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04083-2_14.
Повний текст джерелаТези доповідей конференцій з теми "Models of neural elements"
Kaminski, Marcin, and Mateusz Malarczyk. "Neural Data Processing in Scanner of Static Elements." In 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, 2019. http://dx.doi.org/10.1109/mmar.2019.8864650.
Повний текст джерелаWang, Felix, Corinne Teeter, Sarah Luca, Srideep Musuvathy, and Brad Aimone. "Localization through Grid-basedEncodings on Digital Elevation Models." In NICE 2022: Neuro-Inspired Computational Elements Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3517343.3517366.
Повний текст джерелаLeugering, Johannes. "Making spiking neurons more succinct with multi-compartment models." In NICE '20: Neuro-inspired Computational Elements Workshop. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3381755.3381763.
Повний текст джерелаAllen, Kathleen B., and Bradley E. Layton. "Mechanical Neural Growth Models." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79445.
Повний текст джерелаKrasilenko, Vladimir G., Anatoly K. Bogukhvalskiy, and Andrey T. Magas. "Equivalent models of neural networks and their effective optoelectronic implementations based on matrix multivalued elements." In International Conference on Optical Storage, edited by Viacheslav V. Petrov and Sergei V. Svechnikov. SPIE, 1997. http://dx.doi.org/10.1117/12.267699.
Повний текст джерелаRoemer, Michael J., Chi-an Hong, and Stephen H. Hesler. "Machine Health Monitoring and Life Management Using Finite Element Based Neural Networks." In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-243.
Повний текст джерелаMahajan, R. L. "Strategies for Building Artificial Neural Network Models." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1464.
Повний текст джерелаMadala, Kaushik, Shraddha Piparia, Hyunsook Do, and Renee Bryce. "Finding Component State Transition Model Elements Using Neural Networks: An Empirical Study." In 2018 5th International Workshop on Artificial Intelligence for Requirements Engineering (AIRE). IEEE, 2018. http://dx.doi.org/10.1109/aire.2018.00014.
Повний текст джерелаBalabanov, T., M. Hadjiski, P. Koprinkova-Hristova, S. Beloreshki, and L. Doukovska. "Neural network model of mill-fan system elements vibration for predictive maintenance." In 2011 International Symposium on Innovations in Intelligent Systems and Applications (INISTA). IEEE, 2011. http://dx.doi.org/10.1109/inista.2011.5946102.
Повний текст джерелаPAGANI, ALFONSO, MARCO ENEA, and ERASMO CARRERA. "DAMAGE DETECTION IN LAMINATED COMPOSITES BY NEURAL NETWORKS AND HIGH ORDER FINITE ELEMENTS." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35788.
Повний текст джерелаЗвіти організацій з теми "Models of neural elements"
Warrick, Arthur W., Gideon Oron, Mary M. Poulton, Rony Wallach, and Alex Furman. Multi-Dimensional Infiltration and Distribution of Water of Different Qualities and Solutes Related Through Artificial Neural Networks. United States Department of Agriculture, January 2009. http://dx.doi.org/10.32747/2009.7695865.bard.
Повний текст джерелаBrown, Joshua W. Computational Neural Models of Risk. Fort Belvoir, VA: Defense Technical Information Center, February 2010. http://dx.doi.org/10.21236/ada515423.
Повний текст джерелаByrne, John H. Analysis and Synthesis of Adaptive Neural Elements. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada187047.
Повний текст джерелаGardner, Daniel. Symbolic Processor Based Models of Neural Networks. Fort Belvoir, VA: Defense Technical Information Center, May 1988. http://dx.doi.org/10.21236/ada200200.
Повний текст джерелаCasey, Tiernan, and Bert Debusschere. Analysis of Neural Network Combustion Surrogate Models. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569154.
Повний текст джерелаByrne, John H. Analysis and Synthesis of Adaptive Neural Elements and Assemblies. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada201239.
Повний текст джерелаLeij, F. J., and M. T. Van Genuchten. Development of Pedotransfer Functions with Neural Network Models. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada394563.
Повний текст джерелаFan, Hongyou, Catherine Branda, Richard Louis Schiek, Christina E. Warrender, and James Chris Forsythe. Neural assembly models derived through nano-scale measurements. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/993899.
Повний текст джерелаNiederer, J. Particle Beam Control Design Notes for Neural Models. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/1151384.
Повний текст джерелаHirsch, Morris W., Bill Baird, Walter Freeman, and Bernice Gangale. Dynamical Systems, Neural Networks and Cortical Models ASSERT 93. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada295495.
Повний текст джерела