Добірка наукової літератури з теми "MINING ASSOCIATION RULES"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MINING ASSOCIATION RULES".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "MINING ASSOCIATION RULES"

1

Pandey, Sachin. "Multilevel Association Rules in Data Mining." Journal of Advances and Scholarly Researches in Allied Education 15, no. 5 (July 1, 2018): 74–78. http://dx.doi.org/10.29070/15/57517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lu, Songfeng, Heping Hu, and Fan Li. "Mining weighted association rules." Intelligent Data Analysis 5, no. 3 (May 1, 2001): 211–25. http://dx.doi.org/10.3233/ida-2001-5303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Defit, Sarjon. "Intelligent Mining Association Rules." International Journal of Computer Science and Information Technology 4, no. 4 (August 31, 2012): 97–106. http://dx.doi.org/10.5121/ijcsit.2012.4409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Srikant, Ramakrishnan, and Rakesh Agrawal. "Mining generalized association rules." Future Generation Computer Systems 13, no. 2-3 (November 1997): 161–80. http://dx.doi.org/10.1016/s0167-739x(97)00019-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mani, Tushar. "Mining Negative Association Rules." IOSR Journal of Computer Engineering 3, no. 6 (2012): 43–47. http://dx.doi.org/10.9790/0661-0364347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kanimozhi Selvi, C. S., and A. Tamilarasi. "Mining Association rules with Dynamic and Collective Support Thresholds." International Journal of Engineering and Technology 1, no. 3 (2009): 236–40. http://dx.doi.org/10.7763/ijet.2009.v1.44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ali, Nzar Abdulqader. "Finding minimum confidence threshold to avoid derived rules in association rule minin." Journal of Zankoy Sulaimani - Part A 17, no. 4 (August 30, 2015): 271–78. http://dx.doi.org/10.17656/jzs.10443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tan, Jun, and Ying Yong Bu. "Association Rules Mining in Manufacturing." Applied Mechanics and Materials 34-35 (October 2010): 651–54. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.651.

Повний текст джерела
Анотація:
In recent years, manufacturing processes have become more and more complex, manufacturing activities generate large quantities of data, so it is no longer practical to rely on traditional manual methods to analyze this data. Data mining offers tools for extracting knowledge from data, leading to significant improvement in the decision-making process. Association rules mining is one of the most important data mining techniques and has received considerable attention from researchers and practitioners. The paper presents the basic concept of association rule mining and reviews applications of association rules in manufacturing, including product design, manufacturing, process, customer relationship management, supply chain management, and product quality improvement. This paper is focused on demonstrating the relevancy of association rules mining to manufacturing industry, rather than discussing the association rules mining domain in general.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kazienko, Przemysław. "Mining Indirect Association Rules for Web Recommendation." International Journal of Applied Mathematics and Computer Science 19, no. 1 (March 1, 2009): 165–86. http://dx.doi.org/10.2478/v10006-009-0015-5.

Повний текст джерела
Анотація:
Mining Indirect Association Rules for Web RecommendationClassical association rules, here called "direct", reflect relationships existing between items that relatively often co-occur in common transactions. In the web domain, items correspond to pages and transactions to user sessions. The main idea of the new approach presented is to discover indirect associations existing between pages that rarely occur together but there are other, "third" pages, called transitive, with which they appear relatively frequently. Two types of indirect associations rules are described in the paper: partial indirect associations and complete ones. The former respect single transitive pages, while the latter cover all existing transitive pages. The presented IDARM* Algorithm extracts complete indirect association rules with their important measure—confidence—using pre-calculated direct rules. Both direct and indirect rules are joined into one set of complex association rules, which may be used for the recommendation of web pages. Performed experiments revealed the usefulness of indirect rules for the extension of a typical recommendation list. They also deliver new knowledge not available to direct ones. The relation between ranking lists created on the basis of direct association rules as well as hyperlinks existing on web pages is also examined.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Han, Jianchao, and Mohsen Beheshti. "Discovering Both Positive and Negative Fuzzy Association Rules in Large Transaction Databases." Journal of Advanced Computational Intelligence and Intelligent Informatics 10, no. 3 (May 20, 2006): 287–94. http://dx.doi.org/10.20965/jaciii.2006.p0287.

Повний текст джерела
Анотація:
Mining association rules is an important task of dara mining and knowledge discovery. Traditional association rules mining is built on transaction databases, which has some limitations. Two of these limitations are 1) each transaction merely contains binary items, meaning that an item either occurs in a transaction or not; 2) only positive association rules are discovered, while negative associations are ignored. Mining fuzzy association rules has been proposed to address the first limitation, while mining algorithms for negative association rules have been developed to resolve the second limitation. In this paper, we combine these two approaches to propose a novel approach for mining both positive and negative fuzzy association rules. The interestingness measure for both positive and negative fuzzy association rule is proposed, the algorithm for mining these rules is described, and an illustrative example is presented to demonstrate how the measure and the algorithm work.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "MINING ASSOCIATION RULES"

1

Cai, Chun Hing. "Mining association rules with weighted items." Hong Kong : Chinese University of Hong Kong, 1998. http://www.cse.cuhk.edu.hk/%7Ekdd/assoc%5Frule/thesis%5Fchcai.pdf.

Повний текст джерела
Анотація:
Thesis (M. Phil.)--Chinese University of Hong Kong, 1998.
Description based on contents viewed Mar. 13, 2007; title from title screen. Includes bibliographical references (p. 99-103). Also available in print.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhou, Zequn. "Maintaining incremental data mining association rules." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ62311.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Goulbourne, Graham. "Tree algorithms for mining association rules." Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250218.

Повний текст джерела
Анотація:
With the increasing reliability of digital communication, the falling cost of hardware and increased computational power, the gathering and storage of data has become easier than at any other time in history. Commercial and public agencies are able to hold extensive records about all aspects of their operations. Witness the proliferation of point of sale (POS) transaction recording within retailing, digital storage of census data and computerized hospital records. Whilst the gathering of such data has uses in terms of answering specific queries and allowing visulisation of certain trends the volumes of data can hide significant patterns that would be impossible to locate manually. These patterns, once found, could provide an insight into customer behviour, demographic shifts and patient diagnosis hitherto unseen and unexpected. Remaining competitive in a modem business environment, or delivering services in a timely and cost effective manner for public services is a crucial part of modem economics. Analysis of the data held by an organisaton, by a system that "learns" can allow predictions to be made based on historical evidence. Users may guide the process but essentially the software is exploring the data unaided. The research described within this thesis develops current ideas regarding the exploration of large data volumes. Particular areas of research are the reduction of the search space within the dataset and the generation of rules which are deduced from the patterns within the data. These issues are discussed within an experimental framework which extracts information from binary data.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Koh, Yun Sing, and n/a. "Generating sporadic association rules." University of Otago. Department of Computer Science, 2007. http://adt.otago.ac.nz./public/adt-NZDU20070711.115758.

Повний текст джерела
Анотація:
Association rule mining is an essential part of data mining, which tries to discover associations, relationships, or correlations among sets of items. As it was initially proposed for market basket analysis, most of the previous research focuses on generating frequent patterns. This thesis focuses on finding infrequent patterns, which we call sporadic rules. They represent rare itemsets that are scattered sporadically throughout the database but with high confidence of occurring together. As sporadic rules have low support the minabssup (minimum absolute support) measure was proposed to filter out any rules with low support whose occurrence is indistinguishable from that of coincidence. There are two classes of sporadic rules: perfectly sporadic and imperfectly sporadic rules. Apriori-Inverse was then proposed for perfectly sporadic rule generation. It uses a maximum support threshold and user-defined minimum confidence threshold. This method is designed to find itemsets which consist only of items falling below a maximum support threshold. However imperfectly sporadic rules may contain items with a frequency of occurrence over the maximum support threshold. To look for these rules, variations of Apriori-Inverse, namely Fixed Threshold, Adaptive Threshold, and Hill Climbing, were proposed. However these extensions are heuristic. Thus the MIISR algorithm was proposed to find imperfectly sporadic rules using item constraints, which capture rules with a single-item consequent below the maximum support threshold. A comprehensive evaluation of sporadic rules and current interestingness measures was carried out. Our investigation suggests that current interestingness measures are not suitable for detecting sporadic rules.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pray, Keith A. "Apriori Sets And Sequences: Mining Association Rules from Time Sequence Attributes." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0506104-150831/.

Повний текст джерела
Анотація:
Thesis (M.S.) -- Worcester Polytechnic Institute.
Keywords: mining complex data; temporal association rules; computer system performance; stock market analysis; sleep disorder data. Includes bibliographical references (p. 79-85).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

王漣 and Lian Wang. "A study on quantitative association rules." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31223588.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Lian. "A study on quantitative association rules /." Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B2118561X.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhu, Hua. "On-line analytical mining of association rules." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ37678.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wu, Jingtong. "Interpretation of association rules with multi-tier granule mining." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/71455/1/Jing_Wu_Thesis.pdf.

Повний текст джерела
Анотація:
This study was a step forward to improve the performance for discovering useful knowledge – especially, association rules in this study – in databases. The thesis proposed an approach to use granules instead of patterns to represent knowledge implicitly contained in relational databases; and multi-tier structure to interpret association rules in terms of granules. Association mappings were proposed for the construction of multi-tier structure. With these tools, association rules can be quickly assessed and meaningless association rules can be justified according to the association mappings. The experimental results indicated that the proposed approach is promising.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Delpisheh, Elnaz, and University of Lethbridge Faculty of Arts and Science. "Two new approaches to evaluate association rules." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science, c2010, 2010. http://hdl.handle.net/10133/2530.

Повний текст джерела
Анотація:
Data mining aims to discover interesting and unknown patterns in large-volume data. Association rule mining is one of the major data mining tasks, which attempts to find inherent relationships among data items in an application domain, such as supermarket basket analysis. An essential post-process in an association rule mining task is the evaluation of association rules by measures for their interestingness. Different interestingness measures have been proposed and studied. Given an association rule mining task, measures are assessed against a set of user-specified properties. However, in practice, given the subjectivity and inconsistencies in property specifications, it is a non-trivial task to make appropriate measure selections. In this work, we propose two novel approaches to assess interestingness measures. Our first approach utilizes the analytic hierarchy process to capture quantitatively domain-dependent requirements on properties, which are later used in assessing measures. This approach not only eliminates any inconsistencies in an end user’s property specifications through consistency checking but also is invariant to the number of association rules. Our second approach dynamically evaluates association rules according to a composite and collective effect of multiple measures. It interactively snapshots the end user’s domain- dependent requirements in evaluating association rules. In essence, our approach uses neural networks along with back-propagation learning to capture the relative importance of measures in evaluating association rules. Case studies and simulations have been conducted to show the effectiveness of our two approaches.
viii, 85 leaves : ill. ; 29 cm
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "MINING ASSOCIATION RULES"

1

Kaninis, A. Concurrent Mining of Association Rules. Manchester: UMIST, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dass, Rajanish. Classification using association rules. Ahmedabad: Indian Institute of Management, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Adamo, Jean-Marc. Data Mining for Association Rules and Sequential Patterns. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0085-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

1977-, Zhao Yanchang, Zhang Chengqi 1957-, and Cao Longbing 1969-, eds. Post-mining of association rules: Techniques for effective knowledge extraction. Hershey, PA: Information Science Reference, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms. New York, NY: Springer New York, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Chengqi, and Shichao Zhang, eds. Association Rule Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46027-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gkoulalas-Divanis, Aris, and Vassilios S. Verykios. Association Rule Hiding for Data Mining. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6569-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gkoulalas-Divanis, Aris. Association rule hiding for data mining. New York: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kazienko, Przemysław. Associations: Discovery, analysis and applications. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1978-, Koh Yun Sing, and Rountree Nathan 1974-, eds. Rare association rule mining and knowledge discovery: Technologies for infrequent and critical event detection. Hershey, PA: Information Science Reference, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "MINING ASSOCIATION RULES"

1

Atkinson-Abutridy, John. "Association Rules Mining." In Text Analytics, 91–104. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003280996-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Antonie, Luiza, Jundong Li, and Osmar Zaiane. "Negative Association Rules." In Frequent Pattern Mining, 135–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07821-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Höppner, Frank. "Association Rules." In Data Mining and Knowledge Discovery Handbook, 299–319. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-09823-4_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ventura, Sebastián, and José María Luna. "Class Association Rules." In Supervised Descriptive Pattern Mining, 99–128. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98140-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Tao. "Association Rules." In Knowledge Discovery and Data Mining. Current Issues and New Applications, 245–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45571-x_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Triantaphyllou, Evangelos. "Mining of Association Rules." In Data Mining and Knowledge Discovery via Logic-Based Methods, 241–55. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1630-3_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bembenik, Robert, and Grzegorz Protaziuk. "Mining Spatial Association Rules." In Intelligent Information Processing and Web Mining, 3–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39985-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hamano, Shinichi, and Masako Sato. "Mining Indirect Association Rules." In Advances in Data Mining, 106–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30185-1_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Bing. "Association Rules and Sequential Patterns." In Web Data Mining, 17–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19460-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dehaspe, Luc, and Hannu Toivonen. "Discovery of Relational Association Rules." In Relational Data Mining, 189–212. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04599-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "MINING ASSOCIATION RULES"

1

Li, Jiuyong, Thuc Duy Le, Lin Liu, Jixue Liu, Zhou Jin, and Bingyu Sun. "Mining Causal Association Rules." In 2013 IEEE 13th International Conference on Data Mining Workshops (ICDMW). IEEE, 2013. http://dx.doi.org/10.1109/icdmw.2013.88.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chan, Keith C. C., and Wai-Ho Au. "Mining fuzzy association rules." In the sixth international conference. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/266714.266898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lee, Yue-Shi, and Show-Jane Yen. "Mining Utility Association Rules." In ICCAE 2018: 2018 10th International Conference on Computer and Automation Engineering. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3192975.3192987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Selmane, Sid Ali, Rokia Missaoui, Omar Boussaid, and Fadila Bentayeb. "Mining Triadic Association Rules." In Second International Conference on Advanced Information Technologies and Applications. Academy & Industry Research Collaboration Center (AIRCC), 2013. http://dx.doi.org/10.5121/csit.2013.3825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jabas, Ahmad, Rama M. Garimella, and S. Ramachandram. "MANET mining: Mining step association rules." In 2008 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS). IEEE, 2008. http://dx.doi.org/10.1109/mahss.2008.4660089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jabas, Ahmad, Rama Murtty Garimella, and Sirandas Ramachandram. "MANET Mining: Mining Temporal Association Rules." In 2008 IEEE International Symposium on Parallel and Distributed Processing with Applications. IEEE, 2008. http://dx.doi.org/10.1109/ispa.2008.66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ras, Zbigniew W., Agnieszka Dardzinska, Li-Shiang Tsay, and Hanna Wasyluk. "Association Action Rules." In 2008 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2008. http://dx.doi.org/10.1109/icdmw.2008.66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nahm, Un Yong, and Raymond J. Mooney. "Mining soft-matching association rules." In the eleventh international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/584792.584918.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Olson, David L., and Yanhong Li. "Mining Fuzzy Weighted Association Rules." In Proceedings of the 40th Annual Hawaii International Conference on System Sciences. IEEE, 2007. http://dx.doi.org/10.1109/hicss.2007.341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Goethals, Bart, Juho Muhonen, and Hannu Toivonen. "Mining Non-Derivable Association Rules." In Proceedings of the 2005 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2005. http://dx.doi.org/10.1137/1.9781611972757.22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії