Добірка наукової літератури з теми "Mission Autonomy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mission Autonomy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Mission Autonomy"

1

Dalpe, Allisa J., May-Win L. Thein, and Martin Renken. "PERFORM: A Metric for Evaluating Autonomous System Performance in Marine Testbed Environments Using Interval Type-2 Fuzzy Logic." Applied Sciences 11, no. 24 (December 15, 2021): 11940. http://dx.doi.org/10.3390/app112411940.

Повний текст джерела
Анотація:
Trust and confidence in autonomous behavior is required to send autonomous vehicles into operational missions. The authors introduce the Performance Evaluation and Review Framework Of Robotic Missions (PERFORM), a framework to enable a rigorous and replicable autonomy test environment, thereby filling the void between that of merely simulating autonomy and that of completing true field missions. A generic architecture for defining the missions under test is proposed and a unique Interval Type-2 Fuzzy Logic approach is used as the foundation for the mathematically rigorous autonomy evaluation framework. The test environment is designed to aid in (1) new technology development (i.e., providing direct comparisons and quantitative evaluations between autonomy algorithms), (2) the validation of the performance of specific autonomous platforms, and (3) the selection of the appropriate robotic platform(s) for a given mission type (e.g., for surveying, surveillance, search and rescue). Three case studies are presented to apply the metric to various test scenarios. Results demonstrate the flexibility of the technique with the ability to tailor tests to the user’s design requirements accounting for different priorities related to acceptable risks and goals of a given mission.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lematta, Glenn J., Craig J. Johnson, Erin K. Chiou, and Nancy J. Cooke. "Does Team Interaction Exploration Support Resilience in Human Autonomy Teaming?" Proceedings of the Human Factors and Ergonomics Society Annual Meeting 63, no. 1 (November 2019): 1866. http://dx.doi.org/10.1177/1071181319631492.

Повний текст джерела
Анотація:
Project overview As a team explores interactions, they may find opportunities to expand and refine teamwork over time. This can have consequences for team effectiveness in normal and unexpected situations (Woods, 2018). Understanding the role of exploratory team interactions may be relevant for human-autonomy team (HAT) resilience in the face of synthetic agent rigidity and lack of anticipation (Demir et al, 2019). Team interaction exploration was defined as team interactions with qualities (e.g. content, communication medium) unique to a team’s interaction history (Cooke et al., 2013; Hills et al., 2015). This study examines the relationship between team interaction exploration and HAT performance in multiple remotely-piloted aerial system (RPAS) reconnaissance missions with degraded conditions. The goal of the task was to take good photos of target waypoints. In this task, three teammates are assigned to specific roles: the navigator plans the route using a digital map, the pilot (synthetic) controls the RPAS and selects target waypoints, and the photographer calibrates camera settings to take a good photo of a target waypoint. The synthetic agent was capable of routine team coordination without explicit team player qualities. Teams communicated via a text-chat interface. Seven unique degraded conditions were injected throughout ten missions. Three automation failures disrupted RPAS status information on the photographer’s or pilot’s display, and three autonomy failures disrupted the synthetic agent’s comprehension of waypoint information or caused the agent to move on to the next target before a photo was taken. Finally, a malicious cyber-attack caused the synthetic agent to fly the RPAS to an enemy occupied waypoint. Method Forty-four participants were recruited from a large southwestern university in pairs and formed teams (22 teams) to participate in this study. These participants were either undergraduate or graduate students. This experiment consisted of ten 40-minute missions in total that were carried out over two sessions separated by one-to two-week intervals. After a baseline mission, an automation and autonomy failure was injected into each mission while the team processed target waypoints. The malicious cyber-attack occurred during the final 20-minutes of the tenth mission. This study collected a several measures including measures of team process, physiological measures, and surveys of teamwork knowledge, trust, workload, and anthropomorphism which are not considered in this study. Exploratory team interaction was operationalized as any text-message unique in content, sender, or recipient that was unrelated to routine coordination of target waypoints. Teams were grouped using k-means clustering by their target processing efficiency, number of overcome roadblocks, and mission performance. The three clusters ( K = 3) were comparatively described as low- ( N = 7), middle- ( N = 7), and high-performing ( N = 5) teams. A mixed-factor ANOVA compared the frequency of each team’s exploratory interactions by mission and cluster. Results and discussion High-performing teams were distinguished from middle-and low-performing teams in their ability to maintain high levels of overall performance while efficiently processing targets and overcoming many roadblocks. Middle-performing teams were efficient in overcoming roadblocks but had worse mission performance. The findings indicate that 1) high-performing teams explored team interactions more than middle-performing teams, 2) there was no significant difference in exploration frequency between high-and low-performing teams, and 3) teams explored more in the first session than the second session, with the exception of the final mission. Overall, exploratory team interaction differentiated HAT performance in normal and degraded conditions and should be further examined at other levels of interaction, such as content meaning and interaction patterns.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Frank, Jeremy D., Kerry McGuire, Haifa R. Moses, and Jerri Stephenson. "Developing Decision Aids to Enable Human Spaceflight Autonomy." AI Magazine 37, no. 4 (January 17, 2017): 46–54. http://dx.doi.org/10.1609/aimag.v37i4.2683.

Повний текст джерела
Анотація:
As NASA explores destinations beyond the Moon, the distance between Earth and spacecraft will increase communication delays between astronauts and Mission Control. Today, astronauts coordinate with Mission Control to request assistance and await approval to perform tasks. Many of these coordination tasks require multiple exchanges of information, (for example, taking turns). In the presence of long communication delays, the length of time between turns may lead to inefficiency, or increased mission risk. Future astronauts will need software-based decision aids to enable them to work autonomously from Mission Control. These tools require the right combination of mission operations functions, for example, automated planning and fault management, troubleshooting recommendations, easy to access information, and just-in-time training. Ensuring these elements are properly designed and integrated requires an integrated human factors approach. This article describes a recent demonstration of autonomous mission operations using a novel software-based decision aid onboard the International Space Station. We describe how this new technology changes the way astronauts coordinate with mission control, and how the lessons learned from these early demonstrations will enable the operational autonomy needed to ensure astronauts can safely journey to Mars, and beyond.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vu Thanh, Hélène. "Japan, a Separate Province From India? Rivalries and Financial Management of Two Jesuit Missions in Asia." Journal of Early Modern History 24, no. 2 (April 27, 2020): 162–79. http://dx.doi.org/10.1163/15700658-12342669.

Повний текст джерела
Анотація:
Abstract This article analyzes the organization of the Jesuit missions in Asia in the sixteenth and seventeenth centuries through the case of the relationship between the Indian mission and the Japanese mission, which was subordinate to it. It highlights the management and control methods which were specific to the Asian missions. It thus demonstrates the growing autonomy of the Japanese mission, which was trying to free itself from Indian administrative and financial supervision. In doing so, the deep-seated nature of the rivalries and tensions between missions within a single Jesuit province are brought into focus, despite Roman arbitration. The article is thus an invitation to reassess the regional dimension to Jesuit governance, which is sometimes ignored in favor of the global aspect.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fischer, John Martin. "RESPONSIBILITY AND AUTONOMY: THE PROBLEM OF MISSION CREEP." Philosophical Issues 22, no. 1 (October 2012): 165–84. http://dx.doi.org/10.1111/j.1533-6077.2012.00223.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hwang, Jimin, Neil Bose, and Shuangshuang Fan. "AUV Adaptive Sampling Methods: A Review." Applied Sciences 9, no. 15 (August 2, 2019): 3145. http://dx.doi.org/10.3390/app9153145.

Повний текст джерела
Анотація:
Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kalis, Annemarie, Johannes J. M. van Delden, and Maartje H. N. Schermer. "“The good life” for demented persons living in nursing homes." International Psychogeriatrics 16, no. 4 (December 2004): 429–39. http://dx.doi.org/10.1017/s104161020400078x.

Повний текст джерела
Анотація:
Background: This study investigated which concepts regarding “the good life” are used in mission statements of nursing homes providing care for demented patients.Method: All 317 Dutch nursing homes caring for demented patients were asked to participate; of these, 69% responded. Their mission statements were qualitatively analyzed on content. Whether different types of nursing home differed significantly in the content of their mission statements was investigated by means of χ2 analyses.Results: Six main concepts were found that are considered important for a good life: 1) autonomy and freedom, 2) individuality and lifestyle, 3) relationships and social networks, 4) warmth and safety and familiarity, 5) developing capacities and giving meaning to life and 6) subjective experience and feelings of well-being. It was found that mission statements specifically developed for demented patients attach less importance to the concepts 1) autonomy and freedom and 2) individuality and lifestyle, than mission statements which are also aimed at non-demented residents. Most mission statements turned out to be highly eclectic in content.Conclusion: Nursing homes with a separate statement for demented residents seem to acknowledge the special position of demented residents and the tension between dementia and the ideal of autonomy. Although the eclecticism found in mission statements is understandable, a coherent view on the good life for demented residents should aim for a sound internal structure, and make choices between values. Only then can mission statements provide real guidance for everyday care.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fischer, Ute, and Kathleen Mosier. "Examining Teamwork of Space Crewmembers and Mission Control Personnel Under Crew Autonomy: A Multiteam System Perspective." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 64, no. 1 (December 2020): 164–68. http://dx.doi.org/10.1177/1071181320641041.

Повний текст джерела
Анотація:
Introducing crew autonomy into the design of future space operations will involve a change in how responsibilities are distributed between crew and mission control and may disrupt the functioning of the space/ground multiteam system (MTS). During a 4-month space mission simulation we collected survey data from crewmembers and mission controllers tapping their team concept, perception of MTS cohesion and efficacy, task work and performance. Preliminary analyses indicate some aspects of team cognition that may be affected by crew autonomy. Crewmembers’ and mission controllers’ team concepts centered on members of their own component teams rather than the MTS. Mission controllers perceived higher cohesion— especially higher task cohesion—with crewmembers than vice-versa and were more likely than crewmembers to express high confidence in the efficacy of the MTS. While mission controllers and crewmembers expressed comparable levels of satisfaction with task performance, they disagreed on how much each component team contributed to task success.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thieme, Christoph Alexander, and Ingrid Bouwer Utne. "A risk model for autonomous marine systems and operation focusing on human–autonomy collaboration." Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 231, no. 4 (August 2017): 446–64. http://dx.doi.org/10.1177/1748006x17709377.

Повний текст джерела
Анотація:
Autonomous marine systems, such as autonomous ships and autonomous underwater vehicles, gain increased interest in industry and academia. Expected benefits of autonomous marine system in comparison to conventional marine systems are reduced cost, reduced risk to operators, and increased efficiency of such systems. Autonomous underwater vehicles are applied in scientific, commercial, and military applications for surveys and inspections of the sea floor, the water column, marine structures, and objects of interest. Autonomous underwater vehicles are costly vehicles and may carry expensive payloads. Hence, risk models are needed to assess the mission success before a mission and adapt the mission plan if necessary. The operators prepare and interact with autonomous underwater vehicles to carry out a mission successfully. Risk models need to reflect these interactions. This article presents a Bayesian belief network to assess the human–autonomy collaboration performance, as part of a risk model for autonomous underwater vehicle operation. Human–autonomy collaboration represents the joint performance of the human operators in conjunction with an autonomous system to achieve a mission aim. A case study shows that the human–autonomy collaboration can be improved in two ways: (1) through better training and inclusion of experienced operators and (2) through improved reliability of autonomous functions and situation awareness of vehicles. It is believed that the human–autonomy collaboration Bayesian belief network can improve autonomous underwater vehicle design and autonomous underwater vehicle operations by clarifying relationships between technical, human, and organizational factors and their influence on mission risk. The article focuses on autonomous underwater vehicle, but the results should be applicable to other types of autonomous marine systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chien, Steve, Joshua Doubleday, David R. Thompson, Kiri L. Wagstaff, John Bellardo, Craig Francis, Eric Baumgarten, et al. "Onboard Autonomy on the Intelligent Payload Experiment CubeSat Mission." Journal of Aerospace Information Systems 14, no. 6 (June 2017): 307–15. http://dx.doi.org/10.2514/1.i010386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Mission Autonomy"

1

Morio, Vincent. "Contribution au développement d’une loi de guidage autonome par platitude : application à une mission de rentrée atmosphérique." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13797/document.

Повний текст джерела
Анотація:
Cette thèse porte sur le développement d'une loi de guidage autonome par platitude pour les véhicules de rentrée atmosphérique. La problématique associée au développement d'une loi de guidage autonome porte sur l'organisation globale, l'intégration et la gestion de l'information pertinente jusqu'à la maîtrise du système spatial durant la phase de rentrée. La loi de guidage autonome proposée dans ce mémoire s'appuie sur le concept de platitude, afin d'effectuer un traitement des informations à bord, dans le but double d'attribuer un niveau de responsabilité et d'autonomie au véhicule, déchargeant ainsi le segment sol de tâches opérationnelles "bas niveau", pour lui permettre de mieux assumer son rôle de coordination globale. La première partie de ce mémoire traite de la caractérisation formelle de sorties plates pour les systèmes non linéaires régis par des équations différentielles ordinaires, ainsi que pour les systèmes linéaires à retards. Des algorithmes constructifs sont proposés afin de calculer des sorties plates candidates sous un environnement de calcul formel standard. Dans la seconde partie, une méthodologie complète et générique de replanification de trajectoires de rentrée atmosphérique est proposée, afin de doter la loi de guidage d'un certain niveau de tolérance à des pannes actionneur simple/multiples pouvant survenir lors des phases critiques d'une mission de rentrée atmosphérique. En outre, une méthodologie d'annexation superellipsoidale est proposée afin de convexifier le problème de commande optimale décrit dans l'espace des sorties plates. La loi de guidage proposée est ensuite appliquée étape par étape à une mission de rentrée atmosphérique pour la navette spatiale américaine STS-1
This thesis deals with the design of an autonomous guidance law based on flatness approach for atmospheric reentry vehicles. The problematic involved by the design of an autonomous guidance law relates to the global organization, the integration and the management of relevant data up to the mastering of the spacecraft during the re-entry mission. The autonomous guidance law proposed in this dissertation is based on flatness concept, in order to perform onboard processing so as to locally assign autonomy and responsibility to the vehicle, thus exempting the ground segment from "low level" operational tasks, so that it can ensure more efficiently its mission of global coordination. The first part of the manuscript deals with the formal characterization of flat outputs for nonlinear systems governed by ordinary differential equations, as well as for linear time-delay systems. Constructive algorithms are proposed in order to compute candidate flat outputs within a standard formal computing environment. In the second part of the manuscript, a global and generic reentry trajectory replanning methodology is proposed in order to provide a fault-tolerance capability to the guidance law, when facing single/multiple control surface failures that could occur during the critical phases of an atmospheric reentry mission. In addition, a superellipsoidal annexion method is proposed so as to convexify the optimal control problem described in the flat outputs space. The proposed guidance law is then applied step by step to an atmospheric reentry mission for the US Space Shuttle orbiter STS-1
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chanthery, Elodie. "Planification de mission pour un véhicule aérien autonome." Phd thesis, Ecole nationale superieure de l'aeronautique et de l'espace, 2005. http://tel.archives-ouvertes.fr/tel-00174631.

Повний текст джерела
Анотація:
Les engins autonomes suivent un plan de mission donné, parfois réactualisé par l'opérateur. La durée des missions et la limitation des communications poussent à développer des engins pourvus d'autonomie décisionnelle. Ce travail porte sur la replanification embarquée, illustrée sur une mission d'observation effectuée par un drone. Il vise à élaborer un planificateur de mission intégré dans une architecture embarquée.

Le formalisme proposé décrit la sélection d'objectifs associés à des récompences variables et l'optimisation sous contraintes de leur réalisation dans le temps et l'espace.
Le cadre algorithmique, inspiré du A*, et des méthodes d'évaluation de coût, d'élagage et de rangement sont décrits.
Une architecture hybride hiérarchisée en 4 niveaux d'autonomie intègre le planificateur.
36 scénarios simulés sur 16 combinaisons de méthodes testent la partie alorithmique. L'analyse des résultats permet de dégager les méthodes obtenant les meilleurs compromis qualité/temps de calcul.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chanthery, Élodie. "Planification de mission pour un véhicule aérien autonome." Toulouse, ENSAE, 2005. https://tel.archives-ouvertes.fr/tel-00174631.

Повний текст джерела
Анотація:
Les engins autonomes suivent un plan de mission donné, parfois réactualisé par l'opérateur. La durée des missions et la limitation des communications poussent à développer des engins pourvus d’autonomie décisionnelle. Ce travail porte sur la replanification embarquée, illustrée sur une mission d'observation effectuée par un drone. Il vise à élaborer un planificateur de mission intégré dans une architecture embarquée. Le formalisme proposé décrit la sélection d'objectifs associés à des récompenses variables et l'optimisation sous contraintes de leur réalisation dans le temps et l'espace. Le cadre algorithmique, inspiré du A*, et des méthodes d’évaluation de coût, d’élagage et de rangement sont décrits. Une architecture hybride hiérarchisée en 4 niveaux d'autonomie intègre le planificateur. 36 scénarios simulés sur 16 combinaisons de méthodes testent la partie algorithmique. L'analyse des résultats permet de dégager les méthodes obtenant les meilleurs compromis qualité/temps de calcul.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kubik, Stephen T. "Application of Parent-Child UAV Tasking For Wildfire Detection and Response." DigitalCommons@CalPoly, 2008. https://digitalcommons.calpoly.edu/theses/28.

Повний текст джерела
Анотація:
In recent years, unmanned aerial vehicles (UAVs) have become a dominant force in the aerospace industry. Recent technological developments have moved these aircraft from remote operation roles to more active response missions. Of particular interest is the possibility of applying UAVs toward solving complex problems in long-endurance missions. Under that belief, the feasibility of utilizing UAVs for wildfire detection and response was investigated in a partnership that included NASA’s Aeronautics Research Mission Directorate and Science Mission Directorate, and the United States Forest Service. Under NASA’s Intelligent Mission Management (IMM) project, research was conducted to develop a mission architecture that would enable use of a high altitude UAV to search for reported wildfires with a separate low altitude UAV supporting ground assets. This research proposes a “straw man” concept incorporating both a High Altitude Long Endurance (HALE) UAV and a Low Altitude Short Endurance (LASE) UAV in a loosely coupled, low cost solution tailored towards wildfire response. This report identifies the communications architecture, algorithms, and required system configuration that meets the outlined goals of the IMM project by mitigating wildfires and addressing the United States Forest Service immediate needs. The end product is a defined parent-child framework capable of meeting all wildfire mission goals. The concept has been implemented in simulation, the results of which are presented in this report.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Van, Rooi Leslie Bernard. "In search of ecclesial autonomyy : a church historical and church juridical study of developments in church polity in the Dutch Reformed Mission Church in South Africa (DRMC) and the Dutch Reformed Church in Africa (DRCA) from 1881-1994." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4025.

Повний текст джерела
Анотація:
Thesis (DTh (Systematic Theology and Ecclesiology))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: The Dutch Reformed Mission Church (DRMC) and the Dutch Reformed Church in Africa (DRCA) was established in 1881 and 1910 respectively. As pointed out in this study both these churches grew from the mission endeavours of the Dutch Reformed Church (DRC). In April 1994 the DRMC and the DRCA united in forming the Uniting Reformed Church in Southern Africa (URCSA). This church has as confessional base the Belgic Confession of Faith, the Canons of Dordt and the Heidelberg Catechism as well as the Belhar Confession. The church order of the URCSA is built on these Confessions and in particular on the Belhar Confession. In this study I argue that it was only after the unification of the mentioned churches that a history characterised by guardianship, subordination and semi-autonomy came to an end. However this may be the histories of the DRMC and the DRCA point out that, on a church juridical level, these churches where subordinate and to a large extent directly governed by the DRC. Here the model for the church planting as followed by the DRC will receive attention. By looking into the primary documents through which these churches were governed as well as the documents that formed the church orderly backbone of the mentioned churches in that, through their principles and stipulations, the DRMC and DRCA were organised internally, I attempt to evaluate these documents. These documents include the initial constitutions for the governance of the DRMC and the DRCA, the deeds of agreement between the regional synods of the DRC and the regional synods of the DRCA as well as the Deeds of Agreement between the DRC in South Africa (the Western and Southern Cape Synod of the DRC) the Synod of the DRMC, the first church orders of the DRMC and the DRCA and, to a lesser extent, the church order of the URCSA. Through their histories these churches were granted church juridical liberties. These liberties form the foundation for the initial development in the polity of these churches. The content of the abovementioned documents highlights these liberties as well as the effect it had on the theological identities of the DRMC and the DRCA. As the histories of these churches depict a strong strive towards reaching a position of ecclesial autonomy and the acknowledgment of their autonomy by the DRC, special attention is given to the concept and interpretation of ecclesial autonomy. In this regard I remark on the historical interpretation of ecclesial autonomy as it played out in the histories of the DRMC and the DRCA. Through the works of renowned Reformed theologians, I further look into historical interpretations of this theological principle, which is ecclesial autonomy. In doing this I attempt to formulate a specific understanding of ecclesial autonomy based on a particular interpretation of the Lordship of Christ. As outcome this interpretation shows towards the interdependant relation between churches. It can be argued that this impacts directly on the relation between the DRC, the DRMC and the DRCA, specifically in the ongoing processes of church re-unification. In a final turn in which I affirm vi the interdependent and interrelatedness between churches, I argue towards the building of a vulnerable ecclesiology which impacts directly on an understanding of ecclesial autonomy, the specific polity of a church, as well as on the structures embodied by a community of believers. Some of the tenets and convictions of Reformed church polity, as they are relevant to this study, are discussed in detail. In turn I use these principles in evaluating the church juridical position of the DRMC and the DRCA in the mentioned period. As such I point towards the strong deviations in Reformed church polity as it played out in the history of the churches within the family of Dutch Reformed Churches. In this regard I also point towards the interrelatedness of these churches within the broader social context of South(-ern) Africa. I argue that these unique deviations are to a large extent distinct from the ecclesial context of South(-ern) Africa. Concluding remarks are made in this regard. Through the unpacked notion of what is termed an ecclesiology of vulnerability, built on the interdependent relation between churches, I make brief suggestions regarding the ongoing process of church re-unification between the churches within the family of Dutch Reformed Churches.
AFRIKAANSE OPSOMMING: Die Nederduitse Gereformeerde Sendingkerk (NGSK) en die Nederduitse Gereformeerde Kerk in Afrika (NGKA) het onderskeidelik in 1881 en 1910 tot stand gekom. Soos wat hierdie studie uitwys, het beide hierdie kerke gegroei vanuit die sendingaktiwiteite van die Nederduitse Gereformeerde Kerk (NGK). In April 1994 het die NGSK en die NGKA verenig in die Verenigende Gereformeerde Kerk in Suider-Afrika (VGKSA). Hierdie kerk het as konfessionele basis die Nederlandse Geloofsbelydenis, die Dordtse Leerreëls, die Heidelbergse Kategismus sowel as die Belydenis van Belhar. Die kerkorde van die VGKSA is dan ook gebou op hierdie belydenisskrifte en dan in besonder op die Belydenis van Belhar. In hierdie studie redeneer ek dat dit eers ná die eenwording van die vermelde kerke was dat ’n geskiedenis gekenmerk deur voogdyskap, ondergeskiktheid en semi-outonomie agterweë gelaat is. Dit kan vermeld word dat die geskiedenis van die NGSK en die NGKA duidelik uitwys dat hierdie kerke, op ’n kerkregtelike vlak, ondergeskik was aan, en tot ’n groot mate regeer is deur die NGK. Die model vir die planting van kerke soos gevolg deur die NGK geniet in hierdie verband in die studie aandag. Verder het ek probeer om die inhoud van die primêre dokumente waardeur die NGSK en die NGKA regeer is, sowel as die dokumente wat as kerkordelike basis vir die interne organisering van hierdie kerke gebruik is, te evalueer. Die vermelde dokumentasie sluit in die oorspronklike Grondwette vir die regering van die NGSK en die NGKA, die Aktes van Ooreenkoms tussen die streeksinodes van die NGK en die streeksinodes van die NGKA sowel as die Aktes van Ooreenkoms tussen die NGK in Suid- Afrika (die sogenaamde Kaapse Kerk) en die sinode van die NGSK, die eerste kerkordes van die NGSK en die NGKA, en, tot ’n mindere mate ook die kerkorde van die VGKSA. Deur die verloop van die geskiedenis is daar sekere kerkregtelike vryhede aan die NGSK en die NGKA toegestaan. Hierdie vryhede vorm, myns insiens, die basis van die oorspronklike kerkregtelike ontwikkeling(-e) in die vermelde kerke. Die inhoud van die bovermelde dokumente wys juis hierdie vryhede uit sowel as die effek wat dit op die teologiese identiteite van die NGSK en die NGKA gehad het. Aangesien die geskiedenis van die NGSK en die NGKA ’n sterk strewe na kerklike outonomie en die erkenning van hierdie outonomie deur die NGK uitwys, word spesiale aandag gegee aan die bespreking van die konsep en interpretasie van kerklike outonomie. Die historiese begrip van hierdie term word verduidelik en spesifiek hoe dit uitgespeel het in die geskiedenis van die NGSK en die NGKA. Deur te verwys na die werke van welbekende Gereformeerde teoloë, word daar ook aandag gegee aan die historiese interpretasie van kerklike outonomie as teologiese beginsel. Daarvolgens probeer ek om ’n spesifieke begrip vir kerklike outonomie te formuleer. ’n Bepaalde interpretasie van Christus se heerskappy is hier as basis gebruik. As uitkoms dui hierdie geformuleerde interpretasie van kerklike outonomie op inter-afhanklike verhoudinge tussen kerke. Myns insiens impakteer dit direk op die verhouding tussen die NGK, die NGSK en die NGKA en hier spesifiek dan op die proses van kerklike hereniging tussen hierdie kerke. In ’n finale rondte gaan my argument oor die bou van wat genoem word ‘n kwesbare ekklesiologie. Hierdie argument is gebou op ‘n verstaan van kerklike outonomie wat wys op die inter-afhanklike verhouding tussen kerke. Myns insiens impakteer hierdie argument direk op ’n spesifieke begrip van kerklike outonomie, die spesifieke kerkreg wat uitspeel in ’n kerk, sowel as op die strukture wat beliggaam word in ’n gemeenskap van gelowiges. Van die oortuigings van die Gereformeerde Kerkreg komend vanuit ‘n spesifieke konteks, soos wat dit betrekking het op hierdie studie, word gedetailleerd bespreek. Ek het ook hierdie oortuigings gebruik om die kerkregtelike posisie van die NGSK en die NGKA in die vermelde periode te evalueer. In hierdie verband wys ek op hoe daar in die geskiedenis van hierdie kerke sterk afgewyk was van die Gereformeerde Kerkreg. Melding word in hierdie verband gemaak van die inter-afhanklikheid van hierdie kerke en die breër sosiale konteks van Suid(-er)-Afrika. Myns insiens is hierdie vermelde eiesoortige afwykings tot ’n groot mate uniek aan die kerklike konteks van Suid(-er)-Afrika. Slotopmerkings word in hierdie verband gemaak. Wanneer die konsep van ’n kwesbare ekklesiologie, gebou op ‘n verstaan van die inter-afhaklike verhouding tussen kerke, beskryf word, maak ek kort opmerkings rakende die aangegaande proses van kerkhereniging tussen die kerke binne die familie van NG Kerke.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dicheva, Svetlana. "Planification de mission pour un système de lancement aéroporté autonome." Phd thesis, Université d'Evry-Val d'Essonne, 2012. http://tel.archives-ouvertes.fr/tel-00878784.

Повний текст джерела
Анотація:
Cette thèse de doctorat s'inscrit dans le cadre des activités de recherche sur les systèmes de lancement aéroporté autonome. L'originalité du travail est basée sur la planification de mission effectuée par un algorithme de type A*(A-étoile). Cet algorithme a été amélioré pour répondre aux besoins de la mission de largage d'un lanceur. Il effectue la planification du chemin le plus court dans un espace tridimensionnel. Le meilleur chemin est choisi à partir de plusieurs points de passage générés dans la région de mission. Une région peut être une phase du vol ou une partie du profil de vol. Le chemin le plus court est identifié par rapport à la présence de différents obstacles dans l'espace de recherche et son objectif consiste à atteindre un point désiré. Les obstacles ont différentes dimensions et orientations dans l'espace. L'étude de leur comportement est associée aux incertitudes en provenance de l'environnement. Ils peuvent représenter des régions interdites au vol ou des conditions atmosphériques défavorables. L'évolution de ces derniers n'est pas prévisible à l'avance, ce qui impose l'addition d'une fonctionnalité dans l'algorithme. Il est possible de replanifier le chemin à partir d'un point de passage appartenant à un chemin généré en fonction de la position détectée récemment de l'obstacle en déplacement pour arriver dans la configuration finale désirée. Cette détection est possible grâce aux capteurs positionnés sur le premier étage de ce système de lancement représenté par un avion-porteur. Les points de passage que le véhicule aérien doit suivre pour atteindre les objectifs importants ne sont pas choisis d'une manière aléatoire. Leur génération dans l'espace de recherche du chemin est définie en rapport aux limitations dynamiques de l'avion. Les modèles cinématique et dynamique du véhicule aérien qui décrivent son évolution sont aussi développés dans cette thèse. Ces modèles sont étudiés dans un système de coordonnées aérodynamiques. Le référentiel traite la présence du vent qui influe sur le comportement du véhicule. Cela nous permet de considérer d'une manière prédictive plusieurs incertitudes en provenance de l'environnement ou internes pour le véhicule. Les perturbations internes sont provoquées par le largage du lanceur. Le régime transitoire est relié à la perte de masse qui pour certaines missions peut atteindre le tiers de la masse totale du système de lancement. L'algorithme de planification traite une autre prévision - la possibilité que le largage ne soit pas réalisé. Cela peut arriver dans le cas où une tempête s'est installée dans la région de lancement ou il y a plusieurs obstacles dont l'évitement risque de consommer trop de carburant et d'empêcher le retour sur le site d'atterrissage. Les connexions entre les différents points de passage peuvent être souvent brutes et difficiles à réaliser par le véhicule aérien. Pour résoudre cette problématique dans le deuxième module développé sur la génération de trajectoire réalisable, nous utilisons l'approche des polynômes de troisième ordre. Ces polynômes par rapport aux autres techniques diminuent le temps du calcul pour générer une trajectoire réalisable entre deux points de passage consécutifs. Le chemin réalisable est facile à suivre par le système. Pour le suivi de la trajectoire, nous avons introduit dans un troisième module - la commande par mode glissant. Le principe de cette commande consiste le choix de la surface de commutation entre la trajectoire actuelle suivie par le véhicule et la trajectoire désirée déterminée par l'algorithme de planification A-étoile et générée par les polynômes cartésiens de troisième ordre.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SCHAEFFER, VALERIE. "Specification et optimisation de mission pour un robot mobile autonome." Paris 6, 1993. http://www.theses.fr/1993PA066698.

Повний текст джерела
Анотація:
Le systeme developpe dans cette these permet de specifier, planifier, puis optimiser des missions complexes pour un robot mobile autonome evoluant en milieu partiellement connu de type usine. Les differents elements de ce systeme constituent des modules fonctionnels de l'architecture de controle de robot mobile specifiee en collaboration avec les chercheurs du laboratoire de robotique de paris. La modelisation du robot et de l'univers dans lequel il evolue integre les representations: du robot et de ses ressources, des elements de l'environnement pouvant intervenir dans les actions du robot, des possibilites de navigation et d'action du robot dans son environnement (graphe de navigation-action). Ce graphe est utilise pour realiser simultanement l'ordonnancement des actions a executer pour realiser une mission, et la planification de trajectoires. Ceci permet d'optimiser globalement le plan en cherchant l'ordre des actions qui minimise le cout global d'execution du plan selon differents criteres qui peuvent etre combines: temps d'execution, risque d'echec de l'execution, surete de l'execution un langage de description de mission robotique a ete defini ; il permet de construire et d'enrichir une bibliotheque de missions reutilisables, parametrees ou non. Au depart, la bibliotheque contient les primitives d'action executables par le robot. La definition d'une mission s'obtient par composition de (sous-)missions presentes dans la bibliotheque, en utilisant differentes structures de controle. Le processus de planification comporte les operations: de decomposition de la mission en un ensemble de primitives d'action, de verification de la coherence de la mission et d'ordonnancement des primitives d'actions sous contraintes d'anteriorite, de ressources et de cout minimum. Ce probleme d'ordonnancement a ete resolu par deux methodes issues du domaine de la recherche operationnelle qui ont ete comparees: le recuit simule et la programmation par contraintes (a l'aide de l'outil charme)
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Louis, Silvain. "Système robotisé semi-autonome pour l'observation des espèces marines." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS043.

Повний текст джерела
Анотація:
L'objectif de cette thèse, en collaboration avec une équipe de biologistes de Marbec, est de développer un système robotisé semi-autonome pour l’observation des espèces marines. Pour cela, ce système devra effectuer les protocoles biologistes connus ainsi que de nouveaux protocoles tout en démontrant son efficacité par rapport à un plongeur. Pour réaliser correctement les protocoles, nous avons développé les lois de commande associées ainsi qu'un système de gestion de mission pour permettre la construction, la validation formelle et l'exécution d'une telle mission. Enfin, pour répondre à la problématique de faisabilité de l'observation par un robot, nous avons mené les expérimentations à Mayotte
The goal of this thesis, in collaboration with a biologists team of Marbec, is to develop a semi-autonomous robotic system for marine species observation. For this, this system will have to perform the known biologist protocols as well as new protocols while proving its effectiveness compared to a diver. To achieve the protocols, we have developed the associated control laws and a mission management system to allow the construction, the formal validation and the execution of a mission. Finally, to answer the problem of feasibility of observation by a robot, we conducted the experiments in Mayotte
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gateau, Thibault. "Supervision de mission pour une équipe de véhicules autonomes hétérogènes." Thesis, Toulouse, ISAE, 2012. http://www.theses.fr/2012ESAE0038/document.

Повний текст джерела
Анотація:
Ces dernières années, les engins robotisés n’ont cessé d’améliorer leur autonomie dans le domaine de la décision. Désormais, pour ne citer que l’exemple de véhicules aériens, nombre de drones sont largement capables, sans intervention d’un opérateur humain, de décoller, suivre un itinéraire en activant divers capteurs à des moments précis, atterrir en un lieu spécifié, suivre une cible, patrouiller sur une zone... Une des étapes suivantes consiste à faire collaborer une équipe de véhicules autonomes, de nature hétérogène (aériens, terrestres, marins...) afin de leur permettre d’accomplir des missions plus complexes. L’aspect dynamique de l’environnement réel, la non disponibilité à tout instant des moyens de communication, la coordination nécessaire des véhicules,de conceptions parfois différentes, dans l’exécution de certaines parties d’un plan de mission, sont autant d’obstacles à surmonter. Ce travail tente non seulement d’apporter quelques éléments de réponse face à ces difficultés, mais consiste aussi en la mise en place concrète d’un superviseur haut niveau, capable de gérer l’exécution d’une mission par une équipe de véhicules autonomes hétérogènes, où le rôle de l’opérateur humain est volontairement réduit. Nous décrivons dans ce mémoire l’architecture distribuée que nous avons choisi de mettre en œuvre pour répondre à ce problème. Il s’agit d’un superviseur, réparti à bord des véhicules autonomes, interfacé avec leur architecture locale et en charge de l’exécution de la mission d’équipe. Nous nous intéressons également à la formalisation des connaissances nécessaires au déroulement de cette mission, afin d’améliorer l’interopérabilité des véhicules de l’équipe, mais aussi pour expliciter les relations entre modèles décisionnels abstraits et réalité d’exécution concrète. Le superviseur est capable de réagir face aux aléas qui vont se produire dans un environnement dynamique. Nous présentons ainsi dans un second temps les stratégies mises en place pour parvenir à les détecter au mieux, ainsi que la façon dont nous procédons pour réparer partiellement ou totalement le plan de mission initial, afin de remplir les objectifs initiaux. Nous nous basons notamment sur la nature hiérarchique du plan de mission, mais aussi sur celle de la structure de sous-équipes que nous proposons de construire. Enfin, nous présentons quelques résultats obtenus expérimentalement, sur des missions simulées et des scénarios réels, notamment ceux du Programme d’Etudes Amont Action dans lequel s’inscrivent ces travaux de thèse
Many autonomous robots with specific control oriented architectures have already been developed worldwide.The advance of the work in this field has led researchers wonder for many years to what extent robots would be able to be integrated into a team consisting of autonomous and heterogeneous vehicles with complementary functionalities. However, robot cooperation in a real dynamic environment under unreliable communication conditions remains challenging, especially if these autonomous vehicles have different individual control architectures.In order to address this problem, we have designed a decision software architecture, distributed on each vehicle.This decision layer aims at managing execution and at increasing the fault tolerance of the global system. The mission plan is assumed to be hierarchically structured. ln case of failure detection, the plan repair is done as locally as possible, based on the hierarchical organization.This allows us to restrict message exchange only between the vehicles concerned by the repair process. Knowledge formalisation is also a part of the study permitting the improvement of interoperability between team members. It also provides relevant information all along mission execution, from initial planning computation to plan repair in this multirobot context. The feasibility of the system has been evaluated by simulations and real experiments thanks to the Action project (http://action.onera.fr/welcome/)
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Le, Barz Cédric. "Navigation visuelle pour les missions autonomes des petits drones." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066424/document.

Повний текст джерела
Анотація:
Lors de dette dernière décennie, l'évolution des technologies a permis le développement de drones de taille et de poids réduit aptes à évoluer dans des environnements intérieurs ou urbains. Pour exécuter les missions qui leur sont attribuées, les drones doivent posséder un système de navigation robuste, comprenant, notamment, une fonctionnalité temps réel d'ego-localisation précise dans un repère absolu. Nous proposons de résoudre cette problématique par la mise en correspondance des dernières images acquises avec des images géoréférencées de type Google Streetview.Dans l'hypothèse où il serait possible pour une image requête de retrouver l'image géo-référencée représentant la même scène, nous avons tout d'abord étudié une solution permettant d'affiner la localisation grâce à l'estimation de la pose relative entre ces deux images. Pour retrouver l'image de la base correspondant à une image requête, nous avons ensuite étudié et proposé une méthode hybride exploitant à la fois les informations visuelles et odométriques mettant en oeuvre une chaîne de Markov à états cachés. Les performances obtenues, dépendant de la qualité de la mesure de similarité visuelle, nous avons enfin proposé une solution originale basée sur l'apprentissage supervisé de distances permettant de mesurer les similarités entre les images requête et les images géoréférencées proches de la position supposée
In this last decade, technology evolution has enabled the development of small and light UAV able to evolve in indoor and urban environments. In order to execute missions assigned to them, UAV must have a robust navigation system, including a precise egolocalization functionality within an absolute reference. We propose to solve this problem by mapping the latest images acquired with geo-referenced images, i.e. Google Streetview images.In a first step, assuming that it is possible for a given query image to retrieve the geo-referenced image depicting the same scene, we study a solution, based on relative pose estimation between images, to refine the location. Then, to retrieve geo-referenced images corresponding to acquired images, we studied and proposed an hybrid method exploiting both visual and odometric information by defining an appropriate Hidden Markov Model (HMM), where states are geographical locations. The quality of achieved performances depending of visual similarities, we finally proposed an original solution based on a supervised metric learning solution. The solution measures similarities between the query images and geo-referenced images close to the putative position, thanks to distances learnt during a preliminary step
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Mission Autonomy"

1

Harper, Glyn. Mission to East Timor. Auckland [N.Z.]: Reed Pub., 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mission Kurdistan: ABD, PKK ilişkilerinin stratejik analizi, 1978-2012. Ankara: Kripto, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Die UN-Mission im Kosovo: Von den Anfängen bis zu den Statusverhandlungen. Marburg: Tectum, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Snyder, Timothy. Sketches from a secret war: A Polish artist's mission to liberate Soviet Ukraine. New Haven, CT: Yale University Press, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Snyder, Timothy. Sketches from a secret war: A Polish artist's mission to liberate Soviet Ukraine. New Haven, CT: Yale University Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Burgess, John Hopkins. Christianity and independence, or, A study concerning the mission of the church past and present as it relates to nationalist independence movements in Southern Africa, with reference to missionaries, missionary organisations, churches. Birmingham, West Midlands: University of Birmingham, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mission accomplished, East Timor: The Australian Defence Force participation in the International Forces East Timor (INTERFET). St. Leonards, N.S.W: Allen & Unwin, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Asian Network for Free Elections. East Timor: A triumph of the human spirit : report of the international observation mission on the 1999 popular consultation, 25 August-2 September 1999. Bangkok, Thailand: Asian Network for Free Elections (ANFREL), 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hækkerup, Hans. Kosovos mange ansigter. [Copenhagen]: Lindhardt og Ringhof, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hækkerup, Hans. Kosovos mange ansigter. [Copenhagen]: Lindhardt og Ringhof, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Mission Autonomy"

1

Gao, Yang, Guy Burroughes, Jorge Ocón, Simone Fratini, Nicola Policella, and Alessandro Donati. "Mission Operations and Autonomy." In Contemporary Planetary Robotics, 321–401. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527684977.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

MahmoudZadeh, Somaiyeh, David M. W. Powers, and Reza Bairam Zadeh. "Augmented Reactive Mission Planning Architecture." In Autonomy and Unmanned Vehicles, 95–107. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2245-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Backhaus, Jürgen G., and Louis W. Fritz. "Mission-Driven Business Schools." In Two Centuries of Local Autonomy, 41–51. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0293-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lane, David, Keith Brown, Yvan Petillot, Emilio Miguelanez, and Pedro Patron. "An Ontology-Based Approach to Fault Tolerant Mission Execution for Autonomous Platforms." In Marine Robot Autonomy, 225–55. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5659-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MahmoudZadeh, Somaiyeh, David M. W. Powers, and Reza Bairam Zadeh. "Mission Planning in Terms of Task-Time Management and Routing." In Autonomy and Unmanned Vehicles, 55–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2245-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

MahmoudZadeh, Somaiyeh, David M. W. Powers, and Reza Bairam Zadeh. "State-of-the-Art in UVs’ Autonomous Mission Planning and Task Managing Approach." In Autonomy and Unmanned Vehicles, 17–30. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2245-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

MahmoudZadeh, Somaiyeh, David M. W. Powers, and Reza Bairam Zadeh. "Advancing Autonomy by Developing a Mission Planning Architecture (Case Study: Autonomous Underwater Vehicle)." In Autonomy and Unmanned Vehicles, 41–53. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2245-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schwab, A., C. Giese, and D. Ulrich. "TDX-TSX: Onboard Autonomy and FDIR of Whispering Brothers." In Space Operations: Experience, Mission Systems, and Advanced Concepts, 539–56. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2013. http://dx.doi.org/10.2514/5.9781624102080.0539.0556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kienreich, I. W., N. Muhr, A. M. Veronig, D. Berghmans, A. De Groof, M. Temmer, B. Vršnak, and D. B. Seaton. "Solar TErrestrial Relations Observatory-A (STEREO-A) and PRoject for On-Board Autonomy 2 (PROBA2) Quadrature Observations of Reflections of Three EUV Waves from a Coronal Hole." In The PROBA2 Mission, 201–19. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-8187-4_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zender, J., D. Berghmans, D. S. Bloomfield, C. Cabanas Parada, I. Dammasch, A. De Groof, E. D’Huys, et al. "The Projects for Onboard Autonomy (PROBA2) Science Centre: Sun Watcher Using APS Detectors and Image Processing (SWAP) and Large-Yield Radiometer (LYRA) Science Operations and Data Products." In The PROBA2 Mission, 93–110. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-8187-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Mission Autonomy"

1

Kurt, Cindy Marie. "A Roadmap for Progressive Autonomy in Mission Operations." In 57th International Astronautical Congress. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.iac-06-d1.4.06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kurt, Cindy. "Progressive Autonomy for Optimized Mission Design and Operations." In SpaceOps 2006 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-5533.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chien, Steve, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, and R. Castano. "Onboard Autonomy on the Earth Observing One Mission." In AIAA 1st Intelligent Systems Technical Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-6515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pisanich, Greg, Laura Plice, Chris Neukom, Lorenzo Flueckiger, and Michael Wagner. "Mission Simulation Facility: Simulation Support for Autonomy Development." In 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chien, S., S. Wichman, B. Engelhart, R. Knight, G. Rabideau, R. Sherwood, D. Tran, E. Hansen, A. Otiviz, and C. Wilklow. "Onboard Autonomy Software on the Three Corner Sat Mission." In SpaceOps 2002 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-t3-39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sherwood, Rob. "Autonomy and Sensor Webs: The Evolution of Mission Operations." In SpaceOps 2008 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-3296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Slingerland, Philip, Lauren Perry, James Kaufman, Benjamen Bycroft, Erik Linstead, Lukas Mandrake, Gary Doran, et al. "Adapting a Trusted AI Framework to Space Mission Autonomy." In 2022 IEEE Aerospace Conference (AERO). IEEE, 2022. http://dx.doi.org/10.1109/aero53065.2022.9843376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Adamson, Kate, Pier Bargellini, Herbert Nett, and Christophe Caspar. "ADM/AEOLUS Mission Planning Re-Use, Autonomy and Automation." In SpaceOps 2010 Conference: Delivering on the Dream (Hosted by NASA Marshall Space Flight Center and Organized by AIAA). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-1968.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Munoz, Pablo, Amedeo Cesta, Andrea Orlandini, and Maria D. R-Moreno. "First Steps on an On-Ground Autonomy Test Environment." In 2014 IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT). IEEE, 2014. http://dx.doi.org/10.1109/smc-it.2014.12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bowkett, Joseph, Jeremy Nash, David Inkyu Kim, Sung-Kyun Kim, Rohan Thakker, Alex Brinkman, Yang Cheng, et al. "Functional Autonomy Challenges in Sampling for an Europa Lander Mission." In 2021 IEEE Aerospace Conference. IEEE, 2021. http://dx.doi.org/10.1109/aero50100.2021.9438298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Mission Autonomy"

1

Chavez, Jon. Autonomy for Hypersonics Mission Campaign (A4H). Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1572138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jones, Peter H., and Kevin M. Dye. 4-D COMMON OPERATIONAL PICTURE (COP) FOR MISSION ASSURANCE (4D COP) Task Order 0001: Air Force Research Laboratory (AFRL) Autonomy Collaboration in Intelligence, Surveillance, and Reconnaissance (ISR), Electronic Warfare (EW)/Cyber and Combat Identification (CID). Fort Belvoir, VA: Defense Technical Information Center, October 2016. http://dx.doi.org/10.21236/ad1020042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hodgdon, Taylor, Anthony Fuentes, Jason Olivier, Brian Quinn, and Sally Shoop. Automated terrain classification for vehicle mobility in off-road conditions. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40219.

Повний текст джерела
Анотація:
The U.S. Army is increasingly interested in autonomous vehicle operations, including off-road autonomous ground maneuver. Unlike on-road, off-road terrain can vary drastically, especially with the effects of seasonality. As such, vehicles operating in off-road environments need to be in-formed about the changing terrain prior to departure or en route for successful maneuver to the mission end point. The purpose of this report is to assess machine learning algorithms used on various remotely sensed datasets to see which combinations are useful for identifying different terrain. The study collected data from several types of winter conditions by using both active and passive, satellite and vehicle-based sensor platforms and both supervised and unsupervised machine learning algorithms. To classify specific terrain types, supervised algorithms must be used in tandem with large training datasets, which are time consuming to create. However, unsupervised segmentation algorithms can be used to help label the training data. More work is required gathering training data to include a wider variety of terrain types. While classification is a good first step, more detailed information about the terrain properties will be needed for off-road autonomy.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Saalman, Lora. Multidomain Deterrence and Strategic Stability in China. Stockholm International Peace Research Institute, January 2022. http://dx.doi.org/10.55163/fyxq3853.

Повний текст джерела
Анотація:
Over the past few years, China has displayed a wide range of advances in military capabilities and infrastructure, including its test of a hypersonic glide vehicle coupled with a fractional orbital bombardment system and evidence of new intercontinental ballistic missile silos. While China and the United States remain at political odds, there are indications that China’s strategies in space, cyberspace and nuclear domains are increasingly converging with those of the USA, as well as Russia. A key question is whether this strategic convergence is a stabilizing or destabilizing phenomenon. To answer the question, this paper explores the current state of Chinese discussions on multidomain deterrence and strategic stability, with a focus on active defence and proactive defence. It then examines how these concepts are manifesting themselves in China’s postural and technological indicators, including pre-mating of nuclear warheads to delivery platforms, expanded nuclear arsenal size, possible shifts towards launch on warning, integration of dual-capable systems, and advances in machine learning and autonomy. It concludes with a discussion of what these trends mean for future strategic stability talks.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sopein-Mann, Oluwafunmike, Zita Ekeocha, Stephen Robert Byrn, and Kari L. Clase. Medicines Regulation in West Africa: Current State and Opportu-nities. Purdue University, December 2021. http://dx.doi.org/10.5703/1288284317443.

Повний текст джерела
Анотація:
Ndomondo-Sigonda et al. (2017) observed that there is scarcity of information on human resources (person-nel devoted to regulation of medicines) in the domain of medicines regulation in the sub-Saharan Africa (SSA). The published information on medicines regulation by the National Medicines Regulatory Authorities (NMRAs) in the Economic Community of West African States (ECOWAS) region are no longer current and consistent with the current realities in the NMRAs. In order to reveal this occurrence, show the trends that exist over the years and make appropriate recommendations, data were collected and compared from 2005, 2010 and 2017 research reports on seven regulatory features of the fifteen Members States of ECOWAS. The re-sults show that there was missing information per regulatory feature and country. There was also an overall increasing trend in the number of NMRAs in the region that showed progress with respect to the measured regulatory features - Autonomy (Authority and Legal form), Marketing Authorization), GMP inspection, Quality Control, Quality Management System, Information Management System and Harmonization and International cooperation. People of Africa have a valuable story to tell as it relates to medicines regulation. This report is written by a West African from the perspective of a West African involved in the study and practice of medi-cines regulation by the NMRAs in the ECOWAS.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії