Добірка наукової літератури з теми "Microwave networks"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Microwave networks".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Microwave networks"
Son, Wonhyung, Won-Kwang Park, and Seong-Ho Son. "A Neural Network-Based Microwave Imaging Method for Object Localization." Journal of Electromagnetic Engineering and Science 22, no. 5 (September 30, 2022): 576–79. http://dx.doi.org/10.26866/jees.2022.5.r.125.
Повний текст джерелаStepanets, I. V., V. A. Stepanets, E. M. Zaychik, and S. M. Odoevsky. "FEATURES OF THE APPLICATION AND PLANNING OF THE MICROWAVE TRANSMISSION IN THE 5th GENERATION NETWORKS." Informatization and communication, no. 3 (May 24, 2019): 77–83. http://dx.doi.org/10.34219/2078-8320-2019-10-3-77-83.
Повний текст джерелаSemennikov, Anton V. "MICROWAVE ELECTRONICS TECHNOLOGIES FOR 5G AND 6G WIRELESS NETWORKS." EKONOMIKA I UPRAVLENIE: PROBLEMY, RESHENIYA 9/6, no. 150 (2024): 176–84. http://dx.doi.org/10.36871/ek.up.p.r.2024.09.06.020.
Повний текст джерелаOvereem, A., H. Leijnse, and R. Uijlenhoet. "Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network." Atmospheric Measurement Techniques Discussions 8, no. 8 (August 7, 2015): 8191–230. http://dx.doi.org/10.5194/amtd-8-8191-2015.
Повний текст джерелаKatkevičius, Andrius, Darius Plonis, Robertas Damaševičius, and Rytis Maskeliūnas. "Trends of Microwave Devices Design Based on Artificial Neural Networks: A Review." Electronics 11, no. 15 (July 28, 2022): 2360. http://dx.doi.org/10.3390/electronics11152360.
Повний текст джерелаWang, Lin, Guangying Wang, and Jingxu Chen. "IOT-Based Injection-Locked Microwave Photonic Frequency Division Signal Processing." Mobile Information Systems 2022 (September 27, 2022): 1–10. http://dx.doi.org/10.1155/2022/1351399.
Повний текст джерелаMilovanovic, Bratislav, Vera Markovic, Zlatica Marinkovic, and Zoran Stankovic. "Some applications of neural networks in microwave modeling." Journal of Automatic Control 13, no. 1 (2003): 39–46. http://dx.doi.org/10.2298/jac0301039m.
Повний текст джерелаOvereem, Aart, Hidde Leijnse, and Remko Uijlenhoet. "Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network." Atmospheric Measurement Techniques 9, no. 5 (June 1, 2016): 2425–44. http://dx.doi.org/10.5194/amt-9-2425-2016.
Повний текст джерелаMu, Zhong Guo, Xue Lian Bai, Yi Ding Luo, Jian Ting Mei, and Ming Hu Zhang. "Study on Microwave Curing of Polyurethane (PU)/Epoxy (EP) Interpenetrating Networks (IPN)." Applied Mechanics and Materials 556-562 (May 2014): 649–52. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.649.
Повний текст джерелаWang, Lulu. "Holographic Microwave Image Classification Using a Convolutional Neural Network." Micromachines 13, no. 12 (November 23, 2022): 2049. http://dx.doi.org/10.3390/mi13122049.
Повний текст джерелаДисертації з теми "Microwave networks"
Mohammad, Malik Adeel, and Saeed Muhammad Sheharyar. "Load Balancing in Microwave Networks." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121698.
Повний текст джерелаMcKenzie, Wilfred. "Characterisation of microwave passive networks based on electromagnetic analysis." Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278080.
Повний текст джерелаWang, Fang. "Knowledge based neural networks for microwave modeling and design." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ37081.pdf.
Повний текст джерелаDias, De Macedo Filho Antonio. "Microwave neural networks and fuzzy classifiers for ES systems." Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244066.
Повний текст джерелаWang, Fang Carleton University Dissertation Engineering Electronics. "Knowledge based neural networks for microwave modeling and design." Ottawa, 1998.
Знайти повний текст джерелаBasarudin, Hafiz. "Development of a heterogeneous microwave network, fade simulation tool applicable to networks that span Europe." Thesis, University of Hull, 2012. http://hydra.hull.ac.uk/resources/hull:5774.
Повний текст джерелаMuñoz-Arcos, Christian Daniel. "Optical Microwave Signal Generation for Data Transmission in Optical Networks." Thesis, Toulouse, ISAE, 2020. http://www.theses.fr/2020ESAE0013.
Повний текст джерелаThe massive growth of telecommunication services and the increasing global data traffic boostthe development, implementation, and integration of different networks for data transmission.An example of this development is the optical fiber networks, responsible today for theinter-continental connection through long-distance links and high transfer rates. The opticalnetworks, as well as the networks supported by other transmission media, use electricalsignals at specific frequencies for the synchronization of the network elements. The qualityof these signals is usually determined in terms of phase noise. Due to the major impact ofthe phase noise over the system performance, its value should be minimized.The research work presented in this document describes the design and implementation ofan optoelectronic system for the microwave signal generation using a vertical-cavity surfaceemittinglaser (VCSEL) and its integration into an optical data transmission system. Consideringthat the proposed system incorporates a directly modulated VCSEL, a theoreticaland experimental characterization was developed based on the laser rate equations, dynamicand static measurements, and an equivalent electrical model of the active region. This proceduremade possible the extraction of some VCSEL intrinsic parameters, as well as thevalidation and simulation of the VCSEL performance under specific modulation conditions.The VCSEL emits in C-band, this wavelength was selected because it is used in long-haullinks. The proposed system is a self-initiated oscillation system caused by internal noise sources,which includes a VCSEL modulated in large signal to generate optical pulses (gain switching).The optical pulses, and the optical frequency comb associated, generate in electricaldomain simultaneously a fundamental frequency (determined by a band-pass filter) and severalharmonics. The phase noise measured at 10 kHz from the carrier at 1.25 GHz was -127.8dBc/Hz, and it is the lowest value reported in the literature for this frequency and architecture.Both the jitter and optical pulse width were determined when different resonantcavities and polarization currents were employed. The lowest pulse duration was 85 ps andwas achieved when the fundamental frequency was 2.5 GHz. As for the optical frequencycomb, it was demonstrated that its flatness depends on the electrical modulation conditions.The flattest profiles are obtained when the fundamental frequency is higher than the VCSELrelaxation frequency. Both the electrical and the optical output of the system were integrated into an optical transmitter.The electrical signal provides the synchronization of the data generating equipment,whereas the optical pulses are employed as an optical carrier. Data transmissions at 155.52Mb/s, 622.08 Mb/s and 1.25 Gb/s were experimentally validated. It was demonstrated thatthe fundamental frequency and harmonics could be extracted from the optical data signaltransmitted by a band-pass filter. It was also experimentally proved that the pulsed returnto-zero (RZ) transmitter at 1.25 Gb/s, achieves bit error rates (BER) lower than 10−9 whenthe optical power at the receiver is higher than -33 dBm. la plus faible, 85 ps, a été obtenue lorsque la fréquence fondamentale du système était de 2,5 GHz. En ce qui concerne le peigne de fréquences optiques, il a été démontré que la formedu peigne dépend des conditions de modulation électrique et que les profils les plus platssont obtenus lorsque la fréquence fondamentale est supérieure à la fréquence de relaxationdu VCSEL. Les sorties électrique et optique du système ont été intégrées dans un émetteur optique. Lesignal électrique permet la synchronisation de l’équipement responsable de la génération desdonnées, tandis que les impulsions optiques sont utilisées comme porteuse optique. La transmissionde données à 155,52 Mb/s, 622,08 Mb/s et 1,25 Gb/s a été validée expérimentalement
Hedrick, Jeffrey C. "High performance polymeric networks and thermoplastic blends : microwave versus thermal processing /." Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-07122007-103925/.
Повний текст джерелаVita. Abstract. No film copy made for this title. Includes bibliographical references (leaves 243-254). Also available via the Internet.
Lochtie, Gail D. "Propagation at microwave frequencies in the presence of tropospheric stratified layers." Thesis, University of Essex, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303451.
Повний текст джерелаPratap, Rana Jitendra. "Design and Optimization of Microwave Circuits and Systems Using Artificial Intelligence Techniques." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7225.
Повний текст джерелаКниги з теми "Microwave networks"
Strobel, Otto, ed. Optical and Microwave Technologies for Telecommunication Networks. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119114857.
Повний текст джерелаLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. 2nd ed. New York: McGraw-Hill, 2010.
Знайти повний текст джерелаLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. 2nd ed. New York: McGraw-Hill, 2010.
Знайти повний текст джерелаLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. 2nd ed. New York: McGraw-Hill, 2010.
Знайти повний текст джерелаLo, Jonathan O. Y. Time domain finite element analysis of microwave planar networks. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Знайти повний текст джерелаFeher, Kamilo. Digital communications: Microwave applications. New Delhi: Prentice-Hall, 1987.
Знайти повний текст джерелаWincza, Krzysztof. Design of microwave networks with broadband directional couplers: Projektowanie układów mikrofalowych wykorzystujących szerokopasmowe sprzęgacze kierunkowe. Krakow: AGH University of Science and Technology Press, 2011.
Знайти повний текст джерелаDobrowolski, Janusz. Computer-aided analysis, modeling, and design of microwave networks: The wave approach. Boston: Artech House, 1996.
Знайти повний текст джерелаJ, Reddy C., and Langley Research Center, eds. Application of FEM to estimate complex permittivity of dielectric material at microwave frequency using waveguide measurements. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Знайти повний текст джерелаCataldo, Andrea. Broadband Reflectometry for Enhanced Diagnostics and Monitoring Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Знайти повний текст джерелаЧастини книг з теми "Microwave networks"
Benson, F. A., and T. M. Benson. "Microwave networks." In Fields, Waves and Transmission Lines, 150–83. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-2382-2_6.
Повний текст джерелаNadiv, Ron. "Microwave Backhaul Networks." In Convergence of Mobile and Stationary Next-Generation Networks, 163–202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470630976.ch6.
Повний текст джерелаQin, Juehang, and A. Hubler. "Reducing Microwave Absorption with Chaotic Microwaves." In Lecture Notes in Networks and Systems, 119–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52621-8_11.
Повний текст джерелаNoghanian, Sima, Abas Sabouni, Travis Desell, and Ali Ashtari. "Inclusion of A Priori Information Using Neural Networks." In Microwave Tomography, 87–141. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0752-6_5.
Повний текст джерелаMartín, Ferran, Jordi Naqui, Francisco Medina, Lei Zhu, and Jiasheng Hong. "INTRODUCTION TO BALANCED TRANSMISSION LINES, CIRCUITS, AND NETWORKS." In Balanced Microwave Filters, 1–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119238386.ch1.
Повний текст джерелаRaghunandan, Krishnamurthy. "Microwave and Millimeter-Wave Links." In Introduction to Wireless Communications and Networks, 277–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92188-0_14.
Повний текст джерелаAl-Zoubi, Abdallah. "Flipping the Microwave Engineering Class." In Lecture Notes in Networks and Systems, 809–19. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26876-2_77.
Повний текст джерелаKoul, Shiban Kishen, and Sukomal Dey. "Micromachined Microwave Phase Shifters." In Radio Frequency Micromachined Switches, Switching Networks, and Phase Shifters, 77–100. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781351021340-5.
Повний текст джерелаSisodiya, Divya, Yash Bahuguna, Akanksha Srivastava, and Gurjit Kaur. "Green Microwave and Satellite Communication Systems." In Green Communication Technologies for Future Networks, 231–52. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003264477-13.
Повний текст джерелаGuglielmi, M. "Microwave Networks and the Method of Moments." In Applied Computational Electromagnetics, 131–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59629-2_8.
Повний текст джерелаТези доповідей конференцій з теми "Microwave networks"
Masud, Md Abdullah Al, Alazar Araia, Yuxin Wang, Jianli Hu, and Yuhe Tian. "Machine Learning-Aided Process Design for Microwave-Assisted Ammonia Production." In Foundations of Computer-Aided Process Design, 316–21. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.121422.
Повний текст джерелаGemmato, Valentina, Filippo Scotti, Federico Camponeschi, Luca Rinaldi, Marco Bartocci, Claudio Porzi, and Paolo Ghelfi. "Microwave Photonics Optical Filter for ESM Systems." In 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10647818.
Повний текст джерелаPIRKL, W. "MICROWAVE ELECTRONICS – MICROWAVE NETWORKS." In Proceedings of the Joint US-CERN-Japan International School. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447324_0004.
Повний текст джерелаLembo, Leonardo, Salvatore Maresca, Giovanni Serafino, Filippo Scotti, Antonio Malacarne, Paolo Ghelfi, and Antonella Bogoni. "Microwave Photonics for a Radar Network." In Photonic Networks and Devices. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/networks.2019.neth2d.2.
Повний текст джерелаKodjo, Alvinice, Brigitte Jaumard, Napoleao Nepomuceno, Mejdi Kaddour, and David Coudert. "Dimensioning microwave wireless networks." In 2015 IEEE International Conference on Signal Processing for Communications (ICC). IEEE, 2015. http://dx.doi.org/10.1109/icc.2015.7248751.
Повний текст джерелаMinasian, R. A., X. Yi, and L. Li. "Microwave photonic processing of high-speed microwave signals." In 2016 18th International Conference on Transparent Optical Networks (ICTON). IEEE, 2016. http://dx.doi.org/10.1109/icton.2016.7550273.
Повний текст джерелаZvonimir Vrazic, Dubravko Zagar, and Sonja Grgic. "Adaptive modulation in microwave networks." In ELMAR 2007. IEEE, 2007. http://dx.doi.org/10.1109/elmar.2007.4418841.
Повний текст джерелаCharalambous, Georgios, and Stavros Iezekiel. "Microwave Photonic Linear Frequency Networks." In 2019 21st International Conference on Transparent Optical Networks (ICTON). IEEE, 2019. http://dx.doi.org/10.1109/icton.2019.8840536.
Повний текст джерелаGloba, L., Y. Demidova, and M. Ternovoy. "Network Anomaly Detection using Neural Networks." In 2006 16th International Crimean Microwave and Telecommunication Technology. IEEE, 2006. http://dx.doi.org/10.1109/crmico.2006.256445.
Повний текст джерелаCarpintero, Guillermo, Muhsin Ali, Luis Enrique García-Muñoz, Frédéric van Dijk, Robinson Cruzoe Guzman, Douwe H. Geuzebroek, Chris G. H. Roeloffzen, David de Felipe, and Norbert Keil. "Advances in hybrid integrated microwave photonic systems for millimeter- and Terahertz wave generation." In Photonic Networks and Devices. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/networks.2020.netu3b.4.
Повний текст джерелаЗвіти організацій з теми "Microwave networks"
Singh, D., M. J. Salter, and N. M. Ridler. Comparison of Vector Network Analyser (VNA) calibration techniques at microwave frequencies. National Physical Laboratory, September 2020. http://dx.doi.org/10.47120/npl.tqe14.
Повний текст джерелаWong, N. C. Optical-to-Microwave Frequency Chain Utilizing a Two-Laser-Based Optical Parametric Oscillator Network,. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada300860.
Повний текст джерелаDuda, L. E. User manual for CSP{_}VANA: A check standards measurement and database program for microwave network analyzers. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/541945.
Повний текст джерела