Добірка наукової літератури з теми "Minerals"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Minerals".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Minerals"
Mandarino, Joseph A., and Joel D. Grice. "New Minerals recently approved by the Commission on New Minerals and Mineral Names International Mineralogical Association." European Journal of Mineralogy 10, no. 5 (October 5, 1998): 1083–90. http://dx.doi.org/10.1127/ejm/10/5/1083.
Повний текст джерелаMandarino, Joseph A. "New minerals recently approved by the Commission on New Minerals and Mineral Names International Mineralogical Association." European Journal of Mineralogy 3, no. 6 (December 19, 1991): 1009–14. http://dx.doi.org/10.1127/ejm/3/6/1009.
Повний текст джерелаMandarino, Joseph A. "New minerals recently approved by the Commission on New Minerals and Mineral Names International Mineralogical Association." European Journal of Mineralogy 4, no. 6 (December 15, 1992): 1421–28. http://dx.doi.org/10.1127/ejm/4/6/1421.
Повний текст джерелаMandarino, Joseph A. "New minerals recently approved by the Commission on New Minerals and Mineral Names International Mineralogical Association." European Journal of Mineralogy 6, no. 5 (September 28, 1994): 725–32. http://dx.doi.org/10.1127/ejm/6/5/0725.
Повний текст джерелаMandarino, Joseph A. "New minerals recently approved by the Commission on New Minerals and Mineral Names International Mineralogical Association." European Journal of Mineralogy 7, no. 2 (March 29, 1995): 447–56. http://dx.doi.org/10.1127/ejm/7/2/0447.
Повний текст джерелаMandarino, Joseph A. "New minerals recently approved by the Commission on New Minerals and Mineral Names International Mineralogical Association." European Journal of Mineralogy 7, no. 5 (October 5, 1995): 1205–12. http://dx.doi.org/10.1127/ejm/7/5/1205.
Повний текст джерелаMandarino, Joseph A. "New minerals recently approved by the Commission on New Minerals and Mineral Names International Mineralogical Association." European Journal of Mineralogy 8, no. 5 (October 30, 1996): 1213–22. http://dx.doi.org/10.1127/ejm/8/5/1213.
Повний текст джерелаMandarino, Joseph A., and Joel D. Grice. "New minerals recently approved by the Commission on New Minerals and Mineral Names International Mineralogical Association." European Journal of Mineralogy 9, no. 6 (December 2, 1997): 1311–20. http://dx.doi.org/10.1127/ejm/9/6/1311.
Повний текст джерелаIvanov, A. V., А. A. Yaroshevskiy, and M. A. Ivanova. "Meteorites minerals." Геохимия 64, no. 8 (September 3, 2019): 869–932. http://dx.doi.org/10.31857/s0016-7525648869-932.
Повний текст джерелаGrice, Joel D., and Giovanni Ferraris. "New minerals approved in 1998 by the Commission on New Minerals and Mineral Names, International Mineralogical Association." European Journal of Mineralogy 11, no. 4 (July 16, 1999): 775–84. http://dx.doi.org/10.1127/ejm/11/4/0775.
Повний текст джерелаДисертації з теми "Minerals"
Lammers, Kristin D. "Carbon dioxide sequestration by mineral carbonation of iron-bearing minerals." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/339925.
Повний текст джерелаPh.D.
Carbon dioxide (CO2) is formed when fossil fuels such as oil, gas and coal are burned in power producing plants. CO2 is naturally found in the atmosphere as part of the carbon cycle, however it becomes a primary greenhouse gas when human activities disturb this natural balanced cycle by increasing levels in the atmosphere. In light of this fact, greenhouse gas mitigation strategies have garnered a lot of attention. Carbon capture, utilization and sequestration (CCUS) has emerged as a possible strategy to limit CO2 emissions into the atmosphere. The technology involves capturing CO2 at the point sources, using it for other markets or transporting to geological formations for safe storage. This thesis aims to understand and probe the chemistry of the reactions between CO2 and iron-bearing sediments to ensure secure storage for millennia. The dissertation work presented here focused on trapping CO2 as a carbonate mineral as a permanent and secure method of CO2 storage. The research also explored the use of iron-bearing minerals found in the geological subsurface as candidates for trapping CO2 and sulfide gas mixtures as siderite (FeCO3) and iron sulfides. Carbon dioxide sequestration via the use of sulfide reductants of the iron oxyhydroxide polymorphs lepidocrocite, goethite and akaganeite with supercritical CO2 (scCO2) was investigated using in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The exposure of the different iron oxyhydroxides to aqueous sulfide in contact with scCO2 at ~70-100 ˚C resulted in the partial transformation of the minerals to siderite (FeCO3). The order of mineral reactivity with regard to siderite formation in the scCO2/sulfide environment was goethite < lepidocrocite ≤ akaganéite. Overall, the results suggested that the carbonation of lepidocrocite and akaganéite with a CO2 waste stream containing ~1-5% H2S would sequester both the carbon and sulfide efficiently. Hence, it might be possible to develop a process that could be associated with large CO2 point sources in locations without suitable sedimentary strata for subsurface sequestration. This thesis also investigates the effect of salinity on the reactions between a ferric-bearing oxide phase, aqueous sulfide, and scCO2. ATR-FTIR was again used as an in situ probe to follow product formation in the reaction environment. X-ray diffraction along with Rietveld refinement was used to determine the relative proportion of solid product phases. ATR-FTIR results showed the evolution of siderite (FeCO3) in solutions containing NaCl(aq) concentrations that varied from 0.10 to 4.0 M. The yield of siderite was greatest under solution ionic strength conditions associated with NaCl(aq) concentrations of 0.1-1 M (siderite yield 40% of solid product) and lowest at the highest ionic strength achieved with 4 M NaCl(aq) (20% of solid product). Based partly on thermochemical calculations, it is suggested that a decrease in the concentration of aqueous HCO3- and a corresponding increase in co-ion formation, (i.e., NaHCO3) with increasing NaCl(aq) concentration resulted in the decreasing yield of siderite product. At all the ionic strength conditions used in this study, the most abundant solid phase product present after reaction was hematite (Fe2O3) and pyrite (FeS2). The former product likely formed via dissolution/reprecipitation reactions, whereas the reductive dissolution of ferric iron by the aqueous sulfide likely preceded the formation of pyrite. These in situ experiments allowed the ability to follow the reaction chemistry between the iron oxyhr(oxide), aqueous sulfide and CO2 under conditions relevant to subsurface conditions. Furthermore, very important results from these small-scale experiments show this process can be a potentially superior and operable method for mitigating CO2 emissions.
Temple University--Theses
Frost, Ray. "Studies of selected minerals, mineral surfaces and their colloidal dispersions." Thesis, Queensland University of Technology, 2001.
Знайти повний текст джерелаAdams, Adrian Richard. "The degradation of atrazine by soil minerals : effects of drying mineral surfaces." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86515.
Повний текст джерелаENGLISH ABSTRACT: The herbicide atrazine (ATZ, 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) has been identified as an environmental endocrine disruptor and possible human carcinogen. The presence of atrazine, along with its degradation products, in soils and water supplies therefore raises concern. Atrazine biodegradation in soils is well-covered to date, however, atrazine degradation by abiotic mineral surfaces, and the chemical mechanism by which it occurs, is not fully understood. Furthermore, with a changing global climate, the effects of wetting and drying cycles on soil processes (e.g. atrazine degradation) is largely unknown, but increasing in importance. This study therefore investigated atrazine degradation on six common soil mineral surfaces, namely birnessite, goethite, ferrihydrite, gibbsite, Al3+-saturated smectite and quartz, as well as the effects that drying these surfaces has on atrazine degradation. In the first part, a comparison was conducted between the reactivity of fully hydrated and drying mineral surfaces toward atrazine, by reacting atrazine-mineral mixtures under both moist and ambient drying conditions, in parallel, for 14 days. Under moist conditions, none of the mineral surfaces degraded atrazine, but under drying, birnessite and goethite degraded atrazine to non-phytotoxic hydroxyatrazine (ATZ-OH, 2-hydroxy-4-ethylamino-6-isopropylamino-1,3,5-triazine) as major product and phytotoxic deethylatrazine (DEA, 2-chloro-4-amino-6-isopropylamino-1,3,5-triazine) as minor product. The mineral surface reactivity was birnessite (66% degradation) > goethite (18% degradation) >> other mineral surfaces (negligible degradation), indicating possible atrazine oxidation. In the second part, the effects of drying rate were investigated on birnessite only (the most reactive surface), by conducting the drying (1) gradually at ambient rates, (2) rapidly under an air stream, and (3) gradually in the absence of water using only organic solvent. After 30 days of ambient drying, 90% of the atrazine was degraded to ATZ-OH and DEA, but the same extent of degradation was achieved after only 4 days of rapid drying with an air stream. Thirty days of gradual drying using only organic solvent did not increase atrazine degradation compared to the water-moist drying surface. In each case, degradation initiated at a critical moisture content of 10% of the original moisture content. In the third part, the degradation mechanism was further investigated. To test for the possible oxidation of atrazine by the birnessite surface, moist atrazine-birnessite mixtures were dried under a nitrogen (N2) stream to eliminate possible oxidation by atmospheric oxygen (O2). Dissolved Mn2+ was extracted at the end of the experiment to observe any reduction of birnessite. Under N2, the same products were formed as before, with no appreciable Mn2+ production, indicating non-oxidative atrazine degradation by birnessite. The final part investigated the effects ultraviolet (UV) radiation has on the degradation of atrazine by drying mineral surfaces. The UV-radiation enhanced the degradation of atrazine, but no other degradation products were formed. It was therefore concluded that atrazine degradation on redox-active soil mineral surfaces is enhanced by drying, via a net non-oxidative mechanism. Furthermore, this drying-induced degradation is an atrazine detoxification mechanism which could be easily applied through agricultural practices such as windrowing, ploughing and any other practice that (rapidly) dries a Mn- or Fe-oxide rich agricultural soil.
AFRIKAANSE OPSOMMING: Die onkruiddoder atrasien (ATS, 2-chloro-4-etielamino-6-isopropielamino-1,3,5-triasien) is as 'n omgewings endokriene versteurder en moontlike menslike karsinogeen geidentifiseer. Die teenwoordigheid van atrasien, tesame met sy afbreekprodukte, in grond en water toevoere wek dus kommer. Die bio-afbreking van atrasien in gronde is tot dusver goed gedek, maar die afbreking van atrasien deur abiotiese mineraaloppervlaktes, en die chemiese meganisme waarmee dit plaasvind, word nie heeltemal verstaan nie. Verder, met 'n veranderende globale klimaat, is die effekte van benatting- en drooging-siklusse op grondprosesse (bv. atrasien afbreking) grootliks onbekend, maar toenemend belangrik. Daarom het hierdie studie atrasien afbreek op ses algemene mineraaloppervlaktes, naamlik birnessiet, goethiet, ferrihidriet, gibbsiet, Al3+-versadigde smektiet en kwarts, ondersoek, asook die effekte wat drooging van hierdie oppervlaktes op atrasien afbreking het. In die eerste deel, was 'n vergelyking gedoen tussen die reaktiwiteit van volgehidreerde en droëende mineraaloppervlaktes teenoor atrasien, deur atrasien-mineraal mengsels, in parallel, onder albei nat en omliggende droogings toestande te reageer vir 14 dae. Onder nat toestande, het geeneen van die mineraaloppervlaktes atrasien afgebreek nie, maar onder drooging het birnessiet en goethiet atrasien afgebreek na nie-fitotoksiese hidroksieatrasien (ATS-OH, 2-hidroksie-4-etielamino-6-isopropielamino-1,3,5-triasien) as hoofproduk en fitotoksiese deetielatrasien (DEA, 2-chloro-4-amino-6-isopropielamino-1,3,5-triasien) as minder-produk. Die mineraaloppervlakte-reaktiwiteit was birnessiet (66% afbreking) > goethiet (18% afbreking) >> ander mineraaloppervlaktes (geringe afbreking), wat moontlike atrasien oksidasie aandui. In die tweede deel, is die effekte van droogingstempo ondersoek, op birnessiet alleenlik (die mees reaktiewe oppervlak) deur drooging by (1) 'n omliggende geleidelike tempo, (2) 'n versnelde tempo onder 'n lugstroom, en (3) 'n geleidelike tempo in die afwesigheid van water, deur slegs gebruik te maak van 'n organiese oplosmiddel. Na 30 dae se geleidelike drooging, is 90% van die atrasien afgebreek na ATS-OH en DEA, maar dieselfe hoeveelheid afbreking is bereik na slegs 4 dae onder versnelde drooging met die lugstroom. Dertig dae van geleidelike drooging met slegs organiese oplosmiddel het nie atrasien afbreking vermeerder in vergelyking met die water-nat droëende oppervlak nie. In elke geval, is afbreking geïnisieer by 'n kritiese water inhoud van 10% van die oorspronklike water inhoud. In die derde deel is die afbrekingsmeganisme verder ondersoek. Om te toets vir die moontlike oksidasie van atrasien deur die birnessiet oppervlak, is nat atrasien-birnessiet mengsels onder stikstof (N2) gedroog, om die moontlike oksidasie deur atmosferiese suurstof (O2) te verhoed. Opgeloste Mn2+ was teen die einde van die eksperiment geekstraëer om enige reduksie van birnessiet waar te neem. Onder N2 is dieselfde produkte as voorheen gevorm, met geen aansienlike Mn2+ produksie nie, aanduidend van 'n nie-oksideerende afbreek van atrasien deur birnessiet. Die laaste deel het die effekte van ultraviolet (UV) straling op die afbreek van atrasien op droëende mineraaloppervlaktes ondersoek. Die UV-straling het atrasien afbreek vermeerder, maar geen ander afbreek-produkte is gevorm nie. Die gevolgtrekking is dus dat atrasien afbreking op redoks-aktiewe mineraal-oppervlaktes verhoog word met drooging, deur 'n netto nie-oksidasie meganisme. Verder is hierdie drooging-geinduseerde afbreking 'n atrasien ontgiftingsmeganisme wat eenvoudig toegepas kan word deur landboupraktyke soos windrying, ploeg en ander praktyke wat (vinnig) 'n Mn- of Fe-oksied ryke landbou grond verdroog.
National Research Foundation (NRF)
Teixeira, Alete Paixão. "Determinação de elementos essenciais em arroz empregando espectrometria de fluorescência de raios X de energia dispersiva." reponame:Repositório Institucional da UFBA, 2010. http://www.repositorio.ufba.br/ri/handle/ri/9897.
Повний текст джерелаSubmitted by Ana Hilda Fonseca (anahilda@ufba.br) on 2013-04-09T13:15:43Z No. of bitstreams: 1 dissertação ALETE_definitiva_110330.pdf: 1412727 bytes, checksum: c409be4d388a7ed5944c1d0866387a9d (MD5)
Approved for entry into archive by Ana Hilda Fonseca(anahilda@ufba.br) on 2013-04-19T14:50:36Z (GMT) No. of bitstreams: 1 dissertação ALETE_definitiva_110330.pdf: 1412727 bytes, checksum: c409be4d388a7ed5944c1d0866387a9d (MD5)
Made available in DSpace on 2013-04-19T14:50:36Z (GMT). No. of bitstreams: 1 dissertação ALETE_definitiva_110330.pdf: 1412727 bytes, checksum: c409be4d388a7ed5944c1d0866387a9d (MD5) Previous issue date: 2010
CAPES
O objetivo principal do trabalho foi à utilização da espectrometria de fluorescência de raios X com energia dispersiva (EDXRF) para determinação de elementos essenciais, tais como P, Cu, Fe, Mn e Zn em amostras de arroz na forma de pastilhas como método alternativo, obtendo resultados com precisão e exatidão aceitáveis no controle de qualidade dos alimentos. A validação foi feita comparando os resultados obtidos pelo método proposto com valores certificados e com aqueles obtidos utilizando decomposição das amostras em forno de micro-ondas com cavidade e os digeridos foram usados para determinação dos analitos por espectrometria de emissão óptica com plasma indutivamente acoplado (ICP OES) e espectrometria de massas com plasma indutivamente acoplado (ICP-MS). A precisão foi avaliada em termos da repetibilidade, sendo que foram preparadas onze pastilhas do material de referência certificado de farinha de arroz 1568a NIST e efetuadas três medições em cada pastilha obtendo-se estimativas do desvio padrão relativo inferiores a 5%. A exatidão foi verificada com o material de referência certificado (farinha de arroz 1568a NIST) e o t-teste pareado revelou que não havia diferença significativa entre os valores certificados e obtidos ao nível de confiança de 95%. Foram obtidos os seguintes limites de detecção (LODs): 0,037 g 100g-1 para P e 1,2; 3,9; 5,1 e 2,2 mg Kg-1 para Cu, Fe, Mn e Zn, respectivamente. O procedimento proposto foi aplicado para P, Mn e Zn e apresenta vantagens tais como a redução do tempo de análise e a eliminação da etapa de decomposição da amostra, porém apresenta a desvantagem dos maiores LODs. De modo geral, os resultados são novas informações sobre a composição mineral do arroz consumido na cidade de Salvador, Bahia, sendo úteis para formação de base de dados.
Salvador
Ur, Rehman Bilal. "Modelling a Mineral Froth Flotation Process : Case Study: Minerals process at Boliden AB." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-51600.
Повний текст джерелаDiFeo, Anthony. "Heterocoagulation of sulphide minerals." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0032/NQ64547.pdf.
Повний текст джерелаHiggins, I. "Sialons from natural minerals." Thesis, University of Newcastle Upon Tyne, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375599.
Повний текст джерелаNeedham, Sarah Jane. "Creatures, fabrics and minerals." Thesis, University of Liverpool, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426129.
Повний текст джерелаDuncan, Helen. "Erosion corrosion by minerals." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278290.
Повний текст джерелаRêgo, Eric Siciliano. "Variation of minerals and clay minerals recorded in the Neo-Tethys (central Turkey): new evidence of climatic changes during the middle Eocene." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/21/21136/tde-23032018-152550/.
Повний текст джерелаMinerais e argilominerais em sucessões sedimentares são excelente ferramentas para a reconstrução de condições ambientais. Dado o estado de preservação dos argilominerais, é possível identificar como eles foram formados, fornecendo informação sobre as condições de intemperismo no continente e sobre condições geoquímicas na coluna d\'água. Este estudo apresenta novos dados mineralógicos da seção de Baskil, uma sucessão do Eoceno médio altamente preservada no Neo-Tethys (Turquia central). Uma mudança na assembléia mineralógica com maiores concentrações de ilita e clorita (subseção I) para um intervalo dominante de esmectita detrítica (subseção II) caracteriza uma mudança na área de fonte de rochas metamórficas para rochas ígneas e mudanças de condições de intemperismo físico para intemperismo químico. Este período coincide com o Ótimo Climático do Eoceno Médio (MECO), indicando uma assinatura mineralógica do evento. A paligorsquita autigênica teve um aumento na porção media e superior da seção, indicando condições favoráveis na coluna de água para a sua formação. Possívelmente as condições na circulação do oceano naquela região mudaram após 40 Ma, formando uma coluna de água estratificada com condições mais quentes e salinas em profundidades maiores, favorecendo precipitação de paligorsquita e dolomita. A evolução mineralógica da seção de Baskil reflete como as fontes e os regimes de intemperismo mudaram ao longo do tempo, e como essas mudanças podem estar relacionadas aos processos globais (e.g. MECO) e /ou a processos locais e regionais.
Книги з теми "Minerals"
Rosborg, Ingegerd, ed. Drinking Water Minerals and Mineral Balance. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09593-6.
Повний текст джерелаRosborg, Ingegerd, and Frantisek Kozisek, eds. Drinking Water Minerals and Mineral Balance. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18034-8.
Повний текст джерелаMervyn, Len. The dictionary of minerals: The complete guide to minerals and mineral therapy. Wellingborough: Thorsons, 1985.
Знайти повний текст джерелаPellant, Chris. Minerals. Tunbridge Wells: Ticktock, 2008.
Знайти повний текст джерелаSpilsbury, Louise. Minerals. Oxford: Raintree, 2012.
Знайти повний текст джерелаFaulkner, Rebecca. Minerals. Oxford: Raintree, 2008.
Знайти повний текст джерелаIsle of Wight (England). Joint Planning Technical Unit., ed. Minerals. Newport, I.o.W: Isle of Wight Joint Planning Technical Unit, 1992.
Знайти повний текст джерелаŠvenek, Jaroslav. Minerals. London: Octopus, 1989.
Знайти повний текст джерелаPellant, Chris. Minerals. Pleasantville, NY: Gareth Stevens Pub., 2009.
Знайти повний текст джерелаMiller-Schroeder, Patricia. Minerals. New York: AV2 by Weigl, 2011.
Знайти повний текст джерелаЧастини книг з теми "Minerals"
DeMan, John M. "Minerals." In Instructor’s Manual For Principles of Food Chemistry, 10–11. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-0815-1_6.
Повний текст джерелаOkrusch, Martin, and Hartwig E. Frimmel. "Minerals." In Springer Textbooks in Earth Sciences, Geography and Environment, 31–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-57316-7_2.
Повний текст джерелаAlais, C., and G. Linden. "Minerals." In Food Biochemistry, 90–94. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-2119-8_6.
Повний текст джерелаMathias, Dietger. "Minerals." In Staying Healthy From 1 to 100, 24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49195-9_21.
Повний текст джерелаYacobi, B. G., and D. B. Holt. "Minerals." In Cathodoluminescence Microscopy of Inorganic Solids, 261–68. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9595-0_10.
Повний текст джерелаSilverman, Randee, and Jeremy Brauer. "Minerals." In The Complete Guide to Nutrition in Primary Care, 249–74. Oxford, UK: Blackwell Publishing Ltd, 2008. http://dx.doi.org/10.1002/9780470691793.ch12.
Повний текст джерелаWebster, Carl D., and Chhorn Lim. "Minerals." In Dietary Nutrients, Additives, and Fish Health, 195–210. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119005568.ch9.
Повний текст джерелаBelitz, H. D., W. Grosch, and P. Schieberle. "Minerals." In Food Chemistry, 427–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07279-0_8.
Повний текст джерелаBelitz, H. D., and W. Grosch. "Minerals." In Food Chemistry, 395–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-07281-3_8.
Повний текст джерелаdeMan, John M. "Minerals." In Principles of Food Chemistry, 209–27. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4614-6390-0_5.
Повний текст джерелаТези доповідей конференцій з теми "Minerals"
Le, Franck, Sihyung Lee, Tina Wong, Hyong S. Kim, and Darrell Newcomb. "Minerals." In the 2006 SIGCOMM workshop. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1162678.1162681.
Повний текст джерелаPersson, Phil. "Outstanding crystalized minerals of the Colorado Mineral Belt." In 42nd New Mexico Mineral Symposium. Socorro, NM: New Mexico Bureau of Geology and Mineral Resources, 2022. http://dx.doi.org/10.58799/nmms-2022.621.
Повний текст джерелаMorrison, Shaunna M., Robert T. Downs, Joshua J. Golden, Alexander J. Pires, Peter Fox, Xiaogang Ma, Stephan Zednik, et al. "SOCIAL NETWORK OF COPPER MINERALS: A MINERAL ECOLOGY STUDY." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-279379.
Повний текст джерелаNakajima, Yasuharu, Joji Yamamoto, Tomoko Takahashi, Blair Thornton, Yuta Yamabe, Gjergj Dodbiba, and Toyohisa Fujita. "Development of Elemental Technologies for Seafloor Mineral Processing of Seafloor Massive Sulfides." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96040.
Повний текст джерелаMorgan, Charles L. "The Status of Marine Mining Worldwide." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-80048.
Повний текст джерелаKnorr, Paul Octavius. "Critical and Hard Minerals Management on the United States Outer Continental Shelf." In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32640-ms.
Повний текст джерелаHazen, Robert, Shaunna Morrison, Shaunna Morrison, Anirudh Prabhu, Anirudh Prabhu, Jason Williams, and Jason Williams. "ON THE PARAGENETIC MODES OF MINERALS: A MINERAL EVOLUTION PERSPECTIVE." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-365916.
Повний текст джерелаKreiner, Douglas. "A MINERAL SYSTEM APPROACH TO CRITICAL MINERALS RESEARCH AND EXPLORATION." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-365280.
Повний текст джерелаHazen, Robert, and Shaunna Morrison. "ON THE PARAGENETIC MODES OF MINERALS: A MINERAL INFORMATICS APPROACH." In GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-377985.
Повний текст джерелаFani, Mahmood, Tina Puntervold, Skule Strand, and Aleksandr Mamonov. "Assessing the Effect of Carbonated Water on the Geochemistry of CO2-Storing-Bed Minerals." In SPE Norway Subsurface Conference. SPE, 2024. http://dx.doi.org/10.2118/218484-ms.
Повний текст джерелаЗвіти організацій з теми "Minerals"
Холошин, Ігор Віталійович, Наталя Борисівна Пантелєєва, Олександр Миколайович Трунін, Людмила Володимирівна Бурман, and Ольга Олександрівна Калініченко. Infrared Spectroscopy as the Method for Evaluating Technological Properties of Minerals and Their Behavior in Technological Processes. E3S Web of Conferences, 2020. http://dx.doi.org/10.31812/123456789/3929.
Повний текст джерелаMills, Stephanie E., and Andrew Rupke. Critical Minerals of Utah, Second Edition. Utah Geological Survey, March 2023. http://dx.doi.org/10.34191/c-135.
Повний текст джерелаLougheed, H. D., M. B. McClenaghan, D. Layton-Matthews, and M. I. Leybourne. Indicator minerals in fine-fraction till heavy-mineral concentrates determined by automated mineral analysis: examples from two Canadian polymetallic base-metal deposits. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328011.
Повний текст джерелаMcClenaghan, M. B., W. A. Spirito, S. J. A. Day, M. W. McCurdy, and R. J. McNeil. Overview of GEM surficial geochemistry and indicator mineral surveys and case studies in northern Canada. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330473.
Повний текст джерелаMcClenaghan, M. B., W. A. Spirito, S. J. A. Day, M. W. McCurdy, R. J. McNeil, and S. W. Adcock. Overview of Geo-mapping for Energy and Minerals program surficial geochemistry and indicator-mineral surveys and case studies in northern Canada. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331421.
Повний текст джерелаLiventseva, Hanna. THE MINERAL RESOURCES OF UKRAINE. Ilustre Colegio Oficial de Geólogos, May 2022. http://dx.doi.org/10.21028/hl.2022.05.17.
Повний текст джерелаCappa, James A., Carol M. Tremain, and H. Thomas Hemborg. IS-42 Colorado Minerals and Mineral Fuel Activity, 1996. Colorado Geological Survey, 1997. http://dx.doi.org/10.58783/cgs.is42.ozmb4209.
Повний текст джерелаCappa, James A., and Carol M. Tremain. IS-40 Colorado Minerals and Mineral Fuel Activity, 1995. Colorado Geological Survey, 1996. http://dx.doi.org/10.58783/cgs.is40.safa6400.
Повний текст джерелаChazel, Simon, Sophie Bernard, and Hassan Benchekroun. Energy transition under mineral constraints and recycling: A low-carbon supply peak. CIRANO, May 2023. http://dx.doi.org/10.54932/ezhr6690.
Повний текст джерелаCappa, James A., Beth Widmann, Christopher J. Carroll, John W. Keller, and Genevieve Young. IS-69 Colorado Minerals and Mineral Fuel Activity Report, 2003. Colorado Geological Survey, 2003. http://dx.doi.org/10.58783/cgs.is69.thyi9168.
Повний текст джерела