Добірка наукової літератури з теми "Mirror symmetry"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mirror symmetry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Mirror symmetry"

1

Ma, Zhi Yong. "Research on Concept System of Rotation-Mirror Symmetry in Mechanical Systems." Applied Mechanics and Materials 201-202 (October 2012): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amm.201-202.7.

Повний текст джерела
Анотація:
Mechanical rotation-mirror symmetry is grouped by rotation symmetry and mirror symmetry, and belongs to mechanical static structure symmetry. Collecting and Analyzing a lot of rotation-mirror symmetric instances, and referring to the researches on concept systems of rotation symmetry and mirror symmetry, the concept system of rotation-mirror symmetry was established. The concept system is classified by discrete mirror and continuous mirror rotation-mirror symmetry, unidirectional rotation and bidirectional rotation rotation-mirror symmetry, directed rotation and deflecting rotation rotation-mirror symmetry, entire rotation and partial rotation rotation-mirror symmetry. The concept system can completely contain all kinds of existence of rotation-mirror symmetry in mechanical systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Huang, Tianyu, Bowen Dong, Jiaying Lin, Xiaohui Liu, Rynson W.H. Lau, and Wangmeng Zuo. "Symmetry-Aware Transformer-Based Mirror Detection." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 1 (June 26, 2023): 935–43. http://dx.doi.org/10.1609/aaai.v37i1.25173.

Повний текст джерела
Анотація:
Mirror detection aims to identify the mirror regions in the given input image. Existing works mainly focus on integrating the semantic features and structural features to mine specific relations between mirror and non-mirror regions, or introducing mirror properties like depth or chirality to help analyze the existence of mirrors. In this work, we observe that a real object typically forms a loose symmetry relationship with its corresponding reflection in the mirror, which is beneficial in distinguishing mirrors from real objects. Based on this observation, we propose a dual-path Symmetry-Aware Transformer-based mirror detection Network (SATNet), which includes two novel modules: Symmetry-Aware Attention Module (SAAM) and Contrast and Fusion Decoder Module (CFDM). Specifically, we first adopt a transformer backbone to model global information aggregation in images, extracting multi-scale features in two paths. We then feed the high-level dual-path features to SAAMs to capture the symmetry relations. Finally, we fuse the dual-path features and refine our prediction maps progressively with CFDMs to obtain the final mirror mask. Experimental results show that SATNet outperforms both RGB and RGB-D mirror detection methods on all available mirror detection datasets.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Takahashi, Nobuyoshi. "Log Mirror Symmetry and Local Mirror Symmetry." Communications in Mathematical Physics 220, no. 2 (July 2001): 293–99. http://dx.doi.org/10.1007/pl00005567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ma, Zhi Yong. "Research on Concept System of Mechanical Glide Symmetry." Applied Mechanics and Materials 151 (January 2012): 433–37. http://dx.doi.org/10.4028/www.scientific.net/amm.151.433.

Повний текст джерела
Анотація:
As one kind of mechanical static structure symmetry, glide symmetry is grouped by mirror symmetry and translation symmetry. Glide symmetry is widely exists in mechanical systems, and plays an important role in realizing the technical, economic and social performances of mechanical products. On the basis of research on the concept systems of mirror symmetry, translation symmetry and glide symmetric instances, and taking the characters of the different combined types of symmetry benchmarks as the standard, the concept system of mechanical glide symmetry was established, which can be the foundation of further researches on the application laws of glide symmetry in mechanical systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MELKEMI, MAHMOUD, FREDERIC CORDIER, and NICKOLAS S. SAPIDIS. "A PROVABLE ALGORITHM TO DETECT WEAK SYMMETRY IN A POLYGON." International Journal of Image and Graphics 13, no. 01 (January 2013): 1350002. http://dx.doi.org/10.1142/s0219467813500022.

Повний текст джерела
Анотація:
This paper deals with the problem of detecting "weak symmetry" in a polygon, which is a special bijective and continuous mapping between the vertices of the given polygon. An application of this work is the automatic reconstruction of 3D polygons symmetric with respect to a plane from free-hand sketches of weakly-symmetric 2D polygons. We formalize the weak-symmetry notion and highlight its many properties which lead to an algorithm detecting it. The closest research work to the proposed approach is the detection of skewed symmetry. Skewed symmetry detection deals only with reconstruction of planar mirror-symmetric 3D polygons while our method is able to identify symmetry in projections of planar as well as nonplanar mirror-symmetric 3D polygons.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Blumenhagen, Ralph, Rolf Schimmrigk, and Andreas Wiβkirchen. "(0,2) Mirror symmetry." Nuclear Physics B 486, no. 3 (February 1997): 598–628. http://dx.doi.org/10.1016/s0550-3213(96)00698-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gross, Mark. "Topological mirror symmetry." Inventiones mathematicae 144, no. 1 (April 2001): 75–137. http://dx.doi.org/10.1007/s002220000119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wan, Daqing. "Arithmetic Mirror Symmetry." Pure and Applied Mathematics Quarterly 1, no. 2 (2005): 369–78. http://dx.doi.org/10.4310/pamq.2005.v1.n2.a7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Jun, and Gabriel Khan. "Statistical mirror symmetry." Differential Geometry and its Applications 73 (December 2020): 101678. http://dx.doi.org/10.1016/j.difgeo.2020.101678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dumitru, Petru I. Iga, Popescu Dumitru, and I. R. Niculescu Valentin. "On the Impact of Meso compounds and their Isomers: Towards a New Type of Oscillation?" Chemistry Research Journal 7, no. 1 (February 28, 2022): 39–48. https://doi.org/10.5281/zenodo.11395801.

Повний текст джерела
Анотація:
<strong>Abstract </strong><em>Meso</em> compounds are of two types: homo- and heterodimers. The quality of <em>meso</em> form is apprised either by a mirror plane of symmetry or by application of Cahn-Ingold-Prelog rules, for the molecules devoid of a mirror plane of symmetry (dissymetric). Other elements of symmetry are centre of symmetry and the alternative axis of symmetry. The main subgroup of symmetric compounds is formed of <em>meso</em> ones. In this paper we have used arbitrarily <em>meso</em> dimers as a reference for comparison with other types of isomers ‒ <em>C2 symmetrical</em> (<em>CTS</em>), chiral diastereomers (<em>irrechi</em>), <em>constitutional</em> combinations. However, we possess some arguments for this choice i.e two universal rules concerning <em>CTS</em> and <em>irrechi</em>. The structure of numerous <em>meso</em> heterodimers is presented and the idea is advanced that the atom(s) cut by the mirror plane of symmetry are in fact hidden (masked) by the latter in interaction with polarized light. A question is raised: can the mirror plane of symmetry be saturated (overloaded)? The consequences of a possible affirmative answer to this question are pointed out.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Mirror symmetry"

1

Branco, Lucas Castello. "Higgs bundles, Lagrangians and mirror symmetry." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:612325bd-6a7f-4d74-a85c-426b73ff7a14.

Повний текст джерела
Анотація:
Let Σ be a compact Riemann surface of genus g ≥ 2. This thesis is dedicated to the study of certain loci of the Higgs bundle moduli space. After recalling basic facts in the first chapter about G-Higgs bundles for a reductive group G, we begin the first part of the work, which deals with Higgs bundles for the real forms G<sub>0</sub> = SU* (2m), SO* (4m), and Sp(m, m) of G = SL(2m, C), SO(4m, C) and Sp(4m, C), respectively. The second part of the thesis deals with the Gaiotto Lagrangian. Motivated by mirror symmetry, we give a detailed description of the fibres of the G-Hitchin fibration containing generic G<sub>0</sub>-Higgs bundles, for the real groups G<sub>0</sub> = SU* (2m), SO* (4m) and Sp(m, m). The spectral curves associated to these fibres are examples of ribbons, i.e., non-reduced projective C-schemes of dimension one, whose reduced scheme are non-singular. Our description of these fibres is done in two different ways, each giving different and interesting insights about the fibre in question. One of the formulations is given in term of objects on the reduced curve, while the other in terms of the non-reduced spectral curve. A link is also provided between the two approaches. We use this description to give a proposal for the support of the dual BBB-brane inside the moduli space M(<sup>L</sup>G) of Higgs bundles for the Langlands dual group <sup>L</sup>G of G. In the second part of the thesis we discuss the Gaiotto Lagrangian, which is a Lagrangian subvariety of the moduli spaces of G-Higgs bundles, where G is a reductive group over C. This Lagrangian is obtained from a symplectic representation of G and we discuss some of its general properties. In Chapter 7 we focus our attention to the Gaiotto Lagrangian for the standard representation of the symplectic group. This is an irreducible component of the nilpotent cone for the symplectic Hitchin fibration. We describe this component by using the usual Morse function on the Higgs bundle moduli space, which is the norm squared of the Higgs field restricted to the Lagrangian in question. Lastly, we discuss natural questions and applications of the ideas developed in this thesis. In particular, we say a few words about the hyperholomorphic bundle, how to generalize the Gaiotto Lagrangian to vector bundles which admit many sections and give an analogue of the Gaiotto Lagrangian for the orthogonal group.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mertens, Adrian. "Mirror Symmetry in the presence of Branes." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-135464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gu, Wei. "Gauged Linear Sigma Model and Mirror Symmetry." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90892.

Повний текст джерела
Анотація:
This thesis is devoted to the study of gauged linear sigma models (GLSMs) and mirror symmetry. The first chapter of this thesis aims to introduce some basics of GLSMs and mirror symmetry. The second chapter contains the author's contributions to new exact results for GLSMs obtained by applying supersymmetric localization. The first part of that chapter concerns supermanifolds. We use supersymmetric localization to show that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to corresponding Atwisted GLSM correlation functions for hypersurfaces. The second part of that chapter defines associated Cartan theories for non-abelian GLSMs by studying partition functions as well as elliptic genera. The third part of that chapter focuses on N=(0,2) GLSMs. For those deformed from N=(2,2) GLSMs, we consider A/2-twisted theories and formulate the genuszero correlation functions in terms of Jeffrey-Kirwan-Grothendieck residues on Coulomb branches, which generalize the Jeffrey-Kirwan residue prescription relevant for the N=(2,2) locus. We reproduce known results for abelian GLSMs, and can systematically calculate more examples with new formulas that render the quantum sheaf cohomology relations and other properties manifest. We also include unpublished results for counting deformation parameters. The third chapter is about mirror symmetry. In the first part of the third chapter, we propose an extension of the Hori-Vafa mirrror construction [25] from abelian (2,2) GLSMs they considered to non-abelian (2,2) GLSMs with connected gauge groups, a potential solution to an old problem. We formally show that topological correlation functions of B-twisted mirror LGs match those of A-twisted gauge theories. In this thesis, we study two examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror correctly reproduces details ranging from the number of vacua and correlations functions to quantum cohomology relations. In the last part of the third chapter, we propose an extension of the Hori-Vafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories by special tangent bundle deformations. Our ansatz can systematically produce the (0,2) mirrors of toric varieties and the results are consistent with existing examples which were produced by laborious guesswork. The last chapter briefly discusses some directions that the author would like to pursue in the future.<br>Doctor of Philosophy<br>In this thesis, I summarize my work on gauged linear sigma models (GLSMs) and mirror symmetry. We begin by using supersymmetric localization to show that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to corresponding A-twisted GLSM correlation functions for hypersurfaces. We also define associated Cartan theories for non-abelian GLSMs. We then consider N =(0,2) GLSMs. For those deformed from N =(2,2) GLSMs, we consider A/2-twisted theories and formulate the genus-zero correlation functions on Coulomb branches. We reproduce known results for abelian GLSMs, and can systematically compute more examples with new formulas that render the quantum sheaf cohomology relations and other properties are manifest. We also include unpublished results for counting deformation parameters. We then turn to mirror symmetry, a duality between seemingly-different two-dimensional quantum field theories. We propose an extension of the Hori-Vafa mirror construction [25] from abelian (2,2) GLSMs to non-abelian (2,2) GLSMs with connected gauge groups, a potential solution to an old problem. In this thesis, we study two examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror correctly reproduces details ranging from the number of vacua and correlations functions to quantum cohomology relations. We then propose an extension of the HoriVafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories by special tangent bundle deformations. Our ansatz can systematically produce the (0,2) mirrors of toric varieties and the results are consistent with existing examples. We conclude with a discussion of directions that we would like to pursue in the future.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Perevalov, Eugene V. "Type II/heterotic duality and mirror symmetry /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rossi, Paolo. "Symplectic Topology, Mirror Symmetry and Integrable Systems." Doctoral thesis, SISSA, 2008. http://hdl.handle.net/11577/3288900.

Повний текст джерела
Анотація:
Using Sympelctic Field Theory as a computational tool, we compute Gromov-Witten theory of target curves using gluing formulas and quantum integrable systems. In the smooth case this leads to a relation of the results of Okounkov and Pandharipande with the quantum dispersionless KdV hierarchy, while in the orbifold case we prove triple mirror symmetry between GW theory of target P^1 orbifolds of positive Euler characteristic, singularity theory of a class of polynomials in three variables and extended affine Weyl groups of type ADE.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rossi, Paolo. "Symplectic Topology, Mirror Symmetry and Integrable systems." Doctoral thesis, SISSA, 2008. http://hdl.handle.net/20.500.11767/4193.

Повний текст джерела
Анотація:
The plan of the work is the following: ² In Chapter 1 we recall, basically from [16] and [14], the ideas and methods of Symplectic Field Theory. Our review will focus on the algebraic structure arising from topology, more than on the geometry underlying it. In particular we de¯ne the SFT analogue of the Gromov-Witten potential as an element in some graded Weyl algebra and consider its properties (grading, master equations, semiclassical limit). We then stress (following [18]) how this algebraic structure allows the appearence of a system of commuting di®erential operators (on the homology of the Weyl algebra) which can be thought of as a system of quantum Hamiltonian PDEs with symmetries. Sometimes this symmetries are many enough to give rise to a complete integrable system (at least at the semiclassical level) and we examine the main examples where this happens. Eventually we review some results of [16] which turn out to be very useful in computations and which we actually employ in the next chapters. ² In Chapter 2 we apply the methods of Symplectic Field Theory to the computation of the Gromov-Witten invariants of target Riemann surfaces. Our computations reproduce the results of [27], [28] which, in principle, solve the theory of target curves, but are fairly more explicit and, above all, clarify the role of the KdV hierarchy in this topological theory. More precisely we are able to describe the full descendant Gromov-Witten potential as the solution to SchrÄodinger equation for a quantum dispersionless KdV system. This quantization of KdV, already appearing in [31], can be easily dealt with in the fermionic formalism to give extremely explicit results, like closed formulae for the Gromov-Witten potential at all genera and given degree. These results where published by the author in [32]. ² In Chapter 3 we use basically the same techniques of Chapter 2 to compute the Gromov- Witten theory of target curves with orbifold points (orbicurves). As in the smooth case, the coe±cient for the Gromov-Witten potential are written in terms of Hurwitz numbers. It turns out that we can even classify those target orbicurves whose potential involves only a ¯nite number of these a priori unknown Hurwitz coe±cients, so that they can be determined using WDVV equations. These polynomial P1-orbifolds are the object of our study for the ¯nal part of this work. Moreover, we extend the theorem by Bourgeois ([4]) about Hamiltonian structures of ¯bration type to allow singular ¯bers (Seifert ¯brations), so that we can use our result on Gromov-Witten invariants of polynomial P1-orbifolds to deduce the SFT-Hamiltonians of the ¯bration. ² In Chapter 4 we completely solve the rational Gromov-Witten problem for polynomial P1-orbifolds. Namely we ¯nd a Landau-Ginzburg model which is mirror symmetric to these spaces. This model consists in a Frobenius manifold structure on the space of what we call for brevity tri-polynomials, i.e. polynomials of three variables of the form ¡xyz + P1(x) + P2(y) + P3(z). The main results here are the explicit construction of the Frobenius manifold structure with closed expressions for °at coordinates and the mirror theorem 4.0.3, i.e. the isomorphism of this Frobenius structure with the one on the quantum cohomology of polynomial P1-orbifolds. From the polynomiality property of the Frobenius potentials involved, one is able to show that there is also a third mirror symmetric partner in the picture, namely the Frobenius manifold associated to extended a±ne Weyl groups of type A, D, E ([12]). The results of these last two chapters appeared in [33]. ² In the Conclusions we summarize our results and analyze possible further developments and directions to be explored.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Krefl, Daniel. "Real Mirror Symmetry and The Real Topological String." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-102832.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Williams, Matthew Michael. "Mirror Symmetry for Non-Abelian Landau-Ginzburg Models." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8560.

Повний текст джерела
Анотація:
We consider Landau-Ginzburg models stemming from non-abelian groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group G*, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit mirror map between the A-model and the B-model state spaces for two examples. Further, we prove that this mirror map is an isomorphism between the untwisted broad sectors and the narrow diagonal sectors in general.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ueda, Kazushi. "Homological mirror symmetry for toric del Pezzo surfaces." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144153.

Повний текст джерела
Анотація:
Kyoto University (京都大学)<br>0048<br>新制・課程博士<br>博士(理学)<br>甲第12069号<br>理博第2963号<br>新制||理||1443(附属図書館)<br>23905<br>UT51-2006-J64<br>京都大学大学院理学研究科数学・数理解析専攻<br>(主査)助教授 河合 俊哉, 教授 齋藤 恭司, 教授 柏原 正樹<br>学位規則第4条第1項該当
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kadir, Shabnam Nargis. "The arithmetic of Calabi-Yau manifolds and mirror symmetry." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Mirror symmetry"

1

Wahab, M. A. Mirror Symmetry. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8361-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kentaro, Hori, ed. Mirror symmetry. Providence, RI: American Mathematical Society, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jinzenji, Masao. Classical Mirror Symmetry. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

1949-, Yau Shing-Tung, ed. Mirror symmetry I. Providence, RI: American Mathematical Society, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1963-, Greene B., and Yau Shing-Tung 1949-, eds. Mirror symmetry II. Providence, RI: American Mathematical Society, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Castaño-Bernard, Ricardo, Yan Soibelman, and Ilia Zharkov, eds. Mirror Symmetry and Tropical Geometry. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/conm/527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cox, David A. Mirror symmetry and algebraic geometry. Providence, R.I: American Mathematical Society, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

1964-, Aspinwall Paul, ed. Dirichlet branes and mirror symmetry. Providence, R.I: American Mathematical Society, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Castano-Bernard, Ricardo, Fabrizio Catanese, Maxim Kontsevich, Tony Pantev, Yan Soibelman, and Ilia Zharkov, eds. Homological Mirror Symmetry and Tropical Geometry. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06514-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Conference on Complex Geometry and Mirror Symmetry (1995 Montréal, Québec). Mirror symmetry III: Proceedings of the Conference on Complex Geometry and Mirror Symmetry, Montréal, 1995. Edited by Phong Duong H. 1953-, Vinet Luc, and Yau Shing-Tung 1949-. Providence, R.I: American Mathematical Society, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Mirror symmetry"

1

Berman, David, Hugo Garcia-Compean, Paulius Miškinis, Miao Li, Daniele Oriti, Steven Duplij, Steven Duplij, et al. "Mirror Symmetry." In Concise Encyclopedia of Supersymmetry, 241. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Talpo, Mattia. "Batyrev Mirror Symmetry." In Springer Proceedings in Mathematics & Statistics, 103–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91626-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cox, David, and Sheldon Katz. "Mirror symmetry constructions." In Mathematical Surveys and Monographs, 53–72. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/surv/068/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Clader, Emily, and Yongbin Ruan. "Mirror Symmetry Constructions." In B-Model Gromov-Witten Theory, 1–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94220-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jinzenji, Masao. "Brief History of Classical Mirror Symmetry." In Classical Mirror Symmetry, 1–26. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jinzenji, Masao. "Basics of Geometry of Complex Manifolds." In Classical Mirror Symmetry, 27–53. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jinzenji, Masao. "Topological Sigma Models." In Classical Mirror Symmetry, 55–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jinzenji, Masao. "Details of B-Model Computation." In Classical Mirror Symmetry, 83–108. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jinzenji, Masao. "Reconstruction of Mirror Symmetry Hypothesis from a Geometrical Point of View." In Classical Mirror Symmetry, 109–40. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Mirror Symmetry." In Visual Symmetry, 5–30. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835321_0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Mirror symmetry"

1

Yan, Qinghui, Ron Ruimy, Arthur Niedermayr, Tomer Bucher, Harel Nahari, Hanan Herzig Sheinfux, Raphael Dahan, et al. "Imprinting Chirality on Free-Electrons by Interaction with Phonon-Polaritons Vortices." In CLEO: Fundamental Science, FW3P.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3p.6.

Повний текст джерела
Анотація:
We experimentally demonstrate the generation of chiral electron beams in an ultrafast transmission electron microscope without the necessity for chiral light or chiral-shaping structures, but by breaking mirror symmetry in the light-electron interaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yoichi, Takumi, Uina Chiba, Rinpei Sasaki, Takeo Minari, Seigo Ohno, and Katsuhiko Miyamoto. "Terahertz spectroscopy and imaging of circular dichroism in chiral metasurfaces." In JSAP-Optica Joint Symposia, 18p_B2_14. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18p_b2_14.

Повний текст джерела
Анотація:
Optical metamaterial elements that break mirror symmetry, such as swastika-shaped lattice structures, have been shown to exhibit chirality in the terahertz (THz) region, which is due to the spiral character of their hierarchical three-dimensional structure. However, in ordinary THz imaging with a linearly polarized beam, it has been difficult to quantify chiral optical characteristics, limiting the ideal design of metamaterials.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ge, Li. "Complex Mirror Symmetry in Optics." In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

HACKING, PAUL, and SEAN KEEL. "MIRROR SYMMETRY AND CLUSTER ALGEBRAS." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Thomas, Richard P. "An Exercise in Mirror Symmetry." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

DE LA OSSA, XENIA. "CALABI-YAU MANIFOLDS AND MIRROR SYMMETRY." In Proceedings of the Tenth General Meeting. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704276_0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lenzi, Silvia, and Rita Lau. "Mirror (a)symmetry far from stability." In 10th Latin American Symposium on Nuclear Physics and Applications. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.194.0035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

KONTSEVICH, MAXIM, and YAN SOIBELMAN. "HOMOLOGICAL MIRROR SYMMETRY AND TORUS FIBRATIONS." In Proceedings of the 4th KIAS Annual International Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799821_0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Katzarkov, Ludmil. "Birational geometry and homological mirror symmetry." In Proceedings of the Australian-Japanese Workshop. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706898_0008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nahm, Werner. "Mirror symmetry and self-duality equations." In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Mirror symmetry"

1

Kachru, Shamit. Mirror Symmetry for Open Strings. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/763790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sin, Sang-Jin. Chiral Rings, Mirror Symmetry and the Fate of Localized Tachyons. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/812956.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chuang, W. A Note on Mirror Symmetry for Manifolds with Spin(7) Holonomy. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/827006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hua, D., and T. Fowler. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/15014290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії