Добірка наукової літератури з теми "Modele hysteresis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Modele hysteresis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Modele hysteresis"

1

Meleshenko, Peter A., Akim V. Tolkachev, Mikhail E. Semenov, Alla V. Perova, Andrey I. Barsukov, and Alexander F. Klinskikh. "Discrete hysteretic sine-Gordon model: soliton versus hysteresis." MATEC Web of Conferences 241 (2018): 01027. http://dx.doi.org/10.1051/matecconf/201824101027.

Повний текст джерела
Анотація:
In this work we consider a nonlinear dynamical system which is a set of nonlinear oscillators coupled by springs with hysteretic blocks (hysteretic sine-Gordon model). The hysteretic nonlinearity is modeled using the phenomenological Bouc-Wen model). The wave processes (solitonic solutions) in such a system are investigated taking into account the hysteretic nature of the coupling.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ktena, A., D. I. Fotiadis, and C. V. Massalas. "Hysteresis Modelling in Ferromagnetic Composites." Advanced Composites Letters 13, no. 1 (January 2004): 096369350401300. http://dx.doi.org/10.1177/096369350401300109.

Повний текст джерела
Анотація:
The class of models presented here, targeting the modelling of hysteresis processes in the magnetic and elastic properties of ferromagnetic composites, is based on the Preisach formalism. The 1D and 2D formulations are equipped with a set of five different local hysteresis operators, to address different hysteretic responses. The resulting algorithms are efficient enough to be used as core models in simulations or real-time control. The types of hysteretic responses discussed and modeled include the magnetization vs. magnetic field response, M(H), the deformation vs. temperature response, x(T), and the deformation vs. field response, λ(H), also known as magnetostriction.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zakerzadeh, Mohammad R., and Hassan Sayyaadi. "Experimental comparison of some phenomenological hysteresis models in characterizing hysteresis behavior of shape memory alloy actuators." Journal of Intelligent Material Systems and Structures 23, no. 12 (June 1, 2012): 1287–309. http://dx.doi.org/10.1177/1045389x12448444.

Повний текст джерела
Анотація:
Among the phenomenological hysteresis models, the Preisach model, Krasnosel’skii–Pokrovskii model, and Prandtl–Ishlinskii model have found extensive applications for modeling hysteresis in shape memory alloys and other smart actuators. Since the mathematical complexity of the identification and inversion problem depends directly on the type of phenomenological hysteresis modeling method, choosing a proper phenomenological model among the mentioned models for modeling the hysteretic behavior of shape memory alloy actuators is a task of crucial importance. Moreover, the accuracy of the hysteresis modeling method in characterizing shape memory alloy hysteretic behavior consequently affects the whole compensator design task. In this article, the accuracy of the mentioned phenomenological models in characterizing and predicting the hysteretic behavior of shape memory alloy actuators is experimentally compared. It will be shown that although, unlike the Preisach and Krasnosel’skii–Pokrovskii models, the identification process of the Prandtl–Ishlinskii model is a time-consuming process, it leads to the best results when the outputs of these models are compared with the experimental data. Since the Prandtl–Ishlinskii model is also analytically invertible and can be easily implemented as a feed-forward controller for compensating the hysteretic nonlinearity behavior of shape memory alloy actuators, it seems to be the best model for modeling and compensating the hysteretic behavior of shape memory alloy actuators.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Niu, Yibo, Xiaoyi Jin, Zhikun He, and Panpan Meng. "Research on the linear driving characteristics of endoscopic continuous robot." Journal of Physics: Conference Series 2704, no. 1 (February 1, 2024): 012027. http://dx.doi.org/10.1088/1742-6596/2704/1/012027.

Повний текст джерела
Анотація:
Abstract Due to the way line drive, the continuous endoscope robot will have a certain lag in the process of movement, which will affect the accuracy and flexibility of the operation. In addition, the hysteresis and return difference caused by wire rope transmission will also increase the hysteresis effect of continuous robots. In this paper, the motion characteristics of the continuous endoscopic robot are analyzed, the hysteresis of the robot is modeled theoretically based on the Preisach model, and the effectiveness of the model is verified. Preisach hysteretic nonlinear hyperbola model predicts the bending changes under different positive and negative drives. The experimental results show that the maximum error between the model and the theoretical prediction is 3.18 degrees. The hysteresis model can predict the hysteresis characteristics of the continuous endoscope robot well.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Meng, Ai Hua, Han Lin He, Min Kong, and Ming Fan Li. "The Hysteresis Model of Terfenol-D with Magneto-Stress Coupling." Applied Mechanics and Materials 121-126 (October 2011): 4820–25. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.4820.

Повний текст джерела
Анотація:
The output of Terfenol-D is nonlinear and hysteretic under the effect of magnetic field and prestress. The nonlinear constitutive relation between magnetostriction and magnetization with magneto-stress coupling was built in consideration of the magnetostriction saturation and the prestress correlation. Then, the hysteresis behavior of Terfenol-D was modeled based on the Jiles-Atherton model. The error of magnetostriction between simulations and experimental data is less than 6%. This result indicates that the model can adequately predict the nonlinear hysteresis and magneto-stress coupling character of Terfenol-D.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Lin Xiang, Rong Liu, and Roderick Melnik. "Feedback Linearization of Hysteretic Thermoelastic Dynamics of Shape Memory Alloy Actuators with Phase Transformations." Advanced Materials Research 47-50 (June 2008): 69–72. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.69.

Повний текст джерела
Анотація:
In the current paper, a macroscopic differential model for the hysteretic dynamics in shape memory alloy actuators is constructed by using the modified Landau theory of the first order phase transformation. An intrinsic thermo-mechanical coupling is achieved by constructing the free energy as a function depends on both mechanical deformation and the material temperature. Both shape memory and pseudoelastic effects are modeled. The hysteretic dynamics is linearized by introducing another hysteresis loop via nonlinear feedback strategy, which cancels the original one.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Du, Xiu Quan, Lin Xiang Wang, Zhi Feng Tang, and Fu Zai Lv. "Modeling the Rate Dependent Hysteretic Dynamics of Magnetostrictive Transducers." Applied Mechanics and Materials 529 (June 2014): 312–16. http://dx.doi.org/10.4028/www.scientific.net/amm.529.312.

Повний текст джерела
Анотація:
In the current paper, the rate dependent hysteretic dynamics of a magnetostrictive transducer is investigated by using a coupled nonlinear macroscopic differential model. The transducer is modeled as a one-dimensional magnetostrictive structure based on the Landau phenomenological theory of phase transition. The hysteresis loops and butterfly-shaped behaviors in the magnetic and mechanical fields are both successfully modeled with estimated model parameter values. The capability of the proposed model for capturing the driving rate dependency is illustrated by numerical experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ghafarirad, H., SM Rezaei, M. Zareinejad, and NA Mardi. "Charge-based hysteresis compensation in low impedance piezoelectric actuators by a modified Prandtl–Ishlinskii model." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 233, no. 1 (November 24, 2017): 83–93. http://dx.doi.org/10.1177/0954408917743391.

Повний текст джерела
Анотація:
Piezoelectric actuators are one of the most popular actuators in micro- and nano-applications. The main deficiency of these actuators is the hysteretic behavior. Hysteresis not only can destroy the positioning accuracy, but also may lead to instability. In previous researches, hysteresis in the mechanical domain (voltage–position) has been modeled and compensated by several approaches. The limiting condition has been position measurement by a high cost, fine resolution sensor. So, an alternative idea can be compensation in the electrical domain (voltage–charge). In fact, it can be demonstrated that hysteresis compensation in the electrical domain can simultaneously compensate the mechanical one. But, experimental results depict that voltage–charge relation may be time dependent due to low internal impedances. It would lead to “time-dependent hysteresis”. As a result, conventional models cannot be applied for hysteresis identification. In this paper, a modified time-dependent Prandtl–Ishlinskii model is proposed to identify the time-dependent hysteresis in low impedance actuators. Utilizing the proposed model, experimental results validate that the mechanical hysteresis would be appropriately compensated as a result of compensation in the electrical domain.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Folhento, Pedro, Manuel Braz-César, and Rui Barros. "Cyclic response of a reinforced concrete frame: Comparison of experimental results with different hysteretic models." AIMS Materials Science 8, no. 6 (2021): 917–31. http://dx.doi.org/10.3934/matersci.2021056.

Повний текст джерела
Анотація:
<abstract> <p>An accurate hysteresis model is fundamental to well capture the non-linearity phenomena occurring in structural and non-structural elements in building structures, that are usually made of reinforced concrete or steel materials. In this sense, this paper aims to numerically estimate through simplified non-linear analyses, the cyclic response of a reinforced concrete frame using different hysteretic models present in the literature. A commercial Finite Element Method package is used to carry out most of the simulations using polygonal hysteretic models and a fiber model, and additionally, a MATLAB script is developed to use a smooth hysteresis model. The experimental data is based on the experiments carried out in the Laboratório Nacional de Engenharia Civil, Portugal. The numerical outcomes are further compared with the experimental result to evaluate the accuracy of the simplified analysis based on the lumped plasticity or plastic hinge method for the reinforced concrete bare frame. Results show that the tetralinear Takeda's model fits closely the experimental hysteresis loops. The fiber model can well capture the hysteresis behavior, though it requires knowledge and expertise on parameter calibration. Sivaselvan and Reinhorn's smooth hysteresis model was able to satisfactorily reproduce the actual non-linear cyclic behavior of the RC frame structure in a global way.</p> </abstract>
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Biolek, Zdeněk, Dalibor Biolek, Viera Biolková, and Zdeněk Kolka. "Extended Higher-Order Elements with Frequency-Doubled Parameters: The Hysteresis Loops Are Always of Type II." Sensors 23, no. 16 (August 15, 2023): 7179. http://dx.doi.org/10.3390/s23167179.

Повний текст джерела
Анотація:
Current MEMS (Micro Electro Mechanical Systems) can be modeled by state-dependent elements that exhibit hysteretic behavior. Examples include capacitors and inductors whose capacitances and inductances are dependent on the instantaneous state of the electromechanical system, resistors whose resistances exhibit temperature changes when the elements are actually heated, etc. Regardless of the physical background, such hysteresis manifestations can be studied uniformly in the broader framework of generic and extended higher-order elements, in which a classification of hysteretic loops into types I and II is established. The loop type is an important dynamical parameter of an element, having the potential to indicate, for example, its (in)volatility. Thus far, there is no reliable criterion to determine the type of steady loop from the defining relations of an element. This work reports on one special class of extended elements that produces type II loops under all circumstances. The paper presents hitherto unpublished connections between the frequency-doubling parameters of an element and the type of its hysteresis loop. The new findings are expressed by several theorems that allow the type of hysteresis to be inferred from the frequency behavior of the element parameter or state, and vice versa. These procedures are demonstrated with examples and verified by computer simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Modele hysteresis"

1

Mikula, Léopold. "Contribution à la Modélisation des pertes dans les matériaux magnétiques de dispositifs électromécaniques : Extension vectorielle du Modèle LS et intégration en résolution éléments finis." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT052.

Повний текст джерела
Анотація:
Afin de parvenir a augmenter les performances des machines tournantes, les logiciels de conception doivent être affinés pour fournir de meilleurs estimations des pertes générées. L'objectif dans cette étude est donc l'amélioration des modèles de matériaux magnétiques doux en 2D . Des approches dites 'a priori' et 'a posteriori' (Preisach, loss surface) seront évaluées et comparées en s'appuyant sur l'expérimentation et la simulation. Le modèle Loss surface a été vectorisé afin de permettre la prise en des phénomène dit d'hystérésis dynamique en résolution élément finis
In order to increase the performance of rotating machines, design software must be refined to provide better estimates of the losses generated. The aim of this study is therefore to improve 2D soft magnetic material models. So-called 'a priori' and 'a posteriori' approaches (Preisach, loss surface) will be evaluated and compared, based on experimentation and simulation. The loss surface model has been vectorized to take into account dynamic hysteresis phenomena in finite element resolution
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Conrad, Joël. "Modélisation d'un transformateur de courant à charge variable." Grenoble INPG, 1997. http://www.theses.fr/1997INPG0171.

Повний текст джерела
Анотація:
Les transformateurs de courant débitent généralement dans une charge de faible impédance. Si cette condition n'est pas remplie, l'induction dans le tore et le courant magnétisant ne sont plus négligeables. Ce mémoire traite ce cas de figure avec en plus des courants éventuellement non sinusordaux et avec une composante contin!le. Un modèle analytique s'étoffe au fur et à mesure afin de tenir compte de ces spécificités. - D'abord nous analysons le comportement de la chaîne de mesure avec des courants sinusoidaux, nous développons un modèle analytique non linéaire de l'impédance magnétisante et évaluons l'importance des flux de fuite. Ensuite nous étendons ce modèle d'impédance magnétisante aux types de courants cités. Notre modèle, analytique, est alors robuste en fréquence. Enfin nous enrichissons notre modèle en tenant compte de la non-linéarité des matériaux. N est alors valable quelque soient les conditions de fonctionnement Une étude sur la caractérisation des matériaux magnétiques soumis à une excitation dissymétrique clôt ce mémoire
Current transformers are generally connected to small impedance. If it is not the case, the flux density and the magnetizing current are not negligIble. This report deals with this case. More over the current may he non sinusoidal and its mean value May he different than zero. To take account these specificity an anaIytical model is developed. In a first time the hehavior of the assembly (current transformer and its load) with sinusoidal currents is studied. An non linear, analytical, model is developed. The importance of the leakage flux is evaluated In a second time the model is extended to any type of current' s wave form. The frequency' s variations of the magnetic characteristic are taken into account In a third time the non linearity of the magnetic material is modelised At this time the hehavior of the transformer submitted to any type of current May he computed. This report is closed by a study of magnetic characterization using a non symmetrical current
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Adedoyin, Ayodeji Adeoye. "Analysis of aftereffect phenomena and noise spectral properties of magnetic hysteretic systems using phenomenological models of hysteresis." Tallahassee, Florida : Florida State University, 2009. http://etd.lib.fsu.edu/theses/available/etd-09212009-165524/.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Florida State University, 2009.
Advisor: Petru Andrei, Florida State University, College of Engineering, Dept. of Electrical and Computer Engineering. Title and description from dissertation home page (viewed on May 6, 2010). Document formatted into pages; contains xxi, 120 pages. Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cortial, Fabienne. "Modélisation de l'hystérésis et des dispositifs d'enregistrement magnétique." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0136.

Повний текст джерела
Анотація:
L'amélioration des têtes pour l'enregistrement magnétique numérique passe par la simulation des procédés d'écriture et de lecture des milieux d'enregistrement. Il apparaît donc indispensable de rechercher un modèle d'hystérésis représentant au mieux le comportement de ces milieux (bandes et disques) : tel est l'objectif de cette thèse. Deux modèles scalaires originaux ont été développés. Ils permettent de représenter analytiquement le cycle majeur en utilisant plus de données expérimentales que les modèles existants et de calculer des cycles mineurs fermés à partir du cycle majeur et des deux derniers points de rebroussement constituant l'histoire. Ces modèles ont été implantés dans un logiciel éléments finis. Ils ont conduit à une simulation de l'écriture et de la lecture d'une tête clavaire couches minces sur un disque dur mince très satisfaisante. L'hypothèse du comportement magnétique scalaire est valide pour ces disques mais ne l'est plus pour les bandes parascolaires (métal et ferrite de baruym) et de métal évaporé (ME) actuellement utilisées : un modèle vectoriel d'hystérésis est alors nécessaire. Après une étude bibliographique approfondie des modèles vectoriels existants, nous avons choisi le modèle le plus performant pour les bandes pelliculaires qui est le modèle 3D Preisach/stoner-Worhlfarth. Nous l'avons amélioré pour modéliser correctement les bandes ME. Par ailleurs, les mesures sont rélarisées sur un VSM vectoriel. L'intérêt de la caractérisation est double. Elle permet d'abord de déterminer les sept paramètres du modèle à partir des courbes, qui se réduisent au cycle majeur longitudinal, à la courbe M longitudinale et à l'aimantation rémanente du cycle transverse. La comparaison des mesures aux courbes calculées permet ensuite de valider le modèle. Nous avons, de plus, participé à la construction d'un tel appareil, doté d'un nouveau système de bobines de détection
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fuad, Mohammad Naser Mohammad. "On the consistency of hysteresis models." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/353622.

Повний текст джерела
Анотація:
Hysteresis is a nonlinear behavior encountered in a wide variety of processes including biology, optics, electronics, ferroelectricity, magnetism, mechanics, structures, among other areas. One of the main features of hysteresis processes is the property of consistency formalized in [52]. The class of operators that are considered in [52] consists of the causal ones, with the additional condition that a constant input leads to a constant output. For this class of systems, consistency has been defined formally. This property is useful in system modeling and identification as it limits the search for the system's parameters to those regions where consistency holds. The thesis applies the concepts introduced in [52] to some hysteresis models, namely LuGre model and Duhem model. The aim of the thesis is to derive necessary conditions and sufficient one for consistency (or/and strong consistency) to hold. For the LuGre model, the consistency and the strong consistency are studied under minimal conditions in Chapter 2. As a by-product of this study, explicit expressions are derived for the hysteresis. Such expression may be useful for identification purposes as shown in [53]. A classification of the possible Duhem models in terms of their consistency is carried out in Chapter 3. This study shows that a parameter’s should be one for the Duhem model to be compatible with a hysteresis behavior.
La histéresis es un fenómeno nolineal encontrado en varios procesos como biología, óptica, electrónica, ferroelectricidad, magnetismo, mecánica, estructuras, así como en otras áreas. Una de las características de los sistemas con histéresis es la propiedad de consistencia formalizada en [52]. La clase de operadores considerados en [52] consiste en aquellos que son causales, con la condición adicional que a una entrada constante corresponda una salida constante. Para esta clase d sistemas, la consitencia ha sido definida formalmente. Esta propiedad es útil en modelado e identificación dado que limita la búsqueda de parámetros a aquellas regiones donde la consistencia es válida. * Esta tesis aplica los conceptos introducidos en [52] a algunos modelos de histéresis, más precisamente al modelo de LuGre y al modelo de Duhem. El objetivo de esta tesis es encontrar condiciones necesarias y condiciones suficientes para que se satisfaga la consistencia (o/y la consitencia fuerte). * Para el modelo de LuGre, la consistencia "fuerte" se estudia en el capítulo 2 bajo condiciones mínimas. Como resultado de este estudio, se hallan fórmulas explícitas del lazo de histéresis. Tales fórmulas podrían ser de utilidad para tareas de identificación como se demuestra en [53]. * El capítulo 3 de la tesis presenta una clasificación de los modelos de Duhem posibles en términos de su consistencia. Este estudio muestra que hay un parámetro que tiene que valer uno para que el modelo sea compatible con un comportamiento histerético
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Phelps, Brian F. "An inclusive model of ferromagnetic hysteresis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0006/NQ42968.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Joseph, Daniel Scott. "Parameter Identification for the Preisach Model of Hysteresis." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/27295.

Повний текст джерела
Анотація:
Hysteresis, defined as a rate independent memory effect, is a phenomenon that occurs in many physical systems. The effect is sometimes desired, sometimes a nuisance, sometimes cata- strophic, but in every case we must understand hysteresis if we are to better understand the system itself. This work introduces a method of parameter identification for the Preisach model of hyster- esis. This identification method is explored in both the setting of non-singular measures and the setting of singular measures.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chevalier, Thierry. "Modélisation et mesure des pertes de fer dans les machines électriques : application à la machine asynchrone." Phd thesis, Grenoble INPG, 1999. http://www.theses.fr/1999INPG0172.

Повний текст джерела
Анотація:
L'énergie dissipée dans les machines électrique se situe, pour une grande partie, dans les tôles électriques utilisées pour la composition de leur circuit magnétique. Une analyse complète du comportement dynamique des ces tôles est menée, elle met en évidence sa sensibilité à la vitesse de variation de l'induction. Cette analyse conduit, grâce à une séparation des aspects statiques et dynamiques, à la définition d'un modèle d'hystérésis dynamique qui permet une représentation précise des tôles électriques. Le modèle d'hystérésis est ensuite combiné à une méthode d'analyse numérique par éléments finis pour évaluer localement la puissance dissipée par le circuit magnétique de la machine. La méthode est validée dans le cas de machines asynchrones de faible puissance. Une analyse complémentaire dans ce cas précis permet de déterminer d'autres phénomènes dissipatifs responsables de pertes supplémentaires. Ils ont pour origine soit des propriétés intrinsèques des matériaux, comme l'anisotropie, soit des opérations du processus de fabrication, comme les courts-circuits en surface du rotor. La prise en compte de l'ensemble de ces phénomènes a conduit à un modèle qui permet de prédire avec précision le rendement des machines électriques
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lahey, Timothy. "Modelling Hysteresis in the Bending of Fabrics." Thesis, University of Waterloo, 2002. http://hdl.handle.net/10012/941.

Повний текст джерела
Анотація:
This thesis presents a model of fabric bending hysteresis. The hysteresis model is designed to reproduce the fabric bending measurements taken by the Kawabata Evaluation System (KES) and the model parameters can be derived directly from these property measurements. The advantage to using this technique is that it provides the ability to simulate a continuum of property curves. Results of the model and its components are compared and constrasted with experimental results for fabrics composed of different weaves and yarn types. An attempt to incorporate the bending model as part of a fabric drape simulation is also made.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Foliente, Greg C. "Hysteresis modeling of wood joints and structural systems." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09292009-020259/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Modele hysteresis"

1

A, Visintin, ed. Models of hysteresis. Harlow, Essex: Longman Scientific & Technical, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mayergoyz, I. D. Mathematical Models of Hysteresis. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3028-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Visintin, Augusto. Differential Models of Hysteresis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-11557-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Visintin, A. Differential models of hysteresis. Berlin: Springer, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mayergoyz, I. D. Mathematical Models of Hysteresis. New York, NY: Springer New York, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Franz, Wolfgang, ed. Hysteresis Effects in Economic Models. Heidelberg: Physica-Verlag HD, 1990. http://dx.doi.org/10.1007/978-3-642-51543-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Iványi, Amália. Hysteresis models in electromagnetic computation. Budapest: Akadémiai Kiadó, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Baldwin, Richard E. Sunk-cost hysteresis. Cambridge, MA: National Bureau of Economic Research, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Göcke, Matthias. Starke Hysteresis im Aussenhandel. Heidelberg: Physica-Verlag, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

D, Mayergoyz I., ed. Mathematical models of hysteresis and their applications. Amsterdam: Elsevier, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Modele hysteresis"

1

Carboni, Biagio, Carlo Mancini, and Walter Lacarbonara. "Hysteretic Beam Model for Steel Wire Ropes Hysteresis Identification." In Springer Proceedings in Physics, 261–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19851-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mayergoyz, I. D. "The Classical Preisach Model of Hysteresis." In Mathematical Models of Hysteresis, 1–63. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3028-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mayergoyz, I. D. "Generalized Scalar Preisach Models of Hysteresis." In Mathematical Models of Hysteresis, 64–140. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3028-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mayergoyz, I. D. "Vector Preisach Models of Hysteresis." In Mathematical Models of Hysteresis, 141–201. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3028-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kühn, Jan, Andreas Bartel, and Piotr Putek. "A Hysteresis Loss Model for Tellinen’s Scalar Hysteresis Model." In Scientific Computing in Electrical Engineering, 241–50. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84238-3_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Blanchard, Olivier J., and Lawrence H. Summers. "Hysteresis in unemployment." In Economic Models of Trade Unions, 235–42. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2378-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baldwin, Richard. "Hysteresis in Trade." In Hysteresis Effects in Economic Models, 19–34. Heidelberg: Physica-Verlag HD, 1990. http://dx.doi.org/10.1007/978-3-642-51543-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Visintin, Augusto. "Mathematical models of hysteresis." In Modelling and Optimization of Distributed Parameter Systems Applications to engineering, 71–80. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-0-387-34922-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dimian, Mihai, and Petru Andrei. "Mathematical Models of Hysteresis." In Signals and Communication Technology, 1–63. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1374-5_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brokate, Martin, and Jürgen Sprekels. "Phase Field Models with Non-Conserving Kinetics." In Hysteresis and Phase Transitions, 218–70. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-4048-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Modele hysteresis"

1

Kilicarslan, Atilla, Gangbing Song, and Karolos M. Grigoriadis. "LPV Gain Scheduling Control of Hysteresis on an SMA Wire System." In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2623.

Повний текст джерела
Анотація:
In this work, a Linear Parameter-Varying (LPV) control method is used to compensate the hysteretic behavior of a Shape Memory Alloy (SMA) wire. Controller is implemented on an experimental system which consists of a pre-tension spring and a mass actuated with a thin SMA wire. The hysteretic characteristic of the SMA wire is modeled using the Preisach model and the model is verified both for the major and minor hysteresis loops. The small signal linear gain of the Preisach model is used as a scheduling stiffness variable. The parameter-dependent controller is scheduled based on the real time measurement of the stiffness variable. An H∞ controller is also synthesized by representing the hysteresis as a parametric uncertainty and comparisons are made with LPV gain scheduling controllers using similar weights for both controllers. Experimental trajectory tracking results show that the LPV Gain Scheduling controller has a better response and the hysteresis uncertainty is compensated for the full range of stiffness variability.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lee, Soon-Hong, Thomas J. Royston, and Gary Friedman. "Modeling and Compensation of Hysteresis in Piezoceramic Transducers for Vibration Control." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0521.

Повний текст джерела
Анотація:
Abstract Hysteretic behavior in piezoceramic transducers is investigated theoretically and experimentally. The applicability of the rate-independent generalized Maxwell resistive capacitor (MRC) hysteresis model is established. Methods for MRC and inverse MRC online model identification are developed by first establishing that the MRC and its inverse are the same particular cases of the classical Preisach hysteresis model. This enables use of the extensive mathematical framework that has been developed for Preisach models. A method of incorporating the MRC model in a feedforward control scheme for hysteresis compensation is also presented. Experimental studies on a 1-3 piezoceramic composite support the theoretical developments and their applicability to piezoceramics.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mazda, Taiji, Hisanori Otsuka, Wataru Yabuki, and Kensuke Iwamoto. "Construction of Generalized Neural Network System for Recognizing Several Non-Linear Behaviors." In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-2114.

Повний текст джерела
Анотація:
Generally, in formulating a spring-mass model for hysteric behavior of materials and members with inelastic characteristic, a mathematical model based on load-deformation experimental results is considered. The model must approximate the inelastic hysteresis of the material. However, assumption of material’s behavior using mathematical models is crucial, since it may cause serious errors if inappropriate model is applied for a particular situation. This paper describes multiple layered neural network to simulate the non-linear hysteretic behavior like Ramberg-Osgood model, modified bilinear model and Takeda model. In this study, based on the pattern recognition ability of neural network, non-linear hysteretic behavior was modeled by the network directly without replacing it with a mathematical model. The effectiveness and applicability of the network in numerical analysis were evaluated. Generalized multiple layered neural network to evaluate non-linear hysteretic curve was constructed. The network can recognize well the three types of hysteretic curve. The network is available as a subroutine of non-linear spring in dynamic response analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

T K, Arya Bharath, and Nisha A.S. "Comparison of Hysteresis Models for Nonlinear Dynamic Analysis of Structural Systems." In International Web Conference in Civil Engineering for a Sustainable Planet. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.112.35.

Повний текст джерела
Анотація:
Hysteresis is a non-linear phenomenon exhibited by the mechanical systems. Beyond elastic limit the loading and unloading path of most of the system will differ and that nonlinear path is indicated by hysteresis. The reason for shape of hysteretic cure may due to either changes in material properties beyond the elastic range or due to the changes in structural geometry because of subjected load. This response is a function of both immediate deformation and the previous residual deformation acted on it since it represents the dissipated energy of structure. The hysteretic characteristics or degrading characteristics includes pinching, stiffness degradation, load deterioration, and sliding. A study of four commonly available hysteresis models, which are Bouc Wen Model, Mostaghel Model, Menegotto Pinto Model and Preisach Model were briefly reviewed and discussed in this section and the outcome of this study is the best fitted model for the nonlinear analysis. The scope of the work is to simulate nonlinear response of the building frame subjected to earthquake excitation in a most effective way.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Taló, Michela, Walter Lacarbonara, Giovanni Formica, and Giulia Lanzara. "Hysteresis Identification of Carbon Nanotube Composite Beams." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-86228.

Повний текст джерела
Анотація:
Nanocomposites made of a hosting polymer matrix integrated with carbon nanotubes as nanofillers exhibit an inherent hysteretic behavior arising from the CNT/matrix frictional sliding. Such stick-slip mechanism is responsible for the high damping capacity of CNT nanocomposites. A full 3D nonlinear constitutive model, framed in the context of the Eshelby-Mori-Tanaka theory, reduced to a 1D phenomenological model is shown to describe accurately the CNT/polymer stick-slip hysteresis. The nonlinear hysteretic response of CNT nanocomposite beams is experimentally characterized via displacement-driven tests in bending mode. The force-displacement cycles are identified via the phenomenological model featuring five independent constitutive parameters. A preliminary parametric study highlights the importance of some key parameters in determining the shape of the hysteresis loops. The parameter identification is performed via one of the variants of a genetic-type differential evolution algorithm. The nanocomposites hysteresis loops are identified with reasonably low mean square errors. Such outcome confirms that the 1D phenomenological model may serve as an effective tool to describe and predict the nanocomposite nonlinear hysteretic behavior towards unprecedented material optimization and design.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, H., Y. Yang, G. C. Foliente, and F. Ma. "Parameter Identification of Inelastic Structures." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/cie-9065.

Повний текст джерела
Анотація:
Abstract Structures often exhibit nonlinear and inelastic behavior in the form of hysteresis loop under severe loads associated with earthquake, austere winds and waves. Hysteresis is particularly important in depicting the nonlinear response of wood buildings, braced steel frames, reinforced concrete, and structures with a high proportion of composite materials. A practical model of hysteresis that would match experimental observations on real structures is needed for the successful design of structures against earthquakes and strong winds. Two different time-domain system identification algorithms will be presented in this report to estimate the parameters of an extended Bouc-Wen hysteretic model. This version of the differential model of hysteresis can curve-fit practically any hysteresis trace with a suitable choice of the model parameters. Thirteen control parameters are included in the model. The parameter identification algorithms presented in this report include the constrained simplex and generalized reduced gradient methods. Noise filtering techniques and constraints will also be used in this study to assist in parameter identification. The effectiveness of the proposed algorithms will be demonstrated through simulations of nonlinear systems with pinching and degradation characteristics. Due to very modest computing requirements, the proposed identification algorithms can be acceptable as a basic tool for estimating hysteretic parameters in engineering design.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ghodake, Pravinkumar. "One Dimensional Nonlinear Wave Propagation in a Rate Independent Pinched Hysteretic Material." In 2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/qnde2021-74515.

Повний текст джерела
Анотація:
Abstract Theoretical and numerical studies on wave propagation in symmetric hysteretic material models such as Preisach–Mayergoyz (P-M), Hodgdon, Power Law, and Bouc-Wen, etc. by researchers like McCall, Guyer, Van Den Abeele, Johnson, Meurer, Nazarov, Radostin, Zhan, Ghodake, and others (1994–2021) demonstrated generation of only odd harmonics. In this study, nonlinear wave propagation in a 1D symmetric pinched rate-independent hysteretic material is discussed. A 1D space is discretized as a long chain of spring-mass elements by adding hysteretic elements in parallel. Hysteretic elements are modeled as a rate-independent pinched hysteresis model proposed by Biswas (2016), which is an improvement to Reid’s and Muravskii’s models. The system of equations is solved numerically. Results show that propagation of a single frequency wave generates only odd harmonics. Very nice evolving symmetric pinched hysteretic loops are observed for a Gaussian input pulse. Due to one-way two-wave mixing, sum and difference frequencies are observed along with the odd harmonics of the input frequencies. In mixing also symmetric pinched hysteretic curves are observed corresponding to input frequencies and their higher harmonics. Instead of minor loops as seen in Bouc-Wen, Two-States (Ghodake 2020), and Asymmetric Bouc-Wen (Ghodake 2021) models, small symmetric pinched loops are observed due to mixing.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Haochuan, and Fai Ma. "Parameter Sensitivity Analysis of the Extended Bouc-Wen Model of Hysteresis." In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/cie-34473.

Повний текст джерела
Анотація:
The extended Bouc-Wen differential model is one of the most widely accepted phenomenological models of hysteresis in computational mechanics. It is routinely used in the characterization of structural damping and in system identification. In this paper, the differential model of hysteresis is carefully re-examined and two significant issues are uncovered. First, it is found that the unspecified parameters of the model are not independent. One of the model parameters can be eliminated through suitable transformations in the parameter space. Second, through local and global sensitivity analysis, it is found that some parameters of the hysteretic model are rather insensitive. If these insensitive parameters are set to constant values, a greatly simplified model is obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ma, Fai. "On the Identification of Hysteresis in Inelastic Systems." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/cie-21271.

Повний текст джерела
Анотація:
Abstract The generalized model of differential hysteresis contains thirteen control parameters with which it can curve-fit practically any hysteretic trace. Three identification algorithms are developed to estimate the control parameters of hysteresis for different classes of inelastic structures. These algorithms are based upon the simplex, extended Kalman filter, and generalized reduced gradient methods. Novel techniques such as global search and internal constraints are incorporated to facilitate convergence and stability. Effectiveness of the devised algorithms is demonstrated through simulations of two inelastic systems with both pinching and degradation characteristics in their hysteretic traces. Due to very modest computing requirements, these identification algorithms may become acceptable as a design tool for mapping the hysteretic traces of inelastic structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ng, C. H., N. Ajavakom, and F. Ma. "On Response Prediction of Degrading Structures." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84916.

Повний текст джерела
Анотація:
All structures degrade when acted upon by cyclic forces associated with earthquakes, high winds, and sea waves. Identification and prediction of degradation is thus a problem of considerable practical significance in the field of engineering mechanics. Under cyclic excitations, system degradation manifests itself in the evolution of the associated hysteresis loops. In this paper, a robust identification algorithm is devised to generate hysteretic models of a deteriorating structure from its experimental load-displacement traces. This algorithm is based upon the generalized Bouc-Wen model and the latest theory of differential evolution, streamlined through global sensitivity analysis. It can account for strength degradation, stiffness degradation, and pinching characteristics in the evolution of hysteretic traces, whereby earlier studies in parametric identification of hysteresis are extended. In addition, it is shown experimentally that a hysteretic model obtained by identification can be used to predict the future performance of a degrading structure. Prediction of degradation through identification is a brute-force approach that offers a close representation of reality. There is not any method based upon the fundamental postulates of mechanics that can predict the response of a degrading structure well beyond its linear range.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Modele hysteresis"

1

Mayergoyz, Isaak. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS). Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/889747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mayergoyz, I. D. [Mathematical models of hysteresis]. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6911694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mayergoyz, I. D. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6946876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mayergoyz, I. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/5246564.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Smith, Ralph C., and Zoubeida Ounaies. A Hysteresis Model for Piezoceramic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada446005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ball, Brian L., Ralph C. Smith, Sang-Joo Kim, and Stefan Seelecke. A Stress-Dependent Hysteresis Model for Ferroelectric Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada440136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Niemi, A., and G. S. Bodvarsson. The capillary hysteresis model HYSTR: User`s guide. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/138363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Smith, Ralph C., and Craig L. Hom. A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectrics. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada452005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smith, Ralph C., and Andrew Hatch. Parameter Estimation Techniques for a Polarization Hysteresis Model. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada453243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Smith, Ralph C., and Zoubeida Ounaies. A Model for Asymmetric Hysteresis in Piezoceramic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada373567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії