Добірка наукової літератури з теми "Mixed metal organic framework"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mixed metal organic framework".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Mixed metal organic framework"

1

Abednatanzi, Sara, Parviz Gohari Derakhshandeh, Hannes Depauw, François-Xavier Coudert, Henk Vrielinck, Pascal Van Der Voort, and Karen Leus. "Mixed-metal metal–organic frameworks." Chemical Society Reviews 48, no. 9 (2019): 2535–65. http://dx.doi.org/10.1039/c8cs00337h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maity, Rahul, Debanjan Chakraborty, Shyamapada Nandi, Kushwaha Rinku, and Ramanathan Vaidhyanathan. "Microporous mixed-metal mixed-ligand metal organic framework for selective CO2 capture." CrystEngComm 20, no. 39 (2018): 6088–93. http://dx.doi.org/10.1039/c8ce00752g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Oliver, Clive. "Porous metal-organic frameworks incorporating mixed ligands." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1476. http://dx.doi.org/10.1107/s2053273314085234.

Повний текст джерела
Анотація:
Metal-organic frameworks (MOFs), infinite systems built up of metal ions and organic ligands have been extensively studied in materials and supramolecular chemistry due their structural diversity and application as porous materials, in catalysis, ion exchange, gas storage and purification. [1] A novel, 2-fold interpenetrated, pillared, cadmium metal-organic framework was synthesized using trimesic acid and 1,2-bis(4-pyridyl)ethane.[2] Single crystal X-ray analysis revealed a 2-fold interpenetrated, 3-dimensional framework which exhibits a 3,5-connected network with the Schläfli symbol of [(6^3)(6^9.8)] and hms topology. This compound exhibits a temperature-induced single-to-crystal-single-crystal (SC–SC) transformation upon the release of N,N'-dimethylformamide (stable up to 3000C). SC–SC transformation was also observed when the desolvated form absorbed selected polar and non-polar organic solvents. In addition, gas (N_2, CO_2 and N_2O) sorption experiments were performed showing 2.5% N_2, 4.5% CO_2 and 3.4% N_2O absorption by mass at room temperature and moderate gas pressures (~10 bar). A similar MOF was produced when 1,3,5-benzenetricarboxylic acid was replaced with 5-nitro-1,3-benzenedicarboxylic acid. This MOF displays 4-fold interpenetration and also maintains the host framework structure upon heating.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dechnik, Janina, Friedrich Mühlbach, Dennis Dietrich, Tobias Wehner, Marcus Gutmann, Tessa Lühmann, Lorenz Meinel, Christoph Janiak, and Klaus Müller-Buschbaum. "Luminescent Metal-Organic Framework Mixed-Matrix Membranes from Lanthanide Metal-Organic Frameworks in Polysulfone and Matrimid." European Journal of Inorganic Chemistry 2016, no. 27 (May 30, 2016): 4408–15. http://dx.doi.org/10.1002/ejic.201600235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cui, Yuanjing, Hui Xu, Yanfeng Yue, Zhiyong Guo, Jiancan Yu, Zhenxia Chen, Junkuo Gao, Yu Yang, Guodong Qian, and Banglin Chen. "A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer." Journal of the American Chemical Society 134, no. 9 (February 24, 2012): 3979–82. http://dx.doi.org/10.1021/ja2108036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tajuddin, Muhammad Hariz Aizat, Juhana Jaafar, Nik Abdul Hadi Md Nordin, Ahmad Fauzi Ismail, Mohd Hafiz Dzarfan Othman, and Mukhlis A. Rahman. "Metal organic framework mixed-matrix membrane for arsenic removal." Malaysian Journal of Fundamental and Applied Sciences 16, no. 3 (June 15, 2020): 359–62. http://dx.doi.org/10.11113/mjfas.v16n3.1488.

Повний текст джерела
Анотація:
Metal organic framework (MOF) is a recent class of porous materials that are built from metal cluster and organic linker. Among the discovered MOFs, UiO-66 has demonstrated both attributes of water stability and hydrophilic, making it suitable for wastewater treatment. In this study, 0.5 wt% UiO-66 was integrated into polysulfone membrane as nanofiller to form mixed-matrix membrane (MMM) with a thin-film composite, dense polyamide layer formed on top of the substrate layer that intended to remove 100 ppm of arsenic V from wastewater through forward osmosis. The successful synthetization of UiO-66 nanoparticle was proven by XRD and FESEM. The pure water permeability was significantly higher with the presence of LiCl in dope solution as pore former. It was found that the arsenic rejection achieved was 87.5% with satisfactory water flux and salt reverse flux.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Shunzhi, Yijun Liao, Omar K. Farha, Hang Xing, and Chad A. Mirkin. "Electrostatic Purification of Mixed-Phase Metal–Organic Framework Nanoparticles." Chemistry of Materials 30, no. 15 (July 31, 2018): 4877–81. http://dx.doi.org/10.1021/acs.chemmater.8b01164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Adams, Ryan, Cantwell Carson, Jason Ward, Rina Tannenbaum, and William Koros. "Metal organic framework mixed matrix membranes for gas separations." Microporous and Mesoporous Materials 131, no. 1-3 (June 2010): 13–20. http://dx.doi.org/10.1016/j.micromeso.2009.11.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Fei, Yong-Mei Wang, Weiwei Guo, and Xue-Bo Yin. "Color-tunable lanthanide metal–organic framework gels." Chemical Science 10, no. 6 (2019): 1644–50. http://dx.doi.org/10.1039/c8sc04732d.

Повний текст джерела
Анотація:
MOF gels with intrinsic emission color are prepared with 5-boronoisophthalic acid and Eu3+, Tb3+, and/or Dy3+. Single-metal gels exhibit trichromatic fluorescence, so full color emissions are readily obtained by tuning the type and/or ratio of Ln3+ ions to prepare mixed-metal gels. Nano-ribbons form from the precursors and then entangle together to generate the gels.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Denny, Michael S., Mark Kalaj, Kyle C. Bentz, and Seth M. Cohen. "Multicomponent metal–organic framework membranes for advanced functional composites." Chemical Science 9, no. 47 (2018): 8842–49. http://dx.doi.org/10.1039/c8sc02356e.

Повний текст джерела
Анотація:
Several strategies are presented for combining different metal–organic frameworks (MOFs) into composite mixed-matrix membranes. Some membranes are shown to be component for multistep organic catalytic transformations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Mixed metal organic framework"

1

Tahier, Tayyibah. "Crystal engineering of mixed-ligand metal-organic frameworks." Master's thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/22913.

Повний текст джерела
Анотація:
Research of solid state complexes has grown and developed exponentially over the past few years in terms of supramolecular chemistry and crystal engineering. The synthesis and characterisation of metal organic frameworks (MOFs) have attracted widespread attention owing to their potential in various applications. This includes gas sorption, which could aid in alleviating serious environmental issues such as global warming by sequestrating greenhouse gases. Advances in the design of these materials using the mixed ligand approach add to variation in structures and thus provide a further means of tailoring of properties. A novel two dimensional, mixed ligand MOF has been synthesised based on 1,3,5 benzenetricarboxylic acid, 4,4' bipyridine N,N' dioxide and zinc sulfate with the formula [Zn3(BTC)(4,4' bpdo)(OH)(SO4)(H2O)3]n·n(H2O)2.33 (1). The 2D layers of 1 arrange in a polar fashion with adjacent layers forming isolated cavities. Variable temperature powder X ray diffraction (VT PXRD) analysis showed that the crystallinity of the compound was retained and the crystalline phase remained unchanged as the temperature was increased. Variable temperature single crystal X ray diffraction (VT SCXRD) analysis of 1 revealed that the dehydration and rehydration processes occur via single crystal to single crystal transformations. Water vapour sorption experiments showed a type I isotherm, typical of microporous materials. A two dimensional, interpenetrated, mixed ligand MOF has been synthesised based on 5 nitro 1,3 benzenedicarboxylic acid, 1,2 bis(4 pyridyl)ethane and cadmium nitrate with the formula [Cd(bpe)1.5nbdc]·DMF (2). VT PXRD analysis shows subtle differences in the compound as the temperature is increased. VT SCXRD experiments show that the most notable change in the structure occurs at 373 K. These changes include the removal of the guest molecule and a change in the crystal system, along with changes in the orientation of the pyridyl ring of the organic ligand. Carbon dioxide sorption experiments at 195 K showed a type IV isotherm, which is usually associated with mesoporous materials. Both 1 and 2 were synthesised using the solvothermal method and fully characterised using X ray diffraction studies (SCXRD, PXRD, VT SCXRD and VT PXRD), thermal analysis (thermogravimetric, differential scanning calorimetry, hot stage microscopy), elemental analysis and FT IR spectroscopy. The porosity of the compounds was tested using carbon dioxide (273 K and 193 K), nitrogen, water vapour and liquid sorption experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gcwensa, Nolwazi. "Porosity studies of isoreticular mixed-ligand metal-organic frameworks." Master's thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/31385.

Повний текст джерела
Анотація:
The syntheses of four novel mixed-ligand metal-organic frameworks (MOFs) are reported. Isoreticular, Zn(II)-based mixed-ligand MOFs with formulae [Zn(μ2-ia)(μ2-bpe)]n·nDMF (1) and [Zn(μ2-mia)(μ2- bpe)]n·nDMF (2), where ia = isophthalate, mia = 5-methoxyisophthalate, bpe = 1,2-bis(4-pyridyl)ethane and DMF = N,N’-dimethylformamide were synthesised and characterised. Both compounds 1 and 2 exhibit sql, 2-periodic, 2D net coordination layers. Catenation of neighbouring frameworks form 2-fold interpenetrated bilayers which are interdigitated resulting in channel voids containing DMF. Experimental void calculations indicate 2′ has larger void space per unit cell than 1′; however, experimentally, 1′ showed higher water vapour and carbon dioxide 195 K sorption as well as significant hysteresis upon desorption of carbon dioxide 195 K. This hysteresis behaviour of 1′ is interchanged with 2′ for water vapour sorption at 298 K. Sorption isotherm inflection points indicate that structural changes occur, and empirical evidence point to weak bilayer···bilayer interactions in 1′ which allow the separation of the bilayers as well as the limiting effect on structural changes of the methoxy group present in 2′. Isoreticular mixed-ligand Cd(II)-based MOFs with formulae [Cd(μ2-mia)(μ2-bpe)1.5]n·n(DMF)0.5n(H2O)0.5 (3) and [Cd(μ2-nia)(μ2-bpee)1.5]n·nDMF (4), where nia = 5-nitroisophthalate and bpee = 1,2-bis(4-pyridyl)ethylene were also synthesised and characterised. Both compounds 3 and 4 exhibit sql, 2-periodic, 3D net coordination layers with disorder around a single bpe or bpee ligand. These structures are compared to published structure [Cd(bpee)1.5(nbdc)]n·nDMF (JECRAN) which is isoreticular to both MOFs. Activation of 4 and JECRAN occurs via single-crystal-to-single-crystal transformations. Potential and actual void space calculations indicate that 4′ has a larger void space than 3′ and JECROB. Liquid sorption experiments revealed that 3′ and 4′ showed affinities for different solvents. Although carbon dioxide 195 K sorption for 4′ is initially higher than for JECROB, structural changes, indicated by sorption isotherm inflection points, allow JECROB to adsorb more carbon dioxide than 4′
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mitchell, Laura. "Metal organic frameworks as Lewis acid catalysts." Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6392.

Повний текст джерела
Анотація:
Lewis acids are widely used in the pharmaceutical industry, generally homogeneously, to perform reactions such as C-C or C=N bond formation and acetalisation. Typically, metal salts such as those of Ti, Fe and especially Sc are used, the last typically as the triflate. Metal organic frameworks (MOFs) containing such metals should act as heterogeneous, removable and reusable catalysts for similar reactions if they can be prepared in stable forms and with large, open pores and metal cation sites that can be rendered coordinatively unsaturated. Families of novel MOFs with different structure types and cations have therefore been prepared and their activity has been examined in carbonyl ene C-C bond forming reactions, Friedel-Crafts-Michael additions and in imine formation reactions. Their activities have been compared with those of the well-known HKUST-1(Cu), MIL-100(Fe) and MIL-101(Cr) solids examined as catalysts previously. In particular, divalent transition metal bisphosphonates and dicarboxylates with pore sizes from 10 – 20 Å and scandium carboxylates (MIL-68(Sc), MIL-88D(Sc), MIL-100(Sc), MIL-101(Sc)) have been tested. Synthetic procedures were optimised according to commercial constraints for the known MOFs STA-12(Ni) and MIL-100(Sc). While good activities are observed for Ni-based MOFs and in a number of the scandium-based solids, MIL-100(Sc) is by far the best Lewis acid catalyst for a range of reactions. In particular, MIL-100(Sc) is very active even when used without pre-dehydration, is readily recyclable with minor loss of activity and shows fully heterogeneous activity. It outperforms both MIL-100(Fe) and MIL-101(Cr), each commonly reported as versatile catalysts in the literature. Careful synthesis of bulky substrates shows that the activity is derived from reactions within the internal pore system. Furthermore, MIL-100(Sc) is able to perform tandem reactions - such as dehydration followed by carbonyl ene reaction - in which the Lewis acid sites catalyse two steps. The Lewis acidic sites of the excellent Lewis acid catalyst MIL-100(Sc) has been examined in detail by in situ IR using adsorption of CO and CD₃CN as probe molecules and compared with other MIL-100 materials. The work has been extended to the examination of MOFs containing two different metals, by substitutional approaches within the metal nodes (e.g. Sc-Al, Sc-Fe, Sc-Cr, Sc-Ni, Sc-Co within the trimeric M₃O(O₂C-)₆ nodes of MIL-100). In addition, series of Sc-Fe MIL-100 materials have been prepared that contain α-Fe₂O₃ nanoparticles in the pores of the structure. These composites show higher specific catalytic activity for Lewis acid catalysis than MIL-100(Sc), even though some scandium has been replaced with iron: the origin of this behaviour is discussed. MIL-100(Sc/Fe) has also been explored as a bifunctional catalyst in tandem Friedel-Crafts-oxidation reactions. MIL-100(Sc₆₀/Fe₄₀) was found to give exceptionally high conversions in the Friedel-Crafts-oxidation tandem reaction of 2-methyl indole and ethyl trifluoropyruvate to form a ketone, outperforming the many other materials tested and giving the best balance of the two different types of catalytic sites required to catalyse the reaction. MIL-100(Sc) has also been prepared containing 50% of mono-fluorinated trimesate ligands in the framework for the first time. This fluorinated MIL-100(Sc) has been post-synthetically modified by addition of a di-phenylphosphino group as confirmed by solid state NMR. This can act as a starting point for the future generation of MOF-supported metal phosphine catalysts.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nayak, Nayan Nagesh. "Development of mixed matrix membranes with metal - organic framework and ionic liquids for biogas upgrading." Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10419.

Повний текст джерела
Анотація:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, research centers and universities
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Doheny, Patrick William. "Elucidation of the Properties of Electroactive Metal-Organic Framework Materials via a Combined Experimental and Computational Approach." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21894.

Повний текст джерела
Анотація:
The work presented in this dissertation details a systematic study of the fundamental and applied properties of electroactive metal-organic framework (MOF) materials from first design principles utilising a combined structural, electrochemical, spectroelectrochemical and computational approach. The structure-property relationships arising from the incorporation of organic-based electroactive ligands, specifically topology-driven through-space charge transfer and radical delocalisation, into a series of 3-dimensional MOF materials were investigated from both a fundamental and applied perspective. Chapter 3 details the fundamental study of a previously unreported method of charge transfer in MOF materials focused on through-space intervalence charge transfer (IVCT). Two novel ligands, BPPTzTz and BPPFTzTz, incorporating the electron accepting thiazolo[5,4-d]thiazole (TzTz) moiety were synthesised and extensively characterised. The structure-property relationships within these materials enabled the access of a topology characterised by close proximity of cofacially stacked TzTz ligands. Reduction of the TzTz ligands of these frameworks led to the formation of a mixed-valence material exhibiting unusual IVCT properties that could be accessed in situ electrochemically or ex situ via chemical reduction. The mixed-valence properties demonstrated by these materials were extensively characterised by using a variety of electrochemical, spectroelectrochemical and computation techniques to derive a mechanism by which this through-space IVCT operates. Radical anion spin delocalisation and its effects on spin state switching is the focus of Chapter 4 concerning the synthesis of an Fe2+ spin crossover (SCO) Hofmann material incorporating the redox-active DPTzTz ligand. An extensive structural, electrochemical, spectroelectrochemical and computational study was carried out on this framework in addition to studies of its magnetic properties. The structure was found to exhibit an abrupt, single-step SCO transition from high spin (HS) to low spin (LS) Fe2+ upon cooling. The structural changes upon desolvation of the de novo structure was extensively characterised using single crystal X-ray diffraction which revealed a series of irreversible structural phase transitions. The SCO properties of the desolvated material were characterised by an incomplete, single-step transition with hysteresis widths comparable with the highest reported in three-dimensional Hofmann materials. The framework was found to successfully retain the electrochemical properties of the discrete DPTzTz ligand upon self-assembly and using chemical reduction, the SCO properties of the material were successfully modified relative to the neutral parent phase. The results of this study demonstrated the successful application of a previously unreported method of modifying the magnetic properties of a solid state SCO material. An applied study of an electroactive MOF targeting gas sorption applications is the focus of Chapter 5, detailing a topological analogue of the well-known MOF-74 material incorporating the electron accepting DSNDI ligand. The neutral parent phase was characterised using a variety of electrochemical, spectroelectrochemcial and computational methods which demonstrated a porous MOF stable to both electrochemical and chemical reduction. The gas sorption properties of this framework, which contained open metal sites upon activation, were investigated with respect to H2, CH4 and CO2. Chemical reduction of this material yielded a material containing ligand-based radical anions and Li+ counterions; the sorption properties were successfully retained, however a significant enhancement of the CO2 isosteric heat of adsorption was observed. The enhanced CO2 binding enthalpy of ~45.0 kJ/mol was comparable to the highest performing member of the parent MOF-74 series and was found to be a promising candidate as a CO2 sorbent material. Fundamental studies of this material were also carried out with respect to its ability to form donor-acceptor (D-A) units within the solid state structure. A series of six electron donating molecules were infiltrated into the structure upon which donor-acceptor pairs were successfully established. The resulting D-A MOFs were characterised ex situ using UV-Vis-NIR and EPR spectroscopies which confirmed the presence of radical species and D-A charge transfer within the structure. DFT calculations were performed to further elucidate the nature of these D-A interactions with the degree of partial charge transfer also examined via these methods. The successful formation of donor-acceptor complexes in the framework structure demonstrated a strategy by which the conductive and sorption properties of the material might be modified by careful choice and energy level matching of guest electron donor with the electron accepting DSNDI ligands of the bulk framework. This work has demonstrated a series of multifunctional MOF materials with novel properties accessible by virtue of their intrinsic redox capabilities. Insight into the electronic properties of MOF materials and their corresponding structure-property relationships has been achieved with exciting results demonstrated. The fundamental investigations here serve as an invaluable platform for the development of future multifunctional electroactive MOF materials targeting commercial and industrial applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shahid, Salman. "Polymer-Metal Organic Frameworks (MOFs) Mixed Matrix Membranes For Gas Separation Applications." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS141/document.

Повний текст джерела
Анотація:
Le comportement plastifiant de polymères purs a été bien étudié dans la littérature. Toutefois, il n'y a eu que peu d'études concernant les membranes à matrices mixtes (MMM). Dans le chapitre 2 de cette thèse, le comportement plastifiant de MMM préparés à partir de nanoparticules mésoporeuses Fe(BTC) et du polymère Matrimid® est étudié avec un gaz pur ou en mélange. Les réseaux métaux-organiques (MOF) sous forme particulaires ont présenté une relativement bonne compatibilité avec le polymère. L'incorporation de Fe(BTC) dans du Matrimid® a permis d'augmenter la perméabilité et la sélectivité des membranes. Pour de faibles pressions de 5 bars, les MMM ont une perméabilité au CO2 de 60% plus grande ainsi qu'une sélectivité de 29% plus grande à comparer à la sélectivité idéale de membranes Matrimid®. Il a été observé que la présence de particules Fe(BTC) retardait l'effet plastifiant vers de plus grandes pressions. De plus, cette pression augmente avec le taux de MOF au sein du matériau. Ce retard est attribué à la mobilité réduite des chaînes polymères dans l'entourage des particules Fe(BTC). Egalement, pour des concentrations en MOF plus élevées, les membranes présentent une sélectivité plus ou moins constante sur toute la gamme de pression étudiée. Le chapitre 3 présente ensuite la préparation et le caractère plastifiant des MMMs basées sur trois types de MOFs (MIL-53(Al) (MOF « repirant »), ZIF-8 (MOF « flexible ») and Cu3(BTC)2 (MOF « rigide »)) dispersés dans le Matrimid®. Les performances en gaz pur ou en mélange ont été étudiées en fonction de la quantité de MOF introduite. Parmi les trois systèmes MOF-MMM, les membranes avec le Cu3(BTC)2 ont présenté la plus haute sélectivité alors que les membranes avec du ZIF-8 ont montré une plus grande perméabilité. Ces améliorations sont essentiellement le fait de la structure cristalline du MOF et de son interaction avec les molécules de CO2. Le chapitre 4 décrit la préparation de membranes à base de mélange Matrimid® polyimide (PI)/polysulfone (PSF) contenant des particules de ZIF-8 pour la séparation gazeuse à haute pression. Un mélange optimisé avec un rapport PI/PSF de 3:1 a été utilisé pour une étude sur la stabilité et la performance de ces MMMs incorporant différentes concentration de ZIF-8. PI et PSF étant miscibles, une bonne compatibilité avec les particules de ZIF-8 est observée. Les MMMs PI/PSF-ZIF-8 ont démontré une amélioration significative de la perméabilité en CO2 lors de l'augmentation de la concentration en ZIF-8, ce qui a été attribué à une augmentation modérée de la capacité de sorption et à une diffusion plus rapide au travers des particules de ZIF-8. Lors des mesures en gaz purs, les membranes PI/PSF (3:1) ont présenté une plastification vers 18 bars alors que l'introduction de ZIF-8 repousse cette valeur à 25 bars. En mélange de gaz, les MMMs PI/PSF-ZIF-8 ont abouti à une suppression de la plastification comme l'a confirmé une mesure constante de la perméabilité et de la sélectivité du CH4, et cet effet est plus accentué avec l'augmentation de la concentration en ZIF-8. Les résultats en séparation des gaz avec les MMMs PI/PSF-ZIF-8 montrent une performance supérieure à celle du Matrimid® ce qui laisse augurer un élargissement du spectre d'application de ces membranes, particulièrement pour la séparation du CO2 à haute pression. Dans le chapitre 5, une nouvelle voie de préparation des MMMs via la fusion contrôlée de particules a été introduite. La modification du Matrimid® par du 1-(3-aminopropyl)-imidazole a permis d'améliorer considérablement la compatibilité avec les particules de ZIF-8. Il a ainsi été possible de préparer des MMMs contenant 30% de MOF sans perte de sélectivité. En augmentant la concentration en ZIF-8, les MMMs ont de meilleures performances dans la séparation de mélange CO2/CH4 à comparer au polymère initial. La perméabilité a augmenté de plus de 200% avec une augmentation de 65% de sélectivité pour le mélange CO2/CH4
The plasticization behavior of pure polymers is well studied in literature. However, there are only few studies on the plasticization behavior of mixed matrix membranes. In Chapter 2 of this thesis, pure and mixed gas plasticization behavior of MMMs prepared from mesoporous Fe(BTC) nanoparticles and the polymer Matrimid® is investigated. All experiments were carried with solution casted dense membranes. Mesoporous Fe(BTC) MOF particles showed reasonably good compatibility with the polymer. Incorporation of Fe(BTC) in Matrimid® resulted in membranes with increased permeability and selectivity. At low pressures of 5 bar the MMMs showed an increase of 60 % in CO2 permeability and a corresponding increase of 29 % in ideal selectivity over pure Matrimid® membranes. It was observed that the presence of Fe(BTC) particles increases the plasticization pressure of Matrimid® based MMMs. Furthermore, this pressure increases more with increasing MOF loading. This delay in plasticization is attributed to the reduced mobility of the polymer chains in the vicinity of the Fe(BTC) particles. Also, at higher Fe(BTC) loadings, the membranes showed more or less constant selectivity over the whole pressure range investigated. Chapter 3 subsequently presented the preparation and plasticization behavior of MMMs based on three distinctively different MOFs (MIL-53(Al) (breathing MOF), ZIF-8 (flexible MOF) and Cu3(BTC)2 (rigid MOF)) dispersed in Matrimid®. The ideal and mixed gas performance of the prepared MMMs was determined and the effect of MOF structure on the plasticization behavior of MMMs was investigated. Among the three MOF-MMMs, membranes based on Cu3(BTC)2 showed highest selectivity while ZIF-8 based membranes showed highest permeability. The respective increase in performance of the MMMs is very much dependent on the MOF crystal structure and its interactions with CO2 molecules. Chapter 4 described the preparation of Matrimid® polyimide (PI)/polysulfone (PSF)-blend membranes containing ZIF-8 particles for high pressure gas separation. An optimized PI/PSF blend ratio (3:1) was used and performance and stability of PI/PSF mixed matrix membranes filled with different concentrations of ZIF-8 were investigated. PI and PSF were miscible and provided good compatibility with the ZIF-8 particles, even at high loadings. The PI/PSF-ZIF-8 MMMs showed significant enhancement in CO2 permeability with increased ZIF-8 loading, which was attributed to a moderate increase in sorption capacity and faster diffusion through the ZIF-8 particles. In pure gas measurements, pure PI/PSF blend (3:1) membranes showed a plasticization pressure of ~18 bar while the ZIF-8 MMMs showed a higher plasticization pressures of ~25 bar. Mixed gas measurements of PI/PSF-ZIF-8 MMMs showed suppression of plasticization as confirmed by a constant mixed gas CH4 permeability and a nearly constant selectivity with pressure but the effect was stronger at high ZIF-8 loadings. Gas separation results of the prepared PI/PSF-ZIF-8 MMMs show an increased commercial viability of Matrimid® based membranes and broadened their applicability, especially for high-pressure CO2 gas separations. In Chapter 5, a novel route for the preparation of mixed matrix membranes via a particle fusion approach was introduced. Surface modification of the polymer with 1-(3-aminopropyl)-imidazole led to an excellent ZIF-8-Matrimid® interfacial compatibility. It was possible to successfully prepare MMMs with MOF loadings as high as 30 wt.% without any non-selective defects. Upon increasing the ZIF-8 loading, MMMs showed significantly better performance in the separation of CO2/CH4 mixtures as compared to the native polymer. The CO2 permeability increased up to 200 % combined with a 65 % increase in CO2/CH4 selectivity, compared to the native Matrimid®. Chapter 6 finally discussed the conclusions and directions for future research based on the findings presented in this thesis
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Benzaqui, Marvin. "Synthesis of Metal-Organic Framework nanoparticles and mixed-matrix membrane preparation for gas separation and CO2 capture." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV075/document.

Повний текст джерела
Анотація:
La séparation CO2/N2 et H2/CO2 permet de limiter le rejet de CO2 dans l’atmosphère issu des gaz industriels et les membranes présentent de nombreux avantages tant sur le plan économique que pratique. Les membranes polymère sont faciles à mettre en forme mais un compromis entre perméabilité et sélectivité doit généralement être trouvé : pour améliorer les performances, des membranes à matrice mixte (MMM) incorporant des MOFs (matériaux hybrides poreux cristallisés) dispersés dans la phase polymère ont été proposées. A la différence des matériaux poreux inorganiques, les MOFs ont une meilleure compatibilité avec la matrice polymère du fait de leur caractère hybride organiqueinorganique. Dans le cadre de cette thèse, des polycarboxylates de Fe3+ et Al3+ poreux, stables à l’eau, et possédant de bonnes propriétés d’adsorption sélective du CO2 ont été synthétisés en milieu aqueux et mis à l’échelle de quelques grammes. Deux nouveaux polycarboxylates de Fe3+ poreux fonctionnalisés par des fonctions -COOH libres ont été obtenus à température ambiante. Pour l’un d’entre eux, la structure a été déterminée par diffraction des rayons X. Une deuxième partie de la thèse a été consacrée à la synthèse de nanoparticules de MOFs avec un bon rendement. Une partie importante de ce travail a porté sur le contrôle de la taille et la morphologie des nanoparticules de MIL-96(Al). Ce travail a conduit à la préparation de MMMs à base de MIL-96(Al) dont les performances sont supérieures à la membrane pure polymère pour la séparation CO2/N2. La dernière partie de ce travail de thèse a porté sur l’étude physico-chimique de la compatibilité entre le ZIF-8 et deux polymères (PVA et PIM-1). Ce travail a consisté à effectuer une caractérisation complète de solutions colloïdales MOFs/polymère en couplant plusieurs techniques (DLS, TEM, SAXS). Cette étude a montré que la compatibilité MOF/polymère est très dépendante de la chimie de surface des MOFs et des propriétés physico-chimiques du polymère (rigidité, caractère hydrophile/hydrophobe…)
CO2 capture and storage (CCS) is of high economical and societal interest. CO2/N2 andH2/CO2 separations are able to limit atmospheric CO2 emissions produced by industrial exhausts andmembranes present numerous economical and practical advantages. Polymer membranes are easy toprocess and possess interesting mechanical properties. However, there is a trade-off to make betweenpermeability and selectivity. Mixed-matrix membranes (MMM) based on MOFs (porous crystallinehybrid materials) have been proposed to boost the performances of polymer membranes for CO2capture. In comparison to other inorganic porous materials, one may expect that the compatibilitybetween MOFs and polymers is enhanced due to the hybrid character of MOFs.In this work, porous water stable polycarboxylate MOFs based on Fe3+ and Al3+ with promisingproperties for CO2 adsorption were synthesized for large-scale production using water as the mainsolvent. Two new porous polycarboxylate Fe3+ MOF bearing free -COOH groups in the frameworkwere obtained at room temperature as nanoparticles. The crystallographic structure of one of thesematerials was determined by single crystal X-ray diffraction. A second part of the thesis was devotedto the synthesis of MOFs nanoparticles with good yield. We focused our attention on the control of thediameter and morphology of MIL-96(Al) nanoparticles. This study led to the preparation of MMMsbased on MIL-96(Al) with promising properties for CO2/N2 separation. Finally, the compatibilitybetween MOF particles and polymers was studied for two systems (ZIF-8/PIM-1 and ZIF-8/PVOH),showing the influence of the surface chemistry of MOFs and the physico-chemical properties ofpolymer on the matching between MOFs and polymers
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Khdhayyer, Muhanned. "Mixed matrix membranes comprising metal organic frameworks and high free volume polymers for gas separations." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/mixed-matrix-membranes-comprising-metal-organic-frameworks-and-high-free-volume-polymers-for-gas-separations(172f6a4f-a531-44ae-979c-bbbd170f33db).html.

Повний текст джерела
Анотація:
This research aimed to develop new composite membranes using a polymer of intrinsic microporosity (PIM-1) and metal organic frameworks (MOFs) for use in gas separations. PIM-1 was successfully synthesised using the high temperature method (40 min, 160 oC) and the resulting polymer was cast into membranes. PIM-1 membranes were chemically modified by reacting hexamethylenediamine (HMDA) with the nitrile group of PIM-1 to form HMDA-modified PIM-1 membranes. Surfaces of PIM-1 membranes were also modified by basic hydrolysis to form amide-modified PIM-1 membranes. These polymer materials were characterized by different techniques (GPC, NMR, ATR-IR, TGA, Elemental analysis and nitrogen sorption analysis). In addition, eight MOF materials [MIL-101(Cr), ED-g-MIL-101(Cr), TEPA-g-MIL-101(Cr), MIL-101(Cr)-NH2, MIL-101(Al)-NH2, UiO-66(Zr), UiO-66-NH2 and UiO-66(COOH)2] were successfully synthesized. They were chosen due to having high surface areas and large porosity. These MOF compounds were characterized using PXRD, SEM, TGA, and low pressure N2.Successful PIM-1/MOF MMMs were fabricated utilising PIM-1 and the MOFs outlined above with various loadings. The highest MOF loading achieved was 28.6 wt. %, apart from MIL-101(Cr)-NH2, for which it was 23.1 wt. %, and MIL-101(Al)-NH2, for which it was 19.8 wt. %. The morphology of MMMs was characterized by scanning electron microscopy (SEM), proving the dispersion of MOF fillers. Novel PIM-1 supported MOF membranes were successfully prepared by depositing ZIF-8 and HKUST-1 layers on the surfaces of unmodified and modified PIM-1 membranes. These materials were characterized using PXRD, SEM, ATR-IR and SEM-EDX. Gas permeation properties of the MOF/PIM-1 MMMs and PIM-1 supported MOF membranes were determined using a time lag method. Most MMMs tested showed an increase in the permeability and stable selectivity as the MOF amount was increased. However, this was not true for MIL-101(Al)-NH2, where the permeability and selectivity decreased. In contrast, PIM-1 supported ZIF-8 and HKUST-1 membranes caused a sharp decrease in the permeability and increase in the selectivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mutti, Marcello. "Crystal engineering of mixed-ligand metal-organic frameworks based on simple carboxylate and bipyridyl ligands." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29726.

Повний текст джерела
Анотація:
Over the last few decades research in supramolecular chemistry and crystal engineering have seen an exponential growth. The synthesis of metal-organic frameworks (MOFs) has attracted much interest worldwide due to the possibility of obtaining a large variety of structures with a wide range of applications in fields pertaining to storage, separation and catalysis. This work focuses on the crystal engineering of MOFs based on mixed ligands which may ultimately be used in the gas storage of pollutants, greenhouse gases or fuel. Two novel 2D mixed-ligand MOFs, both based on manganese, 4,4’-bipyridine and 1,3,5- benzenetricarboxylic acid, have been prepared and fully characterized. The employment of dimethylformamide or dimethylacetamide, as the solvent, results in two isostructural MOFs. Another novel MOF, similar in structure to the previous two, with 5-nitroisophthalic acid instead of 1,3,5-benzenetricarboxylic acid has been also prepared and characterized. This MOF has the same metal and ligand combination as, and is largely isostructural to, a literature example, but differs in method of preparation and solvent content. These Mnbased MOFs have potential voids in the structure making them candidates for gas sorption experiments. A novel 2D mixed-ligand MOF based on cobalt, 4,4’-bipyridine and 5-nitroisophthalic acid has been synthesized and fully characterized. Its structure is the same of another MOF, based on manganese, present in this work and like its manganese analogue it exhibits potential void spaces in the framework that make it a candidate for gas sorption experiments. Finally, a novel 2D MOF based on 1,3,5-benzenetricarboxylic acid and cadmium bromide has been synthesized and fully characterized. Dehydration and rehydration studies performed by combining powder X-ray diffraction with thermogravimetric analysis show that it can lose coordinated water, that comes from the reaction solvent, upon heating, and reabsorb water from the atmosphere, ultimately regaining its original structure. All MOFs were synthesized via the solvothermal method and characterized with X-ray diffraction (single crystal and powder) and thermal analyses (hot stage microscopy, differential scanning calorimetry and thermogravimetric analysis).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Adams, Ryan Thomas. "High molecular sieve loading mixed matrix membranes for gas separations." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/39470.

Повний текст джерела
Анотація:
Traditional gas separation technologies are thermally-driven and can have adverse environmental and economic impacts. Gas separation membrane processes are not thermally-driven and have low capital and operational costs which make them attractive alternatives to traditional technologies. Polymers are easily processed into large, defect-free membrane modules which have made polymeric membranes the industrial standard; however, polymers show separation efficiency-productivity trade-offs and are often not thermally or chemically robust. Molecular sieves, such as zeolites, have gas separation properties that exceed polymeric materials and are more thermally and chemically robust. Unfortunately, formation of large, defect-free molecular sieve membranes is not economically feasible. Mixed matrix membranes (MMMs) combine the ease of processing polymeric materials with the superior transport properties of molecular sieves by dispersing molecular sieve particles in polymer matrices to enhance the performance of the polymers. MMMs with high molecular sieve loadings were made using polyvinyl acetate (PVAc) and various molecular sieves. Successful formation of these MMMs required substantial modifications to low loading MMM formation techniques. The gas separation properties of these MMMs show significant improvements over PVAc properties, especially for high pressure mixed carbon dioxide-methane feeds that are of great industrial relevance.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Mixed metal organic framework"

1

Bu, Xian-He, Michael J. Zaworotko, and Zhenjie Zhang, eds. Metal-Organic Framework. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47340-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Metal-organic framework materials. Chichester, West Sussex: John Wiley & Sons, Inc., 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Bo, ed. Hybrid Metal-Organic Framework and Covalent Organic Framework Polymers. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839163456.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Carbon-Capture by Metal-Organic Framework Materials. Millersville, PA: Materials Research Forum LLC, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xia, Wei. Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6811-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Metal-Organic Framework Composites. Materials Research Forum LLC, 2019. http://dx.doi.org/10.21741/9781644900437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lukehart, Charles M., and Leonard R. MacGillivray. Metal-Organic Framework Materials. Wiley & Sons, Incorporated, John, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lukehart, Charles M., and Leonard R. MacGillivray. Metal-Organic Framework Materials. Wiley & Sons, Incorporated, John, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lukehart, Charles M., and Leonard R. MacGillivray. Metal-Organic Framework Materials. Wiley & Sons, Incorporated, John, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Bo. Hybrid Metal-Organic Framework and Covalent Organic Framework Polymers. Royal Society of Chemistry, The, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Mixed metal organic framework"

1

Sarfraz, Muhammad. "Carbon Capture via Mixed-Matrix Membranes Containing Nanomaterials and Metal–Organic Frameworks." In Environmental Chemistry for a Sustainable World, 45–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33978-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Øien-Ødegaard, Sigurd, Greig C. Shearer, Karl P. Lillerud, and Silvia Bordiga. "Metal-organic Framework Sponges." In Nanosponges, 59–121. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527341009.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kepert, Cameron J. "Metal-Organic Framework Materials." In Porous Materials, 1–67. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470711385.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Naka, Kensuke. "Metal Organic Framework (MOF)." In Encyclopedia of Polymeric Nanomaterials, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_148-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Naka, Kensuke. "Metal Organic Framework (MOF)." In Encyclopedia of Polymeric Nanomaterials, 1233–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jin, Hua, Qiang Ma, and Yanshuo Li. "Chapter 5. Metal–Organic Frameworks/Polymer Composite Membranes." In Hybrid Metal-Organic Framework and Covalent Organic Framework Polymers, 98–141. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839163456-00098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xu, Ming-Ming, Lin-Hua Xie, and Jian-Rong Li. "Chapter 4. Metal–Organic Framework/Polymer Hybrid Materials." In Hybrid Metal-Organic Framework and Covalent Organic Framework Polymers, 72–97. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839163456-00072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Niu, Ziru, Hao Liu, Pietro Rassu, Lu Wang, Xiaojie Ma, Yuanyuan Zhang, and Bo Wang. "Chapter 6. Applications of Metal–Organic Framework/Polymer Hybrid Materials." In Hybrid Metal-Organic Framework and Covalent Organic Framework Polymers, 142–225. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839163456-00142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wen, Meicheng, Yasutaka Kuwahara, Kohsuke Mori, and Hiromi Yamashita. "Nanometal-Loaded Metal-Organic-Framework Photocatalysts." In Nanostructured Photocatalysts, 507–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26079-2_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Korotcenkov, Ghenadii. "Metal-Organic Framework-Based Humidity Sensors." In Handbook of Humidity Measurement, 187–207. Boca Raton : CRC Press, Taylor & Francis Group, 2018-[2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9781351056502-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Mixed metal organic framework"

1

Anastasiou, Stavroula, Nidhika Bhoria, Jeewan Pokhrel, and Georgios N. Karanikolos. "Metal Organic Framework Mixed Matrix Membranes for CO2 Separation." In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers, 2016. http://dx.doi.org/10.2118/183264-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, Bei, Changyu Sun, and Guangjin Chen. "Molecular Simulation Studies of Separation of CH4/H2 Mixture in Metal-organic Frameworks with Interpenetration and Mixed-ligand." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Berry, Joseph J., Matthew S. White, N. Edwin Widjonako, Brian A. Bailey, Ajaya K. Sigdel, Christopher W. Gorrie, Nikos Kopidakis, David S. Ginley, and Dana C. Olson. "Mixed metal oxide systems for organic photovoltaics." In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Krivovichev, Sergey V., Igor Huskić, Igor V. Pekov, and Tomislav Friščić. "MINERALS WITH METAL-ORGANIC FRAMEWORK STRUCTURES." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-281960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kulachenkov, Nikita K., Andrei N. Yankin, and Valentin A. Milichko. "Optical switching in metal-organic framework." In INTERNATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF COMBUSTION AND PROCESSES IN EXTREME ENVIRONMENTS (COMPHYSCHEM’20-21) and VI INTERNATIONAL SUMMER SCHOOL “MODERN QUANTUM CHEMISTRY METHODS IN APPLICATIONS”. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0031913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Briscoe, Jayson, Leah Appelhans, Sean Smith, K. Westlake, Igal Brener, and Jeremy Wright. "Zirconium metal-organic framework functionalized plasmonic sensor." In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX, edited by Jason A. Guicheteau and Chris R. Howle. SPIE, 2019. http://dx.doi.org/10.1117/12.2519134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhou, Xuan, Yu-Run Miao, Kiettipong Banlusan, William L. Shaw, Alejandro H. Strachan, Kenneth S. Suslick, and Dana D. Dlott. "Shock wave dissipation by metal organic framework." In SHOCK COMPRESSION OF CONDENSED MATTER - 2017: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Author(s), 2018. http://dx.doi.org/10.1063/1.5044999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ahmad, Nazir, M. M. Ahmad, and P. N. Kotru. "Metal organic framework of rare earth tartrates." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ghasemi, Masoud, Boyu Guo, Chiung-Wei Huang, Garrett Baucom, Kasra Darabi, Laine Taussig, Tonghui Wang, Taesoo Kim, Joanna M. Atkin, and Aram Amassian. "Quantitative multiscale diffusion framework for metal halide perovskites." In Organic, Hybrid, and Perovskite Photovoltaics XXIII, edited by Gang Li, Thuc-Quyen Nguyen, Ana Flávia Nogueira, Barry P. Rand, Ellen Moons, and Natalie Stingelin. SPIE, 2022. http://dx.doi.org/10.1117/12.2633471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhao, Yangyang, Mona Zaghloul, Yigal Lilach, Kurt Benkstein, and Steve Semancik. "Metal Organic Framework-Coated Optical VOC Gas Sensor." In 2018 IEEE Photonics Conference (IPC). IEEE, 2018. http://dx.doi.org/10.1109/ipcon.2018.8527168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Mixed metal organic framework"

1

Inga Musselman, Jr Kenneth Balkus, and John Ferraris. Mixed-Matric Membranes for CO2 and H2 Gas Separations Using Metal-Organic Framework and Mesoporus Hybrid Silicas. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/945031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Allendorf, Mark D. Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1415015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Thallapally, Praveen A., and Moises A. Carreon. Kr/Xe SeparatioKr/Xe Separation over Metal Organic Framework Membranes. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1578070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sun, Ning. Process scale-up and optimization of the metal-organic framework synthesis. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1618846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, D. METAL-ORGANIC-FRAMEWORK GLASSES AS RAD CONTAMINANT SEQUESTERS AND NUCLEAR WASTE FORMS. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1471996.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Dien. Metal-Organic-Framework Glasses as Rad Contaminant Sequesters and Nuclear Waste Forms. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1472005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, D. METAL-ORGANIC-FRAMEWORK GLASSES AS RAD CONTAMINANT SEQUESTERS AND NUCLEAR WASTE FORMS. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1568792.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kennedy, Robert D., Vaiva Krungleviciute, Daniel J. Clingerman, Joseph E. Mondloch, Yang Peng, Christopher E. Wilmer, Amy A. Sarjeant, Randall Q. Snurr, Joseph T. Hupp, and Taner Yildirim. Carborane-Based Metal-Organic Framework with High Methane and Hydrogen Storage Capacities. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada597322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

LI, DIEN. METAL-ORGANIC FRAMEWORK GLAAAES AS RAD CONTAMINANT SEQUESTERS AND NUCLEAR WASTE FORMS. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1658853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schmidt, J. R. CRYSTAL GROWTH, NUCLEATION, STRUCTURE AND DYNAMICS AT METAL-ORGANIC FRAMEWORK/SOLUTION INTERFACES. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1840984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії