Добірка наукової літератури з теми "Modèle de combustion"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Modèle de combustion".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Modèle de combustion":

1

DABILGOU, Téré, Oumar SANOGO, S. Augustin Zongo, Tizane Daho, Belkacem Zeghmati, Jean KOULIDIATI, and Antoine BERE. "Modélisation thermodynamique de combustion mono-zone de biodiesels dans un moteur diesel et estimation théorique des émissions potentielles." Journal de Physique de la SOAPHYS 2, no. 1a (February 13, 2021): C20A10–1—C20A10–10. http://dx.doi.org/10.46411/jpsoaphys.2020.01.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans le présent travail, un modèle thermodynamique de combustion à zone unique pour le carburant diesel et le biodiesel a été mis en oeuvre pour prédire la pression du cylindre afin de mieux comprendre la combustion caractéristique des différents carburants testés dans un moteur diesel et d’analyser les performances caractéristiques d'un même moteur fonctionnant avec différents types de carburants. Il s’est agi également d’évaluer les émissions potentielles de ces carburants lors de leurs combustions dans le moteur diesel. L'évaluation du modèle est faite en fonction de la complexité temporelle, de la complexité spatiale et de la précision de la prédiction à l'aide du programme informatique développé sous MATLAB. Les résultats du présent modèle montrent que les évolutions de la pression du cylindre ainsi que la température du cylindre ont été reproduites avec une bonne précision. En outre, la comparaison entre les paramètres de performance simulés et expérimentaux du moteur a montré une bonne concordance. Les resultatas montrent également des réductions des émissions polluantes avec l’utilisation des carburants alternatifs comparés au diesel.
2

Glangetas, L. "Etude d'une limite singulière d'un modèle intervenant en combustion." Asymptotic Analysis 5, no. 4 (1992): 317–42. http://dx.doi.org/10.3233/asy-1992-5403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Roques, Lionel. "Existence de deux solutions du type front progressif pour un modèle de combustion avec pertes de chaleur." Comptes Rendus Mathematique 340, no. 7 (April 2005): 493–97. http://dx.doi.org/10.1016/j.crma.2005.02.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Abbas, Mohamed, Noureddine Said, and Boussad Boumeddane. "Optimisation d’un moteur Stirling de type gamma." Journal of Renewable Energies 13, no. 1 (October 25, 2023): 1–12. http://dx.doi.org/10.54966/jreen.v13i1.174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La nécessité de réduire les émissions de dioxyde de carbone (CO2) a conduit à revaloriser les moteurs à combustion externe fonctionnant selon le cycle de Stirling. Les moteurs Stirling connaissent depuis peu une vogue nouvelle, car ils sont silencieux, non polluants, acceptent tout type de chaleur externe et demandent peu de maintenance. Ce moteur a été utilisé avec succès pour la conversion de l’énergie solaire en électricité par la technologie dite ‘Dish Stirling System’ qui utilise un moteur Stirling placé au foyer d’un concentrateur parabolique. Dans cette étude, une modélisation dynamique d’un moteur Stirling de type gamma basée une approche quasi stationnaire a été présentée. Ce modèle, qui prend en compte les différentes pertes thermiques et mécaniques dont le moteur Stirling est le siège, a conduit à l’écriture d’important système d’équation algébro différentielles. Le programme de calcul développé sous Matlab a permis, dans le but d’améliorer les performances du moteur Stirling, d’optimiser les paramètres géométriques et physiques, tels que la géométrie des échangeurs, la température du réchauffeur et du refroidisseur, les volumes morts et la vitesse de rotation.
5

de Bollivier, Éric. "Les sucreries de La Réunion au cœur de la transition écologique." Annales des Mines - Réalités industrielles Août 2023, no. 3 (August 4, 2023): 51–55. http://dx.doi.org/10.3917/rindu1.233.0051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La filière canne-sucre-rhum-énergie de La Réunion est au cœur du développement d’un ensemble économique lié à l’agriculture, à l’industrie, à l’énergie, à l’environnement ou encore au tourisme. Riche de plus de 200 ans d’histoire et dépassant l’enjeu sucrier, la filière a toujours su innover pour devenir aujourd’hui un véritable modèle d’économie circulaire en synergie avec les autres filières. Pionnière mondiale de la production d’énergie à partir de la canne à sucre, l’industrie sucrière est à l’origine de nombreuses innovations. Aujourd’hui, la bagasse ‒ résidu fibreux obtenu après extraction du sucre ‒ constitue la première source d’énergie renouvelable de l’île. Depuis 2019, la mélasse est également utilisée pour fabriquer de l’éthanol combustible qui alimente la turbine à combustion en service dans le sud de l’île. Au cœur des enjeux de transition écologique, l’industrie sucrière poursuit ses recherches pour augmenter la part de la filière correspondante dans la production d’énergie renouvelable. Les futures avancées techniques devront également garantir la qualité des sucres et les coproduits indispensables aux autres filières, et ainsi permettre de maintenir le rôle essentiel de la filière dans l’atteinte des objectifs du territoire en matière de transition écologique.
6

Cherednichenko, Oleksandr, Serhiy Serbin, and Marek Dzida. "Investigation of the Combustion Processes in the Gas Turbine Module of an FPSO Operating on Associated Gas Conversion Products." Polish Maritime Research 26, no. 4 (December 1, 2019): 149–56. http://dx.doi.org/10.2478/pomr-2019-0077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In this paper, we consider the issue of thermo-chemical heat recovery of waste heat from gas turbine engines for the steam conversion of associated gas for offshore vessels. Current trends in the development of offshore infrastructure are identified, and the composition of power plants for mobile offshore drilling units and FPSO vessels is analyzed. We present the results of a comparison of power-to-volume ratio, power-to-weight ratio and efficiency for diesel and gas turbine power modules of various capacities. Mathematical modeling methods are used to analyze the parameters of an alternative gas turbine unit based on steam conversion of the associated gas, and the estimated efficiency of the energy module is shown to be 50%. In the modeling of the burning processes, the UGT 25000 serial low emission combustor is considered, and a detailed analysis of the processes in the combustor is presented, based on the application of a 35-reaction chemical mechanism. We confirm the possibility of efficient combustion of associated gas steam conversion products with different compositions, and establish that stable operation of the gas turbine combustor is possible when using fuels with low calorific values in the range 7–8 MJ/kg. It is found that the emissions of NOx and CO during operation of a gas turbine engine on the associated gas conversion products are within acceptable limits.
7

Puri, R., D. M. Stansel, D. A. Smith, and M. K. Razdan. "Dry Ultralow NOx “Green Thumb” Combustor for Allison’s 501-K Series Industrial Engines." Journal of Engineering for Gas Turbines and Power 119, no. 1 (January 1, 1997): 93–101. http://dx.doi.org/10.1115/1.2815568.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper describes the progress made in developing an external ultralow oxides of nitrogen (NOx) “Green Thumb” combustor for the Allison Engine Company’s 501-K series engines. A lean premixed approach is being pursued to meet the emissions goals of 9 ppm NOx, 50 ppm carbon monoxide (CO), and 10 ppm unburned hydrocarbon (UHC). Several lean premixed (LPM) module configurations were identified computationally for the best NOx–CO trade-off by varying the location of fuel injection and the swirl angle of the module. These configurations were fabricated and screened under atmospheric conditions by direct visualization through a quartz liner; measurement of the stoichiometry at lean blow out (LBO); measurement of the fuel–air mixing efficiency at the module exit; and emissions measurements at the combustor exit, as well as velocity measurements. The influence of linear residence time on emissions was also examined. An LPM module featuring a radial inflow swirler demonstrated efficient fuel-air mixing and subsequent low NOx and CO production in extensive atmospheric bench and simulated engine testing. Measurements show the fuel concentration distribution at the module exit impacts the tradeoff between NOx and CO emissions. The effect of varying the swirl angle of the module also has a similar effect with the gains in NOx emissions reduction being traded for increased CO emissions. A uniform fuel-air mixture (±2.5 percent azimuthal variation) at the exit of the module yields low NOx (5–10 ppm) at inlet conditions of 1 MPa (~10 atm) and temperatures as high as 616 K (650°F). The combustion efficiency at these conditions was also good (>99.9 percent) with CO and UHC emissions below 76 ppm and 39 ppm, respectively. This LPM module was resistant to flashback, and stability was good as LBO was observed below φ = 0.50. Tests with multiple modules in a single liner indicate a strong intermodule interaction and show lower NOx and CO emissions. The close proximity of adjacent modules and lower confinement in the liner most likely reduces the size of the recirculation zone associated with each module, thereby reducing the NOx formed therein. The CO emissions are probably lowered due to the reduced cool liner surface area per module resulting when several modules feed into the same liner.
8

Ängeby, Jakob, Bert Gustafsson, and Anders Johnsson. "Ignition Control Module for Hydrogen Combustion Engines." MTZ worldwide 84, no. 10 (September 8, 2023): 48–53. http://dx.doi.org/10.1007/s38313-023-1519-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dahlan, A. A., Mohd Farid Muhammad Said, Z. Abdul Latiff, M. R. Mohd Perang, S. A. Abu Bakar, and R. I. Abdul Jalal. "Acoustic Study of an Air Intake System of SI Engine using 1-Dimensional Approach." International Journal of Automotive and Mechanical Engineering 16, no. 1 (March 21, 2019): 6281–300. http://dx.doi.org/10.15282/ijame.16.1.2019.14.0476.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Air intake system of an internal combustion engine plays main role in delivering fresh air from the environment to the engine and dampening the sound of the engine combustion process coming from the engine combustion process. In this study, a simulation was conducted to improve the existing air intake system design in terms of acoustic study to have better sound quality by modifying the resonators, air duct and airbox volume of the air intake module. This study implements the 1-dimensional simulation study using commercial software, correlate to the 1.6-liter natural aspirated engine. The objective of this study is to decrease the engine noise at snorkel of the air intake module without losing too much of pressure drop. At the end of this study, the analysis defines the geometry of air intake module with the recommended resonator for fabrication and physical testing. The simulation result shows that the modified air intake module meet the objective and fulfil the performance target.
10

Fulara, Szymon, Maciej Chmielewski, and Marian Gieras. "Variable Geometry in Miniature Gas Turbine for Improved Performance and Reduced Environmental Impact." Energies 13, no. 19 (October 8, 2020): 5230. http://dx.doi.org/10.3390/en13195230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A miniature gas turbine (MGT) is proposed as a promising future energy source. Increasingly stringent requirements related to harmful combustible gas emissions and a trend towards improved energy generation efficiency drive the quest for new MGT technologies. Variable geometry systems are promising due to enhanced heat management and flow control. Variable combustor cooling and dilution holes together with the variable area nozzle (VAN) system allow for the improvement of gas turbine performance and reduction in pollutant emissions. The proposed systems are based on hot-section geometry changes, in which the size of the combustion chamber holes and turbine nozzle angle can be adjusted. Component and module experimental research were performed at the Warsaw University of Technology, on an MGT test stand. A significant decrease in fuel consumption (up to 47% reduction) and harmful nitrogen oxide emission reduction (NO–by 78% and NO2–by 82%) were achieved. These results are related to combustor turbine inlet temperature (TIT) increase up to 1230 K. The tests of the variable geometry systems have also shown an impact on gas turbine power and specific fuel consumption.

Дисертації з теми "Modèle de combustion":

1

Esnault, Olivier. "Sur un modèle de combustion en milieu désordonné." Phd thesis, Poitiers, 2007. http://tel.archives-ouvertes.fr/tel-00258217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La propagation d'une flamme dans un milieu réactif désordonné met en jeu des disparités d'échelles de longueur si importantes que l'étude en est inaccessible sans un effort important de modélisation. Cette thèse s'appuie sur le fait qu'un tel cadre est propice à l'emploi du concept de percolation, par le biais duquel on modélise les amas que forment les régions inflammables du milieu. On se restreint à la combustion d'un réactif solide, et à une forme de désordre telle que le milieu présente des chemins (ou canaux) privilégiés pour la propagation d'une flamme. Des modèles théoriques pour l'étude d'une flamme initiée au sein d'un canal unique sont d'abord considérés. Ils mettent à jour une extinction lorsque le canal est trop étroit et fournissent des relations entre célérité de flamme et largeur du canal. Leurs conclusions sont validées par similations numériques directes. Ces résultats sont alors utilisés pour établir et exploiter un modèle dérivé de la percolation de lien, étudié d'un point de vue dynamique pour caractériser la propagation à grande échelle d'une flamme dans le milieu. Diverses lois d'échelle sont ainsi mises en évidence.
2

Ben, Taib Ahmed. "Etude mathématique et numérique d'un modèle de combustion turbulente." Lyon 1, 1993. http://www.theses.fr/1993LYO10245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le but de cette these est l'etude mathematique et numerique d'un modele de combustion turbulente. Elle comprend une partie introductive des modeles de turbulence et de combustion turbulente. Dans le deuxieme chapitre, on presente l'etude mathematique du modele mil. Un theoreme d'existence et d'unicite y est expose. Le troisieme chapitre fait le point sur l'etat de l'art en matiere des methodes de volumes finis. Un algorithme, en volumes finis non structures pour la resolution du systeme des equations de navier-stokes couple aux modeles k-epsilon et mil, est decrit au quatrieme chapitre. Les resultats des experiences numeriques obtenus avec cet algorithme sont presentes au dernier chapitre
3

Hillion, Mathieu. "Contrôle de combustion en transitoires des moteurs à combustion interne." Phd thesis, École Nationale Supérieure des Mines de Paris, 2009. http://pastel.archives-ouvertes.fr/pastel-00005749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse traite le problème du contrôle de combustion des moteurs automobiles à combustion interne. On propose une méthode complétant les stratégies de contrôle existantes reposant sur des cartographies calibrées en régime stabilisé. Pendant les transitoires, cette méthode de contrôle utilise des variations de la variable rapide (moment d'allumage ou d'injection) pour compenser les déviations des conditions initiales des variables thermodynamiques dans les cylindres (variables lentes) par rapport à leurs valeurs optimales. Les corrections sont calculées grâce à une analyse de sensibilité d'un modèle de combustion. La stratégie de contrôle en résultant est utilisable en temps réel et, de manière intéressante, ne requiert ni capteur additionnel, ni phase de calibration supplémentaire. Plusieurs cas d'´etudes sont exposés: un moteur essence, un moteur Diesel dilué dans un cadre d'injection monopulse puis multipulse. Des simulations ainsi que des résultats experimentaux obtenus sur banc moteurs et véhicules mettent en valeur l'interêt de la méthode proposée.
4

Loubeau, Vincent. "Sur un modèle de combustion solide-solide à énergie d'activation finie." Bordeaux 1, 1992. http://www.theses.fr/1992BOR10596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Si les modèles de combustion en phase gazeuse ont fait l'objet de nombreuses études, la combustion solide-solide reste largement un domaine nouveau, surtout dans le cas des énergies d'activation finies. On considère ici un système parabolique-hyperbolique avec un terme de réaction correspondant à une cinétique d'Arrhenius. On montre l'existence d'une solution onde stationnaire, et la convergence vers un modèle asymptotique. La question de la stabilité est formulée mathématiquement et conduit à un problème d'évolution abstrait formel. Les valeurs propres de l'opérateur linéarise sont étudiées numériquement
5

Martinot, Stéphane. "Développement d'un modèle de suies pour la modélisation multidimentionnelle des polluants dans les moteurs diesel." INSA de Rouen, 2002. http://www.theses.fr/2002ISAM0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les constructeurs automobiles doivent faire face à des normes anti-pollution de plus en plus sévères et dans des délais de plus en plus courts. Les particules émises par les moteurs Diesel font partie des polluants réglementés. Le recours à des outils d'aide à la conception de moteurs devient de plus en plus fréquent et nécessaire. Ce travail s'inscrit dans ce cadre et consiste en un développement d'un modèle de formation et d'oxydation des suies Diesel qui sera intégré dans un code de calcul 3D moteur. La difficulté de la modélisation de la combustion dans de tels codes provient du fait que la structure de la zone réactionnelle est sous-résolue par le maillage. Habituellement, des hypothèses de type flammelettes ou, à l'opposé, de type réacteur homogène sont faites sur la structure de sous-maille. La nouveauté apportée au cours de ce travail est qu'une réponse couplée flammelettes / réacteur homogène est apportée pour décrire la structure de la zone réactionnelle. Le passage d'un modèle à l'autre se fait naturellement via une comparaison entre un temps caractéristique chimique et un temps caractéristique de la turbulence. Ce nouveau modèle est validé dans des configurations simplifiées mais représentatives des conditions thermodynamiques rencontrées dans un moteur Diesel. La structure du nuage de suie calculée par le nouveau modèle reproduit de façon satisfaisante ce qui est observé expérimentalement. Cependant, le manque de données quantitatives ne permet pas de valider complètement le modèle. Ce dernier est également utilisé pour une étude paramétrique sur un moteur Diesel de série. Les tendances sur les émissions de suies mesurées sont bien reproduites par le modèle.
6

Millet, Jean-Baptiste. "Modélisation réduite de la combustion homogène Diesel : développement d'un modèle zéro-dimensionnel de combustion HCCI avec cinétique chimique réduite." Paris 6, 2006. http://www.theses.fr/2006PA066500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La modélisation sur une plage de paramètres initiaux la plus exhaustive de la combustion HCCI à l’aide de modèles offrant des temps de calculs réduits est nécessaire afin de limiter le nombre d’essais expérimentaux coûteux en temps et très onéreux. L’objectif de cette étude est de fournir un modèle physiquement simple de la combustion HCCI dans l’optique de l’optimisation et du contrôle moteur. Ce travail propose un modèle basé sur les observations physiques de la combustion et affranchi de mécanisme chimique. Le modèle proposé reproduit l’évolution de la fraction massique de carburant consommée et de la température. Il est piloté par un taux de réaction global Ω(T) qui décrit la consommation du carburant et l’évolution du dégagement d’énergie. La fonction Ω(T) se décompose en deux fonctions décrivant respectivement la dynamique plus lente caractéristique de la flamme froide et celle plus rapide de l’inflammation principale, ainsi que la transition entre ces deux phases. Ces fonctions ont été calibrées à l’aide du mécanisme de cinétique chimique réduit développé précédemment. Une relation pour le délai d’inflammation en fonction des conditions initiales du point de fonctionnement a été proposée. De même, des relations entre le taux de dégagement d’énergie de la flamme froide et de l’inflammation principale ont été établies, prenant en compte le phasing entre ces deux phases d’oxydation. Les résultats montrent que ce type de modèle peut décrire précisément les délais d’inflammation liés à la combustion HCCI (flamme froide et combustion principale), ainsi que les taux de dégagement d’énergie des deux phases, avec des temps de calcul très réduit. Le modèle proposé a été comparé à un modèle comprenant un mécanisme de cinétique chimique réduit et des essais expérimentaux provenant d’un moteur Renault. Dans les deux cas, les comparaisons ont montré que les résultats donnés par le modèle étaient tout à fait pertinents.
7

Rehayem, Elias. "Modélisation des turbomachines : Dérivation d’un modèle phénoménologique de combustion pour la simulation de transitoires sur hélicoptères." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC056/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail propose l’investigation d’une approche physique 0D/1D modélisant les brûleurs de turbines à gaz, prenant en compte l’évaporation du carburant, la turbulence, la combustion, et permet la représentation de zones de dilution et l’implémentation de modèles de chimie des polluants. Il s’agit de sous-modèles répartis dans des composants assemblables dans un environnement numérique multi-domaines basé sur le formalisme de Bond Graph. Ceci permet, par exemple, l’assemblage de plusieurs volumes ouverts en un tube à flamme, l’ajout d’un compresseur et d’une turbine, ou bien aussi d’intégrer des chaînes de commande afin de représenter un hélicoptère complet. L’originalité de cette thèse réside dans l’application d’un paradigme de combustion 0D, issu d’une approche 3D élaborée chez IFP Energies nouvelles et appliquée avec succès aux moteurs alternatifs ainsi qu’à des turbines à gaz. Le sous-modèle intègre le formalisme de flamme cohérente qui distingue une zone de gaz frais d’une zone de gaz brûlés. Les deux zones sont séparées par une flamme turbulente. Le sous-modèle de tube à flamme décrit la flamme grâce à une synthèse issue de résultats de calculs CFD 3D validés par des expériences. En effet, des résultats de calculs LES d’un brûleur expérimental monophasique ont étés analysés pour caractériser la combustion turbulente prémélangée dans un brûleur à tourbilloneur. Enfin, un secteur de brûleur réel de turbomoteur a été étudié à l’aide de simulations CFD afin d’évaluer la pertinence du modèle de tube à flamme 0D/1D et de guider la modélisation permettant de compléter la nouvelle approche de simulation système des turbines à gaz
This work investigates a unique 0D/1D physical approach for gas turbine combustor modelling. It accounts for fuel evaporation, turbulence, combustion, and allows to represent dilution stages. Detailed pollutants formation models can also be added. The chosen formalism, based on the Bond Graph theory approach, allows to describe systems organised in a series of submodel components such as a series of open volumes forming a flame tube, or a combustor coupled to a compressor and turbine but they can also be combined with control and regulation devices in order to represent a complete rotorcraft. The essence of the PhD strategy is the application of a 0D combustion paradigm, obtained at IFP Energies nouvelles by formal reduction of 3D approaches for gas turbines. More in details, a new combustion model was developed integrating the Coherent Flame Model (CFM) formalism which allows to distinguish between fresh gases and burned gases separating them with a turbulent flame. The flame tube submodel features a physical description of the flame thanks to thorough understanding given by 3D CFD simulation results validated against experimental measurements. More specifically, LES results corresponding to a single phase test rig were analysed in order to characterise premixed turbulent combustion in a swirl burner. Finally, a real turboshaft combustor sector case was studied by means of CFD simulations to investigate the relevance of the 0D/1D flame tube model and to determine modelling strategies for the completion of the new gas turbine system simulation approach
8

Rego, Rui. "Sur un modèle non linéaire d'interaction entre flamme et acoustique." Poitiers, 2006. http://www.theses.fr/2006POIT2304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les flammes prémélangées peuvent être représentées comme des interfaces minces et actives, un point de vue qu'on adopte ici. Alors qu'existent des approches asymptotiques, fournissant des Equations d'Evolution (EE) du 1er-order-en temps qui soient précises, elles cessent d'être applicables lorsque les accélérations sont non négligeables. Pourtant, on peut bâtir quelques EE, capables de prendre en compte les effets les à l'accélération : celles-ci liés à découlent d'arguments de symétrie, de la phénoménologie disponible et leur consistance avec des cas-limite connus. De telles EE peuvent prendre en compte des effets d'accélération, externes ou induites, et de la non-linéarité d'Huygens, pourvu que la invariance Galiléen fût vérifie. Ce modèle couple la dynamique de la forme de flamme (méthode Fourier pseudo-spectrale) et l'acoustique externe, elle-même linéaire en moyenne. Tous les tests portant sur la réponse de notre modèle de flamme à une accélération imposée ont étés validés, même en régime non-linéaire. Ce système-modèle, global et non-linéaire, est résolu numériquement dans le cas de flammes se propageant le long d'un tube, par exemple. Des extensions sont aussi envisagées
Premixed flames may be considered as thin active interfaces, a point of view that we adopt here. Whereas accurate asymptotic expansions methods exist to obtain first-order-in-time Evolution Equations, whenever flow-field accelerations intervene those methods fail to provide an unambiguous answer. Still, suitable designed Evolution Equations that are able to handle with flow accelerations are tailored, based on phenomenological grounds, symmetry arguments, and consistency with known limiting cases. Those describe flame dynamics by a second-order-in-time Evolution Equation, with a geometrical non-linearity stemming from normal (Huygens) propagation, the density change, the overall geometry, and the inertia-induced gravitational forcing, provided that Galilean invariance is fulfilled. This flame EE model is numerically coupled with its self-induced acceleration field, where linear acoustics is shown to prevail on transverse average. The flame-shape evolution is handled via a Fourier pseudo-spectral method, which is checked against flame responses to prescribed accelerations successfully, even in the nonlinear regime. This nonlinear, global, system model is solved for flames in tubes as an example. Follow-on studies are also envisaged
9

Stefanin, Volpiani Pedro. "Modèle de plissement dynamique pour la simulation aux grandes échelles de la combustion turbulente prémelangée." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC005/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Avec l’accroissement considérable de la puissance de calcul, les simulations aux grandes échelles (SGE) sont maintenant utilisées de façon routinière dans de nombreuses applications d’ingénierie. Les modèles de combustion usuels utilisés dans les SGE sont le plus souvent basés sur une hypothèse d’équilibre entre le mouvement des structures turbulentes et le plissement de la surface de la flamme. Ils s’écrivent alors sous forme d’expressions algébriques fonctions de grandeurs connues aux échelles résolues ainsi que de paramètres dont l’ajustement est à la charge de l’utilisateur selon la configuration étudiée et les conditions opératoires. Le modèle dynamique récemment développé ajuste automatiquement au cours du calcul les paramètres de modélisation qui peuvent alors dépendre du temps et de l’espace. Cette thèse présente une étude détaillée d’un modèle dynamique pour la simulation aux grandes échelles de la combustion turbulente prémélangée. L’objectif est de caractériser, explorer les avantages et les inconvénients, appliquer et valider le modèle dynamique dans plusieurs configurations
Large eddy simulation (LES) is currently applied in a wide range of engineering applications. Classical LES combustion models are based on algebraic expressions and assume equilibrium between turbulence and flame wrinkling which is generally not verified in many circumstances as the flame is laminar at early stages and progressively wrinkled by turbulent motions. In practice, this conceptual drawback has a strong consequence: every computation needs its own set of constants, i.e. any small change in the operating conditions or in the geometry requires an adjustment of model parameters. The dynamic model recently developed adjust automatically the flame wrinkling factor from the knowledge of resolved scales. Widely used to describe the unresolved turbulent transport, the dynamic approach remains underexplored in combustion despite its interesting potential. This thesis presents a detailed study of a dynamic wrinkling factor model for large eddy simulation of turbulent premixed combustion. The goal of this thesis is to characterize, unveil pros and cons, apply and validate the dynamic modeling in different flow configurations
10

Pang, Hyo Sun. "Etude de l'application du modèle Cora au cas d'un brûleur industriel à contre rotation." Rouen, 1991. http://www.theses.fr/1991ROUES026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Un modèle de combustion turbulente intermittente, applicable au cas d'une chimie non infiniment rapide et à une flamme de diffusion a été mise au point par le CORIA (Complexe De Recherche Interprofessionnel en Aérothermochimie en 1986). Le modèle a été modifié pour tenir compte des vitesses tangentielles de l'écoulement d'air et d'entrées radiales de gaz. Il a été applique au cas d'un brûleur à contre rotation couramment utilisé dans l'industrie. Les résultats d'un calcul avec combustion montrent que ce code semble être relativement bien adapté pour la prédiction de dispositifs industriels

Книги з теми "Modèle de combustion":

1

Colannino, Joseph. Modeling of combustion systems: A practical approach. Boca Raton, FL: CRC Press, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ramos, J. I. Internal combustion engine modeling. New York: Hemisphere Pub. Corp., 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Janicka, Johannes. Combustion Noise. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

1929-, Chung T. J., ed. Numerical modeling in combustion. Washington, DC: Taylor & Francis, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Roy, G. D., P. Givi, and S. M. Frolov. Advanced computation & analysis of combustion. Moscow: ENAS Publishers, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zeleznik, Frank J. Modeling the internal combustion engine. Washington, D.C: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zeleznik, Frank J. Modeling the internal combustion engine. Washington, D.C: NASA, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shatilʹ, A. A. Topochnye prot͡s︡essy i ustroĭstva: Issledovanii͡a︡ i raschet. Sankt-Peterburg: AOOT "Nauchno-proizvodstvenoe obʹedinenie po issledovanii͡u︡ i proektirovanii͡u︡ ėnerg. oborudovanii͡a︡ im. I.I. Polzunova", 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vaidyanathan, Sankaran, Stone Christopher, and NASA Glenn Research Center, eds. Subgrid combustion modeling for the next generation national combustion code. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vaidyanathan, Sankaran, Stone Christopher, and NASA Glenn Research Center, eds. Subgrid combustion modeling for the next generation national combustion code. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Modèle de combustion":

1

Armbruster, Wolfgang, Justin S. Hardi, and Michael Oschwald. "Experimental Investigation of Injection-Coupled High-Frequency Combustion Instabilities." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 249–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Self-excited high-frequency combustion instabilities were investigated in a 42-injector cryogenic rocket combustor under representative conditions. In previous research it was found that the instabilities are connected to acoustic resonance of the shear-coaxial injectors. In order to gain a better understanding of the flame dynamics during instabilities, an optical access window was realised in the research combustor. This allowed 2D visualisation of supercritical flame response to acoustics under conditions similar to those found in European launcher engines. Through the window, high-speed imaging of the flame was conducted. Dynamic Mode Decomposition was applied to analyse the flame dynamics at specific frequencies, and was able to isolate the flame response to injector or combustion chamber acoustic modes. The flame response at the eigenfrequencies of the oxygen injectors showed symmetric and longitudinal wave-like structures on the dense oxygen core. With the gained understanding of the BKD coupling mechanism it was possible to derive LOX injector geometry changes in order to reduce the risks of injection-coupled instabilities for future cryogenic rocket engines.
2

Stiesch, Gunnar. "Multidimensional Combustion Models." In Modeling Engine Spray and Combustion Processes, 193–253. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08790-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stiesch, Gunnar, Peter Eckert, and Sebastian Rakowski. "Phenomenological Combustion Models." In Combustion Engines Development, 415–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14094-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Isermann, Rolf. "General Combustion Engine Models." In Engine Modeling and Control, 133–271. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-39934-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lakshminarayanan, P. A. "Two-Zone Combustion Models." In Energy, Environment, and Sustainability, 13–80. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0629-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Borghi, R., L. Delamare, and T. Mantel. "Modeling of Turbulent Combustion for I.C. Engines: Classical Models and Recent Developments." In Unsteady Combustion, 513–42. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1620-3_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Battin-Leclerc, Frédérique, Henry Curran, Tiziano Faravelli, and Pierre A. Glaude. "Specificities Related to Detailed Kinetic Models for the Combustion of Oxygenated Fuels Components." In Cleaner Combustion, 93–109. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Smoot, L. Douglas, and Philip J. Smith. "Evaluation of Comprehensive Models." In Coal Combustion and Gasification, 211–27. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-9721-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bebernes, Jerrold, and David Eberly. "Steady-State Models." In Mathematical Problems from Combustion Theory, 15–46. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-4546-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bebernes, Jerrold, and David Eberly. "Gaseous Ignition Models." In Mathematical Problems from Combustion Theory, 107–28. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-4546-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Modèle de combustion":

1

Barhaghi, Darioush G., and Daniel Lörstad. "Investigation of Combustion in a Dump Combustor Using Different Combustion and Turbulence Models." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-44095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Modelling combustion in gas turbine combustors remains to be a challenge since several different physical phenomena interact in the process. One of the most important aspects of the combustion in a gas turbine combustor is the chemistry-turbulence interaction. In order to study the effect of the combustion and turbulence models, a dump combustor geometry is selected. Two combustion models namely, finite rate chemistry and flamelet based models, together with different turbulent models including LES 1eq k-model, RANS k-epsilon and k-omega models are implemented using both CFX and OpenFoam codes. The predicted temperature and velocity fields are compared to the existing experimental results. It is shown that different turbulence models behave very differently and there are large discrepancies between the experimental and predicted results. Some part of the discrepancies may be due to unknown heat losses through the combustor wall in the experiment.
2

Wang, F., Y. Huang, and T. Deng. "Gas Turbine Combustor Simulation With Various Turbulent Combustion Models." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Along with the development of computing technology, large-eddy simulation turns to be a useful tool for practical study. For fast estimation, the front line researchers still use the Reynolds-averaged Navier-Stokes (RANS) method nowadays. RANS still is the major tool for gas turbine chamber (GTC) designers, but there is not a universal method in RANS GTC spray combustion simulation at present especially for the two-phase turbulent combustion. Usually there are two main steps in two-phase combustion: the liquid fuel evaporation and the gas mixture combustion. Thus, three widely used turbulent combustion models: the Eddy-Break-Up and Arrhenius model (EBU), Laminar Flame-let Model (LFM) and Eddy-Dissipation-Concept (EDC) turbulent combustion models are firstly tested against a methane-air turbulent gas jet flame (Flame D) measured by Sandia Lab and next a two-phase turbulent swirl spray combustion in a complex GTC. The predictions of the LFM model are the best in jet flame simulation to show its ability in gas combustion prediction. The comparison between the simulation results and the experimental results showed that LFM model could properly consider the interaction between turbulence and chemistry in the gas combustion in most regions; EBU model overestimated the turbulent effect in most regions; though EDC model takes the chemistry effect into account, the turbulence seems be overestimated too. The simulated GTC performed well in experiments especially when the fuel-air mixture equivalence ratio (MER) in its main-reaction-zone (MRZ) is 0.7, so the three combustion models are all applied in this case, with the same 90° spray angel, same material properties and the same discrete ordinates (DO) radiation model. In LFM prediction, the high temperature regions are distributed around the margin of the circumfluence zone and the downstream regions after MRZ, which does not agree with the test observation. The LFM model deals well with the gas combustion, so the reason for this poor performance must be of kerosene evaporation. LFM model is a fast-chemistry model, but the kerosene reaction rate is not very fast and the evaporation makes the global reaction slower. Furthermore the mixture fraction is a conservation scalar in FLM model but it is changed by the kerosene evaporation especially in the MRZ where the kerosene was mainly vaporized. Generally, the EBU and EDC results are better: the high temperature regions are mostly in MRZ when MER is 0.7. The EDC model also has good predictions of different MERs in MRZ. When MER is 1.3, the unburned kerosene continue reaction after primary-air-holes; when MER is 0.3, there is nearly no kerosene there. Additionally, effects of the spray angle, material property are studied.
3

Jiang, Lei-Yong, and Ian Campbell. "Application of Various Combustion Models to a Generic Combustor." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The flow-field of a generic gas combustor with interior and exterior conjugate heat transfers was numerically studied. Results obtained from three combustion models, combined with the re-normalization group (RNG) k-ε turbulence model, discrete ordinates radiation model, and partial equilibrium NOx model are presented and discussed. The numerical results are compared with a comprehensive database obtained from a series of experimental tests. The flow patterns and the recirculation zone length are excellently predicted, and the mean axial velocities are in fairly good agreement with the experimental measurements, particularly at downstream sections for all three combustion models. The mean temperature profiles are also fairly well captured by the probability density function (PDF) and eddy dissipation (EDS) combustion models. The EDS-finite-rate combustion model fails to provide acceptable temperature field. In general, the PDF shows some superiority over the EDS and EDS-finite-rate models. NOx levels predicted by the EDS model are in reasonable agreement with the experimental measurements.
4

Majidi, Kitano. "CFD Modeling of Non-Premixed Combustion in a Gas Turbine Combustor." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the present study numerical calculations are used to solve reacting flow in a gas turbine combustor. A 3-D Favre-Averaged Navier-Stokes solver for a mixture of chemically reacting gases is applied to predict the flow pattern, gas temperature and fuel and species concentrations in the entire combustor. The complete combustor geometry with all important details such as air swirler vane passages and secondary holes are modeled. The calculations are carried out using three different turbulence models. Comparisons are made between the standard k-ε model, RNG k-ε model and a Reynolds stress transport model. To provide a closure for the chemical source term the Eddy Dissipation model is used. A lean direct injection of a liquid fuel is employed. Furthermore the influence of radiation will be investigated.
5

Eggels, Ruud L. G. M., and Christopher T. Brown. "Comparison of Numerical and Experimental Results of a Premixed DLE Gas Turbine Combustor." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A numerical and experimental study on a premixed DLE gas turbine combustor has been performed. Experiments and CFD modelling have been carried out at isothermal and combusting conditions. The measurements were obtained at ERC using two component Laser Doppler Velocimetry. To be able to access the inner part of the combustor, the liners of the combustion chamber were outfitted with quartz windows. Temperature measurements were obtained at a few planes using a thermocouple. Modelling of the combustor has been performed using an in-house CFD code. The combustion process has been modelled using a global reaction mechanism and a Flame Generated Manifold reaction mechanism in combination with a presumed PDF model to incorporate the effect of turbulent fluctuations. The Flame Generated Manifold method uses a flame library, which has been generated by performing a number of laminar one-dimensional flame calculations at representative conditions. Comparing the numerical and experimental quite some differences are observed. The CFD model is able to predict the main features of the flow and combustion process, but does not predict the recirculation length accurately. Both combustion models, however, are able to predict the low combustion efficiency measured at the 1atm test condition.
6

Singh, Kapil, Bala Varatharajan, Ertan Yilmaz, Fei Han, and Kwanwoo Kim. "Effect of Hydrogen Combustion on the Combustion Dynamics of a Natural Gas Combustor." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51343.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In a carbon-constrained world, Integrated Gasification Combined Cycle (IGCC) systems achieve excellent environmental performance and offer a more economical pre-combustion CO2 removal compared to other coal-based systems. The residual gas after carbon removal is comprised primarily of hydrogen and nitrogen mixtures. Achieving stable combustion of hydrogen-rich fuel mixtures while producing ultra-low NOx emissions (much lower than current diffusion combustion technology) is challenging. The goal of this study was to characterize the stability of lean premixed combustion systems operating with hydrogen and establish boundaries for stable operation. Modeling and experimental efforts were directed towards demonstration of the feasibility of such systems while meeting the emissions requirements. The higher flame speed and heat-release rate achievable with hydrogen-containing fuels can change the dynamics and stability characteristics of the combustors compared to natural gas. A combustion rig was modeled using an in-house combustion dynamics analysis code. In the model, flame heat-release fluctuations were captured by considering the effect of upstream fuel-air ratio fluctuations and flow speed fluctuations. CFD simulations were used to obtain combustion parameters. The results showed the effect of using hydrogen instead of methane and the simulations correctly predicted the combustor modes and their instability for hydrogen as well as methane combustion.
7

Nishida, Shingo, Tomonori Yamamoto, Kazuhiro Tsukamoto, and Nobuyuki Oshima. "Numerical Simulation of NO Production in Gas-Turbine Combustor With Large-Eddy Simulation Using 2-Scalar Flamelet Approach." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Under high temperature combusting environment, very high level of thermal NOx is generated. In order to prevent environmental contamination and pursue more power generation efficiency, we need to build up radically new combustion mode that satisfies both of higher temperature at outlet and lower NOx emissions. To investigate the ability of our numerical prediction method in a practical combustor system, we calculate two combustion modes and predict time-averaged temperature and NOx distribution in the 1700degC class gas-turbine combustor that is a test model fabricated by Mitsubishi Heavy Industries, Ltd. Then, we compare with experimental data to validate and analyze our calculation model. The results show LES and 2-scalar flamelet approach is very effective to predict NOx production in practical gas-turbine combustor.
8

Singla, Ghislain, Nicolas Noiray, and Bruno Schuermans. "Combustion Dynamics Validation of an Annular Reheat Combustor." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper deals with a detailed thermoacoustic assessment of an annular reheat combustor. Extensive tests have been conducted in the GT26 Test Power Plant in Switzerland. To this end, the combustion chamber has been instrumented with advanced pulsation sensors, an optical probe, strain gauges and accelerometers. A large number of dynamic pressure sensors recorded the acoustic pressure wave propagations in the axial and circumferential directions over a very large frequency range. A modal analysis technique has been developed to extract the acoustic mode shapes from the experimental data. This technique allows for decomposition in standing and traveling waves, hence revealing the nature of the acoustic field. The extracted mode shapes showed a very good agreement with results from 3-d finite element calculations. Combustion stability has been quantified by a methodology that extracts pulsation growth rates from experimental data. This novel method relies on advanced statistic processing of the instantaneous pulsation amplitudes. It has the advantage that it is insensitive to probe location, which is of particular advantage for high frequencies (higher than 1 kHz).
9

Bulat, Ghenadie, Phil Stopford, Mark Turrell, Dawid Frach, Eoghan Buchanan, and Michael Sto¨hr. "Prediction of Aerodynamic Frequencies in a Gas Turbine Combustor Using Transient CFD." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents the results of a transient CFD analysis of the entire combustion system and the 1st row of nozzle guide vanes of a small gas turbine combustor. The focus of the investigation is the fluid dynamics within the combustor casing and its impact on combustor internal flows. Full-scale compressible transient CFD computations of a single combustor can of a Siemens gas turbine were performed. The casing flow of a 1/6th sector of the engine, corresponding to a single can was also simulated. Time dependent analyses of the combusting flow were performed for each case and the main features compared. In particular the main aerodynamic structures, such as vortex shedding and the Precessing Vortex Core (PVC), were characterised. A comparison was also made with non-combusting calculations to determine the effect of combustion. This work has taken the advantage of improvements in capabilities of numerical methods and computational power to develop design tools for gas turbine combustion systems. The work presented here is the first application of an improved turbulence model with the compressible solver in a gas turbine combustion system. This allows small scales of transient features to be captured. In addition, the presented work is the first simulation coupling the combustor aerodynamics to the casing flows.
10

Zhang, Kunpeng, Fei Xue, and Weiming Pan. "Theoretical Investigation and Numerical Simulation of Turbulent Combustion in an Industrial Combustor With Combustion Gases Recirculation." In ASME 2004 Power Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/power2004-52025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thermodynamic investigation was conducted to study the role of ejector system in a CGR (Combustion Gases Recirculation) combustor. Physical model was established to evaluate the intensity of CGR and the confirmed relationship between CGR and gas ejection was found. In order to validate the theory analyses, an industry combustor with CGR was modeled. The calculation results accord with the theory analyses. All the results implied that Active Control Combustion (ACC) might be implemented with control of gas ejection.

Звіти організацій з теми "Modèle de combustion":

1

Chapman and Toema. PR-266-07209-R01 Phase 2 - Assessment of the Robustness and Transportability of the Gas Turbine Model. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2010. http://dx.doi.org/10.55274/r0010719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This report presents the modeling study of a gas turbine combustor based on first engineering principles to fully characterize the nitrogen oxides (NOx) and carbon monoxide emissions (CO). The model is mainly focused on the emissions from the widely used lean-premixed, dry low-NOx combustor. The combustor is divided into several zones where each zone can be considered as a plug-flow reactor. Each of these zones is assumed to have a uniform pressure, temperature and perfect mixing between combustion species. The temperature of each zone is calculated using mass and energy balances along with heat transfer through the combustor liner. The emissions are calculated using well-know pollutant reaction schemes such as the Zeldovich mechanism in addition to other well-established semi-empirical correlations.
2

Beshouri. PR-309-04200-R01 Modeling Methodology for Parametric Emissions Monitoring System for Combustion Turbines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2005. http://dx.doi.org/10.55274/r0010731.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Prior attempts to develop a generic Parametric Emissions Monitoring methodology for combustion turbines, particularly low emissions units, have failed due either to the reduction of a complex problem to too few degrees of freedom or the brute force reliance on regression analysis. Field test data collected by the research team clearly illustrated that a successful PEMS model will need to incorporate multiple zones to account for pilot fuel versus pre-mixed combustion, and changes in air/fuel ratio at the flame front. The information reported herein shows that, ideally, the PEMS model should rely on speed, fuel flow, compressor discharge pressure and temperature, and ambient conditions as the inputs. The model can utilize (combustion turbine) turbine discharge temperatures as cross checks and/or for tuning. Make and model specific geometric characteristics should include compressor air flow versus speed, air splits between the combustor and the cooling air, and the fuel splits between diffusion and premixed. Finally, the model should be able to accommodate fuel that varies in composition based on provided gas speciation.
3

Bajwa, Abdullah, and Timothy Jacobs. PR-457-17201-R02 Residual Gas Fraction Estimation Based on Measured Engine Parameters. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 2019. http://dx.doi.org/10.55274/r0011558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gas exchange processes in two-stroke internal combustion engines, commonly referred to as scavenging, are responsible for removing the exhaust gases in the combustion chamber and preparing the combustible fuel-oxidizer mixture that undergoes combustion and converts the chemical energy of the fuel into mechanical work. Scavenging is a complicated phenomenon because of the simultaneous introduction of fresh gases into the engine cylinder through the intake ports, and the expulsion of combustion products from the previous cycles through the exhaust ports. A non-negligible fraction of the gaseous mixture that is trapped in the cylinder at the conclusion of scavenging is composed of residual gases from the previous cycle. This can cause significant changes to the combustion characteristics of the mixture by changing its composition and temperature, i.e. its thermodynamic state. Thus, it is vital to have accurate knowledge of the thermodynamic state of the post-scavenging mixture to be able to reliably predict and control engine performance, efficiency and emissions. Two tools for estimating the trapped mixture state - a simple scavenging model and empirical correlations - were developed in this study. Unfortunately, it is not practical to directly measure the trapped residual fraction for engines operating in the field. To overcome this handicap, simple scavenging models or correlations, which estimate this fraction based on some economically measurable engine parameters, can be developed. This report summarizes the results of event-II of a multi-event project that aims to develop such mathematical formulations for stationary two-stroke natural gas engines using data from more advanced models and experimentation. In this event, results from a GT-Power based model for an Ajax E-565 single-cylinder engine are used to develop a three-event single zone scavenging model and empirical correlations. Both of these mathematical devices produce accurate estimates of the trapped mixture state. The estimates are compared to GT-Power results. In the next event of the project, these results will be validated using experimental data. Various steps followed in the development of the model have been discussed in this report, and at the end some results and recommendations for the next event of the project have been presented.
4

Osburn, Nicholas G. Model Based Control of Combustion. Fort Belvoir, VA: Defense Technical Information Center, May 1999. http://dx.doi.org/10.21236/ada376608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bajwa, Abdullah, and Timothy Jacobs. PR-457-17201-R01 Residual Gas Fraction Estimation Based on Measured In-Cylinder Pressure. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2018. http://dx.doi.org/10.55274/r0011519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Developing a reliable means of predicting and controlling engine operation at various operating conditions may be a reasonable pathway for meeting increasingly stringent engine emission regulations. In order to do so, estimates of the mixture composition at the end of the gas exchange process (i.e. at exhaust port closure, or EPC) are helpful for having accurate models of engine combustion. A substantial fraction of the trapped charge mixture is composed of residual gases from previous cycles. This fraction, the trapped residual fraction, changes combustion characteristics of the trapped mixture. Residual gases dilute the fresh charge, thus decreasing the flame speed and temperature. Moreover, because of their spatial inhomogeneity, especially around the spark plug, these gases seem to have implications for engine stability. All these factors likely affect engine performance and emissions. Unfortunately, it is not practical to directly measure the trapped residual fraction for engines operating in the field. To overcome this, computational models can be developed for control applications which estimate this fraction based on some measurable engine parameters e.g. manifold pressures, temperatures, etc. Currently, such models aren't readily available for stationary two-stroke natural-gas engines. This report summarizes the results of phase I of a multi-phase project. In this phase a GT-Power based model was developed for an Ajax E-565 single-cylinder engine to study various factors that influence the removal, or lack thereof, of residual gases from the engine cylinder. The model was used to successfully simulate various engine operating conditions and study the scavenging characteristics of the engine. Various steps followed in the development of the model have been discussed in the report, and at the end some preliminary results and recommendations for the next phase of the project have been presented.
6

Janus, M. C., and G. A. Richards. A model for premixed combustion oscillations. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/379049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pitz, William J., Marco Mehl, and Charles K. Westbrook. Chemical Kinetic Models for Advanced Engine Combustion. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1174293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Casey, Tiernan, and Bert Debusschere. Analysis of Neural Network Combustion Surrogate Models. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Raj, Phani K. DTRS56-04-T-0005 Fires in an LNG Facility - Assessments, Models and Risk Evaluation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2006. http://dx.doi.org/10.55274/r0011800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The models used at present to evaluate the potential hazard areas around large LNG fires were developed with field test data from smaller diameter (1.8 m to 15 m) fires. These models are, however, applied to predict hazard distances from fires much larger in size compared to the experimental fires. Recent publication of the results from a series of tests conducted in 1987 with 35 m diameter LNG fires indicates that large LNG fires tend to generate significant amount of black soot. The black soot is postulated to be generated from incomplete and inefficient combustion of fuel vapors due to reduced oxygen diffusion into the combustion zone near the core of the fire. This phenomenon (of black soot production) in large LNG fires reduces the radiant heat hazard expectations in areas surrounding such fires. In this project, a review was undertaken of the different types and sizes of fires that could occur in a LNG facility and from ship releases, either due to accidental releases or from deliberate acts. The models associated with each of the fire scenarios have been reviewed. A new generation LNG pool fire model ("PoFMISE") has been developed based on data from a number of tests with both LNG and other hydrocarbon fluids. This model is applicable to small as well as large LNG fires and includes the formation of smoke and the consequent diminution of radiant heat output from the fire. The results of the model agree with experimental results for mean emissive power for fires of less than 35 m. Results for larger fires indicate substantial reduction in mean emissive power with almost 50% reduction for a 300 m diameter fire compared to the values used in current models. This implies that the currently predicted hazard distances for large fires are high (by factors of 2 to 3, after accounting for atmospheric absorption). The report also provides guidance with an illustrative procedure to calculate the risk from different types and sizes of fires that may occur in a LNG facility.
10

Beurlot, Kyle, Mark Patterson, and Timothy Jacobs. PR-457-22210-R01 Effects of Inlet Port Geometry on MCC Mixing Sensitivity Study. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2024. http://dx.doi.org/10.55274/r0000061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lean burning large bore natural gas two-stroke engines have remained critical components of the North American natural gas pipeline ecosystem for decades and will continue to persist as vital means of natural gas transportation well into the coming years. As increasing lean ignition limits are explored, Pre-Combustion Chambers (PCCs) serve as pathway to increased stability and repeatability of combustion as well as substantial engine emissions reduction. This study aims to further research the interaction between PCCs and the main combustion chamber (MCC) by investigating the sensitivity of in-cylinder mixing to changes in the geometry of intake manifolds and port design. A CFD model of a Cooper Ajax E-565 large bore lean burn two-stroke was used for this study. Several novel intake manifold designs were created to promote distinct flow characteristics and examined extensively for overall air flow results, mixing quality, general cycle performance, impact on residual methane, and impact on NOx production.

До бібліографії