Добірка наукової літератури з теми "Minerals in New South Wales"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Minerals in New South Wales".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Minerals in New South Wales"

1

Hendrickx, Marc. "Fibrous Tremolite in Central New South Wales, Australia." Environmental and Engineering Geoscience 26, no. 1 (February 20, 2020): 73–77. http://dx.doi.org/10.2113/eeg-2273.

Повний текст джерела
Анотація:
ABSTRACT Tremolite schists in Ordovician meta-volcanic units in central New South Wales (NSW) consist of fine fibrous tremolite-actinolite. They host tremolite asbestos occurrences, and small quantities of asbestos were mined from narrow vein deposits in central NSW during the last century. When pulverized, the tremolite schist releases mineral fragments that fall into the classification range for countable mineral fibers and may be classed as asbestos despite not having an asbestiform habit. The ambiguity in classification of this type of natural material raises significant health and safety, legal, and environmental issues that require clarification. While the health effects of amphibole asbestos fibers are well known, the consequences of exposure to non-asbestiform, fibrous varieties is not well studied. This group of elongated mineral particles deserves more attention due to their widespread occurrence in metamorphic rocks in Australia. Toxicological studies are needed to assess the health risks associated with disturbance of these minerals during mining, civil construction, forestry, and farming practices.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Birch, W. D. "Zinc-manganese carbonates from Broken Hill, New South Wales." Mineralogical Magazine 50, no. 355 (March 1986): 49–53. http://dx.doi.org/10.1180/minmag.1986.050.355.07.

Повний текст джерела
Анотація:
AbstractSpecimens of honey-brown to pinkish-brown globular carbonates encrusting concretionary goethite–coronadite from the oxidized zone at Broken Hill, New South Wales, have compositions in the rhodochrosite–smithsonite series. This may be the first extensive natural occurrence of this solid-solution series. Growth of the carbonates occurred in zones which have near uniform composition. The ratio MnCO3/(MnCO3 + ZnCO3) for each zone bears a linear relationship to the measured d spacing for the 104 X-ray reflections. Because cerussite is the only other mineral associated with the Zn-Mn carbonates and because of an absence of detailed locality information, the paragenetic significance of these minerals cannot be determined. The solutions depositing them may have been derived from the near-surface equivalents of the Zinc Lode horizons.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Williams, M. L., and P. F. Carr. "Isotope systematics of secondary minerals from the Prospect Intrusion, New South Wales." Australian Journal of Earth Sciences 52, no. 6 (December 2005): 799–806. http://dx.doi.org/10.1080/08120090500302293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Singh, Balwant, and Susan Heffernan. "Layer charge characteristics of smectites from Vertosols (Vertisols) of New South Wales." Soil Research 40, no. 7 (2002): 1159. http://dx.doi.org/10.1071/sr02017.

Повний текст джерела
Анотація:
Premature senescence in cotton has been attributed to K deficiency in the cotton soils of Australia. The availability, release, and fixation of K+ in soils are mainly dependent on the clay mineralogy and layer charge characteristics of 2 : 1 clay minerals. There is a little information on the mineralogy and charge characteristics of the cotton growing soils (Vertosols) of Australia. The aims of this study were to determine the clay mineralogy, the layer charge density, and layer charge distribution of some cotton growing soils by chemical and X-ray diffraction methods.Most soil clays contain abundant smectite associated with small amounts of mica, kaolinite, and an interstratified mineral. The total layer charge as determined by the alkylammonium method ranged between 0.55 and 0.67 mol(–)/(O10(OH)2), indicating a high interlayer charge density. The layer charge of smectites from different valleys and for different size fractions was similar. The Greene-Kelly test showed that most of the charge originated in the tetrahedral sheet. The chemical analysis indicates that the smectite is an iron-rich beidellite, which has possibly formed from the weathering of mica.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Birch, W. D., E. A. J. Burke, V. J. Wall, and M. A. Etheridge. "Ecandrewsite, the zinc analogue of ilmenite, from Little Broken Hill, New South Wales, Australia, and the San Valentin Mine, Sierra de Cartegena, Spain." Mineralogical Magazine 52, no. 365 (April 1988): 237–40. http://dx.doi.org/10.1180/minmag.1988.052.365.10.

Повний текст джерела
Анотація:
AbstractEcandrewsite, the zinc analogue of ilmenite, is a new mineral which was first described from the Broken Hill lode in 1970 and discovered subsequently in ores from Little Broken Hill (New South Wales) and the San Valentin Mine, Spain. The name ‘ecandrewsite’ was used in a partial description of the mineral in ‘Minerals of Broken Hill’ (1982), thereby establishing the Little Broken Hill locality, specifically the Melbourne Rockwell Mine, as the type locality. Microprobe analysis of ecandrewsite from the type locality gave ZnO 30.42 (wt.%), FeO (total Fe) 11.37, MnO 7.64, TiO2 50.12, total 99.6%, yielding an empirical formula of (Zn0.59Fe0.24Mn0.17)1.00Ti0.99O3 based on 3 oxygen atoms. All compositions from Little Broken Hill and the San Valentin Mine are ferroan manganoan ecandrewsite. The strongest lines in the X-ray powder diffraction data are (d in Å, (hkil), I/Io):2.746, (104), 100; 2.545, (110), 80; 1.867, (024), 40; 3.734, (012), 30; 1.470, (3030), 30; 1.723, (116), 25. Ecandrewsite is hexagonal, space group RR3¯ assigned from a structural study, with a = 5.090(1), c = 14.036(2)Å, V = 314.6(3)Å3, Z = 6, D(calc.) = 4.99. The mineral is opaque, dark brown to black with a similar streak, and a submetallic lustre. In plane polarized light the reflection colour is greyish white with a pinkish tinge. Reflection pleochroism is weak, but anisotropism is strong with colours from greenish grey to dark brownish grey. Reflectance data in air between 470 and 650 nm are given. At the type locality, ecandrewsite forms disseminated tabular euhedral grains up to 250 × 50 µm, in quartz-rich metasediments. Associated minerals include almandine-spessartine, ferroan gahnite and rutile. The name is for E. C. Andrews, pioneering geologist in the Broken Hill region of New South Wales. Type material consisting of one grain is preserved in the Museum of Victoria (M35700). The mineral and name were approved by the IMA Commission on New Minerals and Mineral Names in 1979.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Elliott, P., P. Turner, P. Jensen, U. Kolitsch, and A. Pring. "Description and crystal structure of nyholmite, a new mineral related to hureaulite, from Broken Hill, New South Wales, Australia." Mineralogical Magazine 73, no. 5 (October 2009): 723–35. http://dx.doi.org/10.1180/minmag.2009.073.5.723.

Повний текст джерела
Анотація:
AbstractNyholmite, Cd3Zn2(AsO3OH)2(AsO4)2·4H2O, from the Block 14 Opencut, Broken Hill, New South Wales, Australia, is a new Cd-Zn arsenate species, isostructural with the minerals of the hureaulite group. The mineral occurs in a quartz-garnet-arsenopyrite matrix as white globules, tufted aggregates of fibrous crystals and radiating hemispheres of thin, colourless, bladed crystals. Associated minerals are goldquarryite, lavendulan-sampleite, scorodite-strengite and gypsum. Individual crystals are up to 0.2 mm in length and 0.05 mm across. The mineral is transparent to translucent with a vitreous lustre. It is brittle with an uneven fracture and a white streak. The Mohs hardness is 3–3.5 and the calculated density is 4.23 g cm–3 for the empirical formula. Electron microprobe analyses yielded CdO 34.58, ZnO 9.72, MnO 3.59, CuO 3.39, Al2O3 0.20, CaO 0.16, PbO 0.37, As2O5 34.55, P2O5 6.29 totalling 92.85 wt.%. The empirical formula, based on 20 oxygen atoms, is Ca0.03Pb0.02 Cd2.80Al0.04Zn1.24-Cu0.44Mn0.53[(AsO4)3.13(PO4)0.92]Σ4.05H1.91·3.79H2O. Nyholmite is monoclinic, C2/c, a = 18.062(4) Å, b = 9.341(2) Å, c = 9.844(2) Å, β = 96.17(3)°, V = 1651.2(6) Å3 (single-crystal data, at 123 K). The six strongest lines in the X-ray powder diffraction pattern are [d(Å),I,(hkl)]: 8.985,30,(200); 8.283,85,(110); 6.169,25,(111); 4.878,25,(002); 3.234,100,(2, 420); 3.079,65,(222, 511); 2.976’45’(113). The crystal structure was solved by Patterson methods and refined using 2045 observed reflections to R1(F) = 3.73%. The structure is characterized by a kinked, five-membered chain of edge-sharing Mφ6 (φ = unspecified anion) octahedra, or pentamer, that extends in the a direction. The pentamers link by sharing corners to form a sheet in the (001) plane. Pentamers are also linked, via corner-sharing, by (As,P)O4 groups forming thick slabs in the (001) plane. The slabs link in the c direction by cornersharing between octahedra and tetrahedra to form a dense heteropolyhedral framework. Moderate to weak hydrogen-bonding provides additional linkage between the slabs.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bramley, E., I. J. Lean, W. J. Fulkerson, and N. D. Costa. "Feeding management and feeds on dairy farms in New South Wales and Victoria." Animal Production Science 52, no. 1 (2012): 20. http://dx.doi.org/10.1071/an11214.

Повний текст джерела
Анотація:
Feeding practices in Australian dairy herds were recorded in 100 dairy herds in five districts of two states. A questionnaire about the feeding practices was completed and pasture samples were also collected, where applicable, for analysis. Data and pasture samples were collected once from each farm with visits to regions occurring at different times of the year. Diets were evaluated for nutritional adequacy using the CPM Dairy program. Average milk yield on the day of sampling was 22.8 L/day. The combination of grazed pasture with grain fed during milking was the most prevalent feeding system (54%) in all areas. This was followed by combination of pelleted grain/by-products combined with pasture grazing (25%). Only one herd in the study was not feeding any form of concentrates at the time of sampling. The estimated percentage of concentrate in the diet ranged from 25% ± 11.6 to 44% ± 12.0. Wheat, which was fed at up to 9.8 kg/cow.day DM was the most prevalent grain in all areas, except for Gippsland. The predominant sources of protein in all areas were canola meal, cottonseed meal and lupins. By-products were prevalent, with brewers grain and wheat millrun the most commonly used, fed at 2.8 and 1.6 kg/cow.day DM, respectively. Most farms (81/100) incorporated at least one type of ‘buffer’ in the ration, and limestone (67%) was the most prevalent mineral additive. Monensin and virginiamycin were fed in all areas, with a varying prevalence. Feeding or dose rates used for minerals and rumen modifiers were not always appropriate to those recommended for mineral needs or control of rumen function. This paper demonstrated that a wide variety of feeding systems are used in Australian dairy herds and provides information on nutritive characteristics of pastures.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kawachi, Y., P. M. Ashley, D. Vince, and M. Goodwin. "Sugilite in manganese silicate rocks from the Hoskins mine and Woods mine, New South Wales, Australia." Mineralogical Magazine 58, no. 393 (December 1994): 671–77. http://dx.doi.org/10.1180/minmag.1994.058.393.18.

Повний текст джерела
Анотація:
AbstractSugilite relatively rich in manganese has been found at two new localities, the Hoskins and Woods mines in New South Wales, Australia. The occurrences are in manganese-rich silicate rocks of middle to upper greenschist facies (Hoskins mine) and hornblende hornfels facies (Woods mine). Coexisting minerals are members of the namansilite-aegirine and pectolite-serandite series, Mn-rich alkali amphiboles, alkali feldspar, braunite, rhodonite, tephroite, albite, microcline, norrishite, witherite, manganoan calcite, quartz, and several unidentified minerals. Woods mine sugilite is colour-zoned with pale mauve cores and colourless rims, whereas Hoskins mine sugilite is only weakly colour-zoned and pink to mauve. Within single samples, the chemical compositions of sugilite from both localities show wide ranges in Al contents and less variable ranges of Fe and Mn, similar to trends in sugilite from other localities. The refractive indices and cell dimensions tend to show systematic increases progressing from Al-rich to Fe-Mn-rich. The formation of the sugilite is controlled by the high alkali (especially Li) and manganese contents of the country rock, reflected in the occurrences of coexisting high alkali- and manganese-bearing minerals, and by high fo2 conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ellis, D. J., and M. Obata. "Migmatite and melt segregation at Cooma, New South Wales." Earth and Environmental Science Transactions of the Royal Society of Edinburgh 83, no. 1-2 (1992): 95–106. http://dx.doi.org/10.1017/s0263593300007781.

Повний текст джерела
Анотація:
ABSTRACTThe Cooma Complex of southeastern New South Wales comprises an andalusite-bearing S-type granodiorite surrounded by migmatites and low-pressure metamorphosed pelitic and psammitic sediments. The migmatite formed by the melting reaction:Biotite + Andalusite + K-feldspar + Quartz + V = Cordierite + Liquidat about 350–400 MPa , 670-730°C.The melanosome consists of biotite + cordierite + andalusite + K-feldspar + plagioclase + quartz + ilmenite, whereas the leucosome consists of cordierite + K-feldspar + quartz with extremely rare biotite and plagioclase. In a closed system, freezing of the leucosome melt patches should have resulted in cordierite back-reaction with melt to produce biotite and andalusite. The virtually anhydrous mineralogy of the leucosome patches, lack of cordierite reaction and the absence of biotite selvedges at the leucosome-melanosome contacts, indicates that the melt did not completely solidify in situ. These observations can be explained by an initial peritectic melting reaction in the migmatite being arrested from back-reaction upon cooling because of the removal of hydrous melt, enabling leucosome cordierite to escape back-reaction. We propose that the melanosome is the residue of partial melting but that the leucosome patches do not represent frozen melt segregations but rather the liquidus minerals (cumulates) which precipitated from the melt.In the restite-rich granodiorite from the core of the Cooma Complex, cordierite of similar composition to that in the migmatite has reaction rims of biotite and andalusite and there are coexisting biotite and andalusite in the matrix. The granodiorite consisted of about 50 wt% melt together with resite biotite, quartz and plagioclase, which can possibly be identified in the surrounding migmatite. Previous work suggested that the Cooma Granodiorite can be derived from a mixture of the surrounding metasediments which are of similar composition in the high and low-grade areas surrounding the granodiorite. Re-examinatibn of those data shows that the high-grade metasediments are more An-rich than the low-grade rocks. The Cooma Granodiorite is very similar to the high-grade rocks in terms of Or-Ab-An ratio. This suggests derivation of the Cooma Granodiorite from the high-grade rocks and not from the relatively An-poor low-grade rocks which are typical of exposed sediments in the Lachlan Fold Belt. It is most likely that the granodiorite and envelope of high-grade rocks have been emplaced into the compositionally different lower grade rocks from slightly greater depths.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chartres, CJ. "A preliminary investigation of hardpan horizons in north-west New South Wales." Soil Research 23, no. 3 (1985): 325. http://dx.doi.org/10.1071/sr9850325.

Повний текст джерела
Анотація:
Micromorphological, scanning electron microscope, electron microprobe, X-ray diffraction and chemical analyses of morphologically differing hardpan horizons show a wide range of constituent materials and interparticle cements. A number of different fabric elements occur within the hardpans. These include porphyroskelic zones with amorphous silica in the s-matrix, zones composed almost entirely of amorphous silica, chlamydic zones with clay coatings on skeleton grains, and zones of calcareous material filling fissures. A further porphyroskelic fabric type, in which the plasma consists of strongly oriented clay intimately mixed with isotropic material containing amorphous silica, was also recognized in one type of hardpan. Amorphous silica is the cementing agent within some of the fabric zones identified, but in the chlamydic zones, at least, clay minerals enriched in silica, iron and titanium, and depleted in aluminium, appear to be the cementing medium. Micromorphological evidence indicates a complex development of the hardpans with alternating phases of silica, clay and carbonate deposition.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Minerals in New South Wales"

1

Ackerman, Benjamin R. "Regolith geochemical exploration in the Girilambone District of New South Wales." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20051027.095334/index.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Whiteley, Robert School of Mines UNSW. "Electrical and seismic responses of shallow, volcanogenic, massive sulphide ore deposits." Awarded by:University of New South Wales. School of Mines, 1986. http://handle.unsw.edu.au/1959.4/28078.

Повний текст джерела
Анотація:
SP, resistivity/IP and seismic refraction responses of the Woodlawn Orebody and Mt.Bulga Deposit are examined and compared. Both exhibit similar responses produced mainly by uneconomic and disseminated sulphide mineralization and host rock features, demonstrating that the magnitude and character of electrical and seismic responses are not reliable indicators of size and economic sulphide content of volcanogenic sulphide ores. SP, soil geochemistry and electrogeochemistry are found to be the most effective exploration methods followed by resistivity/IP and seismic refraction. The large SP responses over both ore zones are simulated using new methods which allowed the width and depth of oxidation to be computed. Conventional and compensation array resistivity responses best define the deposits. Computer simulation shows that dipole- dipole and Unipole arrays are most useful. First order IP responses are large and similar, but the ore zones are not easily distinguished from polarizable host rocks. Second order responses, at Woodlawn, better define these lithologies and cross-plots of EM coupling removed first order parameters prove useful. The supergene and gossan zones are defined as sources of electrical anomalies and correlate with interpreted SP sources. Seismic velocities of fresh Woodlawn ore samples indicate only small contrasts with host rocks. Refraction travel-time data are highly complex but host rocks are clearly distinguished by their seismic velocities. Both deposits appear as low velocity zones at the general bedrock level which are shallower and narrower than the electrical sources associated with the ore zones. Extensive model simulation shows that the Reciprocal interpretation method is most useful when compared to other time- term methods for refraction interpretation but has some limitations. Computer simulation shows the significance of non- critical refractions, diffractions and laterally hidden zones which define the lateral resolution of the refraction method. The results of this study and the interpretative techniques developed will assist the exploration for similar and deeper massive volcanogenic orebodies in comparable geological environments.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mouat, Jeremy. "Mining in the settler dominions : a comparative study of the industry in three communities from the 1880s to the First World War." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/29037.

Повний текст джерела
Анотація:
This dissertation examines the evolution of the mining industry in three British dominions during the late nineteenth and early twentieth centuries. Adopting a case study approach, it describes the establishment and growth of mining in Rossland, British Columbia; Broken Hill, New South Wales; and Waihi, New Zealand. Separate chapters trace developments in each area, focussing on the emergence of organised labour, the growth of mining companies and the sophistication of mining operations. These underline the need to consider diverse themes, maintaining that the mining industry's pattern of growth can be understood only by adopting such a broad approach. Following the three case studies, the final chapters of the dissertation offer a comparative analysis of Rossland, Waihi and Broken Hill. The study emphasises the similarities of these three communities, especially the cycle of growth, and identifies a crucial common denominator. Despite differences in climate, in the type and nature of the ore deposit and in the scale of mining activity, all three areas experienced a common trajectory of initial boom followed by subsequent retrenchment. The changing character of the resource base forced this fundamental alteration of productive relations. In each region, the mineral content of the ore declined as the mines went deeper. In addition, with depth the ore tended to become more difficult to treat. Faced with a decline in the value of the product of their mines, companies had to adopt sweeping changes in order to maintain profitable operations. This re-structuring was accomplished in a variety of ways, but the most significant factors, common to Rossland, Broken Hill and Waihi, were the heightened importance of applied science and economies of scale. Both developments underlined the growing importance of the mining engineer and technological innovations, principally in milling and smelting operations. In addition, new non-selective extractive techniques reduced the significance of skilled underground labour. The re-structuring of the industry not only had similar causes but also had a similar effect. The comparative chapter on labour relations, for example, argues that these managerial initiatives were closely associated with militant episodes in each community. While the leading companies in Rossland, Waihi and Broken Hill successfully reduced their working costs, they all faced the same ultimate end. Their long-term success or failure reflected the skill with which they coped with the inevitable depletion of their ore body. The common experience of Rossland, Waihi and Broken Hill demonstrates the importance of placing colonial development within a larger context. Regional historians should make greater use of the comparative approach, rather than continuing to focus on the unique and the particular.
Arts, Faculty of
History, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Washburn, Malissa. "Architecture of the Silurian sedimentary cover sequence in the Cadia porphyry Au-Cu district, NSW, Australia : implications for post-mineral deformation." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1064.

Повний текст джерела
Анотація:
Alkalic porphyry style Au-Cu deposits of the Cadia district are associated with Late-Ordovician monzonite intrusions, which were emplaced during the final phase of Macquarie Arc magmatism at the end of the Benambran Orogeny. N-striking faults, including the curviplanar, northerly striking, moderately west-dipping basement thrust faults of the Cadiangullong system, developed early in the district history. NE-striking faults formed during rifting in the late Silurian. Subsequent E-W directed Siluro- Devonian extension followed by regional E-W shortening during the Devonian Tabberabberan Orogeny dismembered these intrusions, thereby superposing different levels porphyry Au-Cu systems as well as the host stratigraphy. During the late Silurian, the partially exhumed porphyry systems were buried beneath the Waugoola Group sedimentary cover sequence, which is generally preserved in the footwall of the Cadiangullong thrust fault system. The Waugoola Group is a typical rift-sag sequence, deposited initially in local fault-bounded basins which then transitioned to a gradually shallowing marine environment as local topography was overwhelmed. Basin geometry was controlled by pre-existing basement structures, which were subsequently inverted during the Devonian Tabberabberan Orogeny, offsetting the unconformity by up to 300m vertically. In the Waugoola Group cover, this shortening was accommodated via a complex network of minor detachments that strike parallel to major underlying basement faults. For this reason, faults and folds measured at the surface in the sedimentary cover can be used as a predictive tool to infer basement structures at depth.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rowling, Jill. "Cave Aragonites of New South Wales." University of Sydney. Geosciences, 2004. http://hdl.handle.net/2123/694.

Повний текст джерела
Анотація:
Abstract Aragonite is a minor secondary mineral in many limestone caves throughout the world. It has been claimed that it is the second-most common cave mineral after calcite (Hill & Forti 1997). Aragonite occurs as a secondary mineral in the vadose zone of some caves in New South Wales. Aragonite is unstable in fresh water and usually reverts to calcite, but it is actively depositing in some NSW caves. A review of current literature on the cave aragonite problem showed that chemical inhibitors to calcite deposition assist in the precipitation of calcium carbonate as aragonite instead of calcite. Chemical inhibitors work by physically blocking the positions on the calcite crystal lattice which would have otherwise allowed calcite to develop into a larger crystal. Often an inhibitor for calcite has no effect on the aragonite crystal lattice, thus aragonite may deposit where calcite deposition is inhibited. Another association with aragonite in some NSW caves appears to be high evaporation rates allowing calcite, aragonite and vaterite to deposit. Vaterite is another unstable polymorph of calcium carbonate, which reverts to aragonite and calcite over time. Vaterite, aragonite and calcite were found together in cave sediments in areas with low humidity in Wollondilly Cave, Wombeyan. Several factors were found to be associated with the deposition of aragonite instead of calcite speleothems in NSW caves. They included the presence of ferroan dolomite, calcite-inhibitors (in particular ions of magnesium, manganese, phosphate, sulfate and heavy metals), and both air movement and humidity. Aragonite deposits in several NSW caves were examined to determine whether the material is or is not aragonite. Substrates to the aragonite were examined, as was the nature of the bedrock. The work concentrated on Contact Cave and Wiburds Lake Cave at Jenolan, Sigma Cave, Wollondilly Cave and Cow Pit at Wombeyan and Piano Cave and Deep Hole (Cave) at Walli. Comparisons are made with other caves. The study sites are all located in Palaeozoic rocks within the Lachlan Fold Belt tectonic region. Two of the sites, Jenolan and Wombeyan, are close to the western edge of the Sydney Basin. The third site, Walli, is close to a warm spring. The physical, climatic, chemical and mineralogical influences on calcium carbonate deposition in the caves were investigated. Where cave maps were unavailable, they were prepared on site as part of the study. %At Jenolan Caves, Contact Cave and Wiburds Lake Cave were examined in detail, %and other sites were compared with these. Contact Cave is located near the eastern boundary of the Late Silurian Jenolan Caves Limestone, in an area of steeply bedded and partially dolomitised limestone very close to its eastern boundary with the Jenolan volcanics. Aragonite in Contact Cave is precipitated on the ceiling as anthodites, helictites and coatings. The substrate for the aragonite is porous, altered, dolomitised limestone which is wedged apart by aragonite crystals. Aragonite deposition in Contact Cave is associated with a concentration of calcite-inhibiting ions, mainly minerals containing ions of magnesium, manganese and to a lesser extent, phosphates. Aragonite, dolomite and rhodochrosite are being actively deposited where these minerals are present. Calcite is being deposited where minerals containing magnesium ions are not present. The inhibitors appear to be mobilised by fresh water entering the cave as seepage along the steep bedding and jointing. During winter, cold dry air pooling in the lower part of the cave may concentrate minerals by evaporation and is most likely associated with the ``popcorn line'' seen in the cave. Wiburds Lake Cave is located near the western boundary of the Jenolan Caves Limestone, very close to its faulted western boundary with Ordovician cherts. Aragonite at Wiburds Lake Cave is associated with weathered pyritic dolomitised limestone, an altered, dolomitised mafic dyke in a fault shear zone, and also with bat guano minerals. Aragonite speleothems include a spathite, cavity fills, vughs, surface coatings and anthodites. Calcite occurs in small quantities at the aragonite sites. Calcite-inhibitors associated with aragonite include ions of magnesium, manganese and sulfate. Phosphate is significant in some areas. Low humidity is significant in two areas. Other sites briefly examined at Jenolan include Glass Cave, Mammoth Cave, Spider Cave and the show caves. Aragonite in Glass Cave may be associated with both weathering of dolomitised limestone (resulting in anthodites) and with bat guano (resulting in small cryptic forms). Aragonite in the show caves, and possibly in Mammoth and Spider Cave is associated with weathering of pyritic dolomitised limestone. Wombeyan Caves are developed in saccharoidal marble, metamorphosed Silurian Wombeyan Caves Limestone. Three sites were examined in detail at Wombeyan Caves: Sigma Cave, Wollondilly Cave and Cow Pit (a steep sided doline with a dark zone). Sigma Cave is close to the south east boundary of the Wombeyan marble, close to its unconformable boundary with effusive hypersthene porphyry and intrusive gabbro, and contains some unmarmorised limestone. Aragonite occurs mainly in a canyon at the southern extremity of the cave and in some other sites. In Sigma Cave, aragonite deposition is mainly associated with minerals containing calcite-inhibitors, as well as some air movement in the cave. Calcite-inhibitors at Sigma Cave include ions of magnesium, manganese, sulfate and phosphate (possibly bat origin), partly from bedrock veins and partly from breakdown of minerals in sediments sourced from mafic igneous rocks. Substrates to aragonite speleothems include corroded speleothem, bedrock, ochres, mud and clastics. There is air movement at times in the canyon, it has higher levels of CO2 than other parts of the cave and humidity is high. Air movement may assist in the rapid exchange of CO2 at speleothem surfaces. Wollondilly Cave is located in the eastern part of the Wombeyan marble. At Wollondilly Cave, anthodites and helictites were seen in an inaccessible area of the cave. Paramorphs of calcite after aragonite were found at Jacobs Ladder and the Pantheon. Aragonite at Star Chamber is associated with huntite and hydromagnesite. In The Loft, speleothem corrosion is characteristic of bat guano deposits. Aragonite, vaterite and calcite were detected in surface coatings in this area. Air movement between the two entrances of this cave has a drying effect which may serve to concentrate minerals by evaporation in some parts of the cave. The presence of vaterite and aragonite in fluffy coatings infers that vaterite may be inverting to aragonite. Calcite-inhibitors in the sediments include ions of phosphate, sulphate, magnesium and manganese. Cave sediment includes material sourced from detrital mafic rocks. Cow Pit is located near Wollondilly Cave, and cave W43 is located near the northern boundary of the Wombeyan marble. At Cow Pit, paramorphs of calcite after aragonite occur in the walls as spheroids with minor huntite. Aragonite is a minor mineral in white wall coatings and red phosphatic sediments with minor hydromagnesite and huntite. At cave W43, aragonite was detected in the base of a coralloid speleothem. Paramorphs of calcite after aragonite were observed in the same speleothem. Dolomite in the bedrock may be a source of magnesium-rich minerals at cave W43. Walli Caves are developed in the massive Belubula Limestone of the Ordovician Cliefden Caves Limestone Subgroup (Barrajin Group). At the caves, the limestone is steeply bedded and contains chert nodules with dolomite inclusions. Gypsum and barite occur in veins in the limestone. At Walli Caves, Piano Cave and Deep Hole (Deep Cave) were examined for aragonite. Gypsum occurs both as a surface coating and as fine selenite needles on chert nodules in areas with low humidity in the caves. Aragonite at Walli caves was associated with vein minerals and coatings containing calcite-inhibitors and, in some areas, low humidity. Calcite-inhibitors include sulfate (mostly as gypsum), magnesium, manganese and barium. Other caves which contain aragonite are mentioned. Although these were not major study sites, sufficient information is available on them to make a preliminary assessment as to why they may contain aragonite. These other caves include Flying Fortress Cave and the B4-5 Extension at Bungonia near Goulburn, and Wyanbene Cave south of Braidwood. Aragonite deposition at Bungonia has some similarities with that at Jenolan in that dolomitisation of the bedrock has occurred, and the bedding or jointing is steep allowing seepage of water into the cave, with possible oxidation of pyrite. Aragonite is also associated with a mafic dyke. Wyanbene cave features some bedrock dolomitisation, and also features low grade ore bodies which include several known calcite-inhibitors. Aragonite appears to be associated with both features. Finally, brief notes are made of aragonite-like speleothems at Colong Caves (between Jenolan and Wombeyan), a cave at Jaunter (west of Jenolan) and Wellington (240\,km NW of Sydney).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Keogh, Andrew James, of Western Sydney Hawkesbury University, Faculty of Science and Technology, and School of Applied and Environmental Sciences. "Systems management of Glenbrook Lagoon, New South Wales." THESIS_FST_AES_Keogh_A.xml, 1996. http://handle.uws.edu.au:8081/1959.7/423.

Повний текст джерела
Анотація:
Glenbrook Lagoon, an 8 hectare lake receiving rainfall runoff from a residential catchment, is experiencing nutrient enrichment problems expressed as excessive aquatic plant presence. This study aims to assess the relative nutrient contribution of the total system compartments, including catchment loading, water column, aquatic plants and surface sediment. This information is utilised in the formulation of management strategies which may produce a sustainable nutrient reduction and general improvement in the system. The total nutrient content of the aquatic system was determined to be high in comparison with the present nutrient loading from the catchment. The ideal management case considers nutrient reduction of the surface sediment compartment firstly, followed by the aquatic plant community, with the water column and catchment influence as relatively low priority compartments. Various strategies for managing these are proposed. The total system benefits of the ideal management case are reductions in nutrients, aquatic plant biovolume and suspended solid loading. Unavoidable constraints placed upon the ideal management case include the excessive aquatic plant presence restricting accessability to the surface sediment for dredging. The resulting best management case requires aquatic plant eradication prior to sediment management, with the total system benefits associated with the ideal management case being retained.
Master of Science (Hons)
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Elliott, Malcolm Gordon, of Western Sydney Hawkesbury University, and Faculty of Environmental Management and Agriculture. "Grass tetany of cattle in New South Wales." THESIS_FEMA_xxx_Elliott_M.xml, 2000. http://handle.uws.edu.au:8081/1959.7/7.

Повний текст джерела
Анотація:
Over the last 60 years, grass tetany has been recognised as a significant lethal condition in sheep and cattle.Outcomes from this study include documentation of the likely precursors to grass tetany, ways to recognise these precursors, and long term practices that will enable producers to minimise livestock deaths. The benefit of this research to beef producers is that the environmental circumstances thought to be associated with outbreaks of grass tetany have been identified, along with remedial action that can be taken to prevent deaths occurring.Recommendations to industry on best practice to be adopted by leading producers to minimise outbreaks of grass tetany are made.This study provides an alternate strategy for the management of grass tetany in beef cattle, to the more clinical approaches previously recommended. It is suggested that losses from this economically important metabolic disease can be minimised if management practices of beef cattle producers in eastern Australia can incorporate a more holistic approach to farm management, which takes account of the soil/plant/animal/climate inter-relationships.
Master of Science (Hons)
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wood, Susan, and s2000093@student rmit edu au. "Creative embroidery in New South Wales, 1960 - 1975." RMIT University. Architecture and Design, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070206.160246.

Повний текст джерела
Анотація:
In the years between 1960 and 1975 in NSW there emerged a loosely connected network of women interested in modern or creative embroidery. The Embroiderers' Guild of NSW served as a focus for many of these women, providing opportunities for them to exhibit their work, and to engage in embroidery education as teachers or as learners. Others worked independently, exhibited in commercial galleries and endeavoured to establish reputations as professional artists. Some of these women were trained artists and wanted embroidery to be seen as 'art'; others were enthusiastic amateurs, engaged in embroidery as a form of 'serious leisure'. They played a significant role in the development of creative embroidery and textile art in NSW and yet, for the most part, their story is absent from the narratives of Australian art and craft history. These women were involved in a network of interactions which displayed many of the characteristics of more organised art worlds, as posite d by sociologist Howard Becker. They produced work according to shared conventions, they established co-operative links with each other and with other organisations, they organised educational opportunities to encourage others to take up creative embroidery and they mounted exhibitions to facilitate engagement with a public audience. Although their absence from the literature suggests that they operated in isolation, my research indicates that there were many points of contact between the embroidery world, the broader craft world and the fine art community in NSW. This thesis examines the context in which creative embroiderers worked, discusses the careers of key individuals working at this time, explores the interactions between them, and evaluates the influence that they had on later practice in embroidery and textiles in NSW.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Franklin, Richard Charles. "Epidemiology of Farm Injuries in New South Wales." University of Sydney, 2007. http://hdl.handle.net/2123/1930.

Повний текст джерела
Анотація:
Doctor of Philosophy (PhD)
Injuries to people living and working on farms in New South Wales continue to be a significant burden on the health system, Workers’ Compensation system, agricultural industries and farming families. Strategies to reduce the number and severity of injuries suffered by farmers and people working on farms rely on accurate information. Unfortunately there is no one dataset available to describe the circumstances surrounding farm injuries and the size of this burden in Australia. Hence, a number of different data sources are required to provide a picture of farm injuries. To date, there has been very little critical examination of what value each of these datasets provides to describing farm injuries. This Thesis aimed to: • Undertake surveillance of injuries occurring to people on farms or during agricultural production in NSW using data from an Emergency Department, NSW Hospital Separations information, NSW Workers’ Compensation Claims, and ABS Deaths data. • Critically examine the utility of Emergency Department, Hospital, Workers’ Compensation, and ABS Deaths Data for the surveillance of farm injuries in NSW. • Critically examine data classification systems used in Emergency Department, Hospital, Workers’ Compensation, and ABS Deaths data collections to describe the breadth of farm injuries in NSW. • Define the priority areas for farm injury prevention initiatives in NSW based on the information obtained from the examination of the data from Emergency Department, Hospital, Workers’ Compensation, and ABS Deaths. • Evaluate the effectiveness of the NSW Rollover Protective Structure (ROPS) rebate scheme and examine the utility of the data currently available in NSW to measure the performance of the program. Four datasets, Tamworth Emergency Department, Hospital Separations, Workers’ Compensation and the Australian Bureau of Statistics (ABS) Deaths data were used to provide information on the surveillance of farm injuries, describe the breadth of classifications used to describe farm injuries, and define priorities for the prevention of farm injuries. There were 384 farm-related injuries which presented to the Emergency Department at the Tamworth Base Hospital between 1 September 1997 and 31 August 1998. Emergency Department data collected in this study used the Farm Injury Optimal Dataset (FIOD) for classification, which allowed for a comprehensive picture of the circumstances surrounding the injury event. The three most common external causes of injury were related to horses, motorcycles, and animals. Commonly people were working at the time of injury. Children represented 21% of the people injured. The average number of injuries per 100 farms per annum was 34.7. An examination of hospital discharge data for NSW was undertaken for the period 1 July 1992 to 30 June 2000 where the location of the injury was a farm. Classification of cases in this dataset conformed to the International Classification of Disease (ICD) versions 9 and 10. There were 14,490 people who were injured on a farm during the study period. The three most common external causes of injury were motorcycles, animals being ridden and agricultural machinery. Children represented 17% of all farm injury cases. The rate per 1,000 farms ranged from 19 to 42 per annum. An examination of Workers’ Compensation claims for agricultural industries in NSW between 1 July 1992 and 30 June 2001 was undertaken. The ‘Type of Occurrence’ classification system was used to code the claims. There were 24,332 claims of which the majority were males (82%). The incidence of injury / disease in agriculture per annum varied from 37 per 1,000 workers to 73 per 1,000 workers. The rate per 1,000 agricultural establishments varied from 54 to 76. The average cost of a claim was $10,880 and the average time lost per claims was 9.2 weeks. There were 81 deaths and 3,158 permanent disabilities. The three most common agents were sheep / goats (5%), ferrous and non-ferrous metals (5%), crates / cartons / boxes / etc (5%). Using ABS deaths data to examine the deaths of people working and living on farms was limited to males whose occupation was recorded as ‘farmer and farm manager’ and ‘agricultural labourer and related worker’. There were 952 deaths over the period 1 January 1991 and 31 December 2000. The information provided a consistent series of cases over time. Areas where prevention should be directed included motor vehicle accidents; falls; agricultural machinery; other machinery; firearms; poisoning; and drowning. Using any one of the datasets alone to examine people injured on farms not only underestimates the number of people injured, but also misses particular types of agents involved in farm injuries. Each of the datasets used in this Thesis provides a different perspective of farm injury in NSW. By examining the information together, there are a number of areas which are consistently represented in each dataset such as falls and agricultural machinery. While no one dataset provided all the information that would be useful for the prevention of injuries, the available information does provide direction for the development of prevention strategies. The overall weakness of the information provided is that it misses a number of risk factors that contribute to farm injuries such as fatigue and training. The lack of appropriate denominator information also makes it difficult to directly compare the datasets and estimate the size of the problem. There are a number of additional coding categories that could be included in each dataset that would provide a better understanding of the different groups at risk of sustaining an injury on a farm or during agricultural work. These coding categories include activity at time of injury, admission to hospital, and occupation. An example of the use of data to determine the effectiveness of a farm injury prevention program is the ‘NSW Rollover Protective Structure (ROPS) Rebate Scheme’ evaluation. Tractor rollover deaths have been identified as an issue for prevention by Farmsafe Australia; however, such deaths were not identified in any of the datasets used in this Thesis due to coding limitations in the ABS data. In this Thesis information about the evaluation of the ‘NSW ROPS Rebate Scheme’ is presented. The scheme was successful in fitting 10,449 ROPS to tractors and the following lessons were learnt: when providing a rebate, the administration (i.e. sending the cheque) needs to be done well; advertising is important and should be co-ordinated, increase the awareness of the risk(s) the intervention is aiming to prevent and effectiveness of subsequent solution (s); the program should ensure there is an increased awareness of the outcome the intervention is aiming to prevent; if regulation is part of the program, enforcement needs to undertaken; and should address any barriers to uptake. The information provided in this Thesis highlights the substantial burden that farm injury places on the agricultural and rural sector of NSW. While there is no one data source that can describe the circumstances and the burden of farm injuries, the currently available datasets do provide an insight into the circumstances of farm injuries and the burden these injuries place on health, Workers’ Compensation, agricultural industries and farming families.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Keogh, Andrew James. "Systems management of Glenbrook Lagoon, New South Wales /." View thesis View thesis, 1996. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20030519.153643/index.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Minerals in New South Wales"

1

Sutherland, Lin. Geology of Barrington Tops Plateau: Its rocks, minerals and gemstones, New South Wales, Australia. Sydney, N.S.W: Australian Museum Society, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McGowan, Barry. Dust and dreams: Mining communities in south-east New South Wales. Sydney: UNSW Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

G, Barnes Robert. Metallogenic studies of the Broken Hill and Euriowie Blocks, New South Wales. [Sydney, N.S.W.]: Dept. of Mineral Resources, Geological Survey of New South Wales, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McGowan, Barry. Lost mines revisited: Historic mining communities of the Monaro, Southern Tablelands, and South West Slopes Districts of New South Wales. Canberra, ACT: B. McGowan, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Australasian, Institute of Mining and Metallurgy (1995 Newcastle N. S. W. ). The AusIMM Annual Conference 1995: Adding value to our resources, our future, 23-26 March 1995, Newcastle, New South Wales. Carlton, Vic: Australasian Institute of Mining and Metallurgy, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Francis, Hywel. The Fed: A history of the South Wales miners in the twentieth century. Cardiff: University of Wales Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ryan, Ver Bermoes, ed. New South Wales. 4th ed. Footscray, Vic: Lonely Planet, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

New South Wales: The New South Wales Additional Instructions 1986. London: HMSO, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Scargill, Arthur. "New realism": The politics of fear. Merthyr Tydfil: Printed by Bridgend Printing Co. Ltd. and published by Merthyr Tydfil Trades Union Council., 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kendrick, Brian. The Shoalhaven: South Coast, New South Wales. Nowra, N.S.W: Lightstorm Pub., 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Minerals in New South Wales"

1

Fisher, John A., and Brendan J. Scott. "Are we justified in breeding wheat for tolerance to acid soils in southern New South Wales?" In Genetic Aspects of Plant Mineral Nutrition, 1–8. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1650-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thom, Bruce. "New South Wales." In Encyclopedia of the World's Coastal Landforms, 1229–38. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-1-4020-8639-7_225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Plowman, David, and Keri Spooner. "Unions in New South Wales." In Australian Unions, 104–21. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-11088-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Laidlaw, Ronald W. "New South Wales 1821–51." In Mastering Australian History, 96–120. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09168-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wallace, Valerie. "Republicanism in New South Wales." In Scottish Presbyterianism and Settler Colonial Politics, 219–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70467-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Frahm, Michael. "Australia: Ombudsman New South Wales." In Australasia and Pacific Ombudsman Institutions, 117–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33896-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chapman, D. M. "Australia--New South Wales and Queensland." In The GeoJournal Library, 415–22. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2999-9_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bird, Eric. "Lord Howe Island – (New South Wales)." In Encyclopedia of the World's Coastal Landforms, 1239–46. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-1-4020-8639-7_226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tyler, Michael J. "Frogs of western New South Wales." In Future of the Fauna of Western New South Wales, 155–60. P.O. Box 20, Mosman NSW 2088, Australia: Royal Zoological Society of New South Wales, 1994. http://dx.doi.org/10.7882/rzsnsw.1994.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ryan, Roberta, and Joseph Drew. "Performance Monitoring in New South Wales Australia." In Performance-Based Budgeting in the Public Sector, 61–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02077-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Minerals in New South Wales"

1

Graham, Ian, Adam McKinnon, Khalid Schellen, Angela Lay, Elizabeth Liepa, Lachlan Burrows, Karen Privat, and Christian Dietz. "Hera: Evidence for Multiple Mineralisation Events and Remobilisation in a Sediment-Hosted Au-Ag-Pb-Zn Deposit, Central New South Wales Australia." In The 2nd International Electronic Conference on Mineral Science. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iecms2021-09345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Platt, T. J. "New South Wales Incident Management System." In Ninth International Conference on Road Transport Information and Control. IEE, 1998. http://dx.doi.org/10.1049/cp:19980182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Senden, David van, and Douglas Lord. "Estuary Processes Investigation; New South Wales, Australia." In 27th International Conference on Coastal Engineering (ICCE). Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40549(276)288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Conway, Andrew, Michelle Blom, Lee Naish, and Vanessa Teague. "An analysis of New South Wales electronic vote counting." In ACSW 2017: Australasian Computer Science Week 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3014812.3014837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Allen, Lori E., Michael C. B. Ashley, Michael G. Burton, Stuart D. Ryder, John W. V. Storey, and Yinsheng Sun. "UNSWIRF: the University of New South Wales infrared Fabry-Perot." In Astronomical Telescopes & Instrumentation, edited by Albert M. Fowler. SPIE, 1998. http://dx.doi.org/10.1117/12.317242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Radoll, Peter, Sebastian Fleissner, Duncan Stevenson, and Henry Gardner. "Improving ICT support for aboriginal land councils in New South Wales." In the Sixth International Conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2517899.2517916.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhu, Qinggaozi, Xihua Yang, and Qiang Yu. "Climate change impact on bushfire risk in New South Wales, Australia." In IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2015. http://dx.doi.org/10.1109/igarss.2015.7326042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Catalan, Alex, and C. Suarez. "Geotechnical characterisation — Cadia East panel caving project, New South Wales, Australia." In Second International Symposium on Block and Sublevel Caving. Australian Centre for Geomechanics, Perth, 2010. http://dx.doi.org/10.36487/acg_rep/1002_26_catalan1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Modelling hydrological changes in New South Wales under future climate change." In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.g4.young.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Duc, Hiep Nguyen, Sean Watt, David Salter, and Toan Trieu. "Modelling October 2013 Bushfire Pollution Episode in New South Wales, Australia." In 31st International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 2014. http://dx.doi.org/10.22260/isarc2014/0072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Minerals in New South Wales"

1

Armistead, S. E., R. G. Skirrow, G. L. Fraser, D. L. Huston, D. C. Champion, and M. D. Norman. Gold and intrusion-related Mo-W mineral systems in the southern Thomson Orogen, New South Wales. Geoscience Australia, 2017. http://dx.doi.org/10.11636/record.2017.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jones, S. L., J. A. Fitzherbert, K. Waltenberg, and S. Bodorkos. New SHRIMP U-Pb zircon ages from the Cobar Basin, New South Wales: Mineral Systems projects, July 2018-June 2019. Geoscience Australia, 2020. http://dx.doi.org/10.11636/record.2020.042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Waltenberg, K., P. L. Blevin, K. F. Bull, D. E. Cronin, and S. E. Armistead. New SHRIMP U-Pb zircon ages from the Lachlan Orogen and the New England Orogen, New South Wales : Mineral Systems Projects, July 2015-June 2016. Geoscience Australia, 2016. http://dx.doi.org/10.11636/record.2016.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Waltenberg, K., P. L. Blevin, K. S. Hughes, K. F. Bull, J. A. Fitzherbert, D. E. Cronin, and R. J. Bultitude. New SHRIMP U–Pb zircon and titanite ages from the Lachlan Orogen and the New England Orogen, New South Wales: Mineral Systems Projects, July 2016–June 2017. Geoscience Australia and Geological Survey of New South Wales, 2019. http://dx.doi.org/10.11636/record.2019.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Waltenberg, K., S. Bodorkos, J. A. Fitzherbert, and P. L. Blevin. New SHRIMP U–Pb zircon and titanite ages from the Cobar Basin and Lachlan Orogen, New South Wales: Mineral Systems Projects, July 2017–June 2019. Geoscience Australia, 2022. http://dx.doi.org/10.11636/record.2022.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reid, Andrew. Tackling gambling harm to improve health equity in New South Wales. Centre for Health Equity Training, Research and Evaluation, 2021. http://dx.doi.org/10.53714/igoo2131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kyi, D., J. Duan, A. Kirkby, and N. Stolz. Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP): New South Wales: data release report. Geoscience Australia, 2020. http://dx.doi.org/10.11636/record.2020.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chisholm, Emma-Kate, Carol Simpson, and Phillip Blevin. New SHRIMP U-Pb zircon ages from the New England Orogen, New South Wales : July 2010-June 2012. Geoscience Australia, 2014. http://dx.doi.org/10.11636/record.2014.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chisholm, E. I., P. L. Blevin, and C. J. Simpson. New SHRIMP U–Pb zircon ages from the New England Orogen, New South Wales: July 2012–June 2014. Geoscience Australia, 2014. http://dx.doi.org/10.11636/record.2014.052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Waltenberg, K., P. L. Blevin, S. Bodorkos, and D. E. Cronin. New SHRIMP U-Pb zircon ages from the New England Orogen, New South Wales: July 2014-June 2015. Geoscience Australia and Geological Survey of New South Wales, 2015. http://dx.doi.org/10.11636/record.2015.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії