Добірка наукової літератури з теми "Microwave microscopy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Microwave microscopy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Microwave microscopy"

1

Antoniou, Nicholas. "Scanning Microwave Impedance Microscopy: Overview and Low Temperature Operation." EDFA Technical Articles 25, no. 1 (February 1, 2023): 9–13. http://dx.doi.org/10.31399/asm.edfa.2023-1.p009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gao, Chen, Fred Duewer, and X. D. Xiang. "Quantitative microwave evanescent microscopy." Applied Physics Letters 75, no. 19 (November 8, 1999): 3005–7. http://dx.doi.org/10.1063/1.125216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chu, Zhaodong, Lu Zheng, and Keji Lai. "Microwave Microscopy and Its Applications." Annual Review of Materials Research 50, no. 1 (July 1, 2020): 105–30. http://dx.doi.org/10.1146/annurev-matsci-081519-011844.

Повний текст джерела
Анотація:
Understanding the nanoscale electrodynamic properties of a material at microwave frequencies is of great interest for materials science, condensed matter physics, device engineering, and biology. With specialized probes, sensitive detection electronics, and improved scanning platforms, microwave microscopy has become an important tool for cutting-edge materials research in the past decade. In this article, we review the basic components and data interpretation of microwave imaging and its broad range of applications. In addition to the general-purpose mapping of permittivity and conductivity, microwave microscopy is now exploited to perform quantitative measurements on semiconductor devices, photosensitive materials, ferroelectric domains and domain walls, and acoustic-wave systems. Implementation of the technique in low-temperature and high-magnetic-field chambers has also led to major discoveries in quantum materials with strong correlation and topological order. We conclude the review with an outlook of the ultimate resolution, operation frequency, and future industrial and academic applications of near-field microwave microscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Leonard, J. B., and S. P. Shepardson. "A comparison of heating modes in rapid fixation techniques for electron microscopy." Journal of Histochemistry & Cytochemistry 42, no. 3 (March 1994): 383–91. http://dx.doi.org/10.1177/42.3.8308256.

Повний текст джерела
Анотація:
Recent studies have established that microwave irradiation during aldehyde fixation of electron microscopy specimens can reduce fixation times substantially. Similar reductions in duration of histochemical and light microscopy procedures have been reported. Both thermal and non-thermal effects of microwaves have been proposed to explain these dramatic decreases in processing time. Possible thermal effects include increases in fixative diffusion and reaction rates and increased formation of glutaraldehyde monomers. Proposed non-thermal effects include preferential orientation of fixative molecules by the microwave field and other more speculative direct microwave effects. Several reported attempts to produce rapid fixation without temperature increase by cooling specimens during irradiation have produced conflicting results. If rapid fixation is a thermal effect, other heating modes in addition to microwave exposure should produce similar effects. We show that for mouse liver samples (< or = 1 mm3) comparable fixation can be obtained with microwave irradiation, conductive and convective heating in a waterbath, and resistive heating with a low-frequency (1 kHz) current passed through the fixative solution. We also show that using an efficient convective cooling method to prevent temperature increase during microwave exposure produces unsatisfactory fixation. These results are consistent with thermal mechanisms for rapid fixation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Anderson, Geoffrey. "Scanning Microwave Microscopy for Nanoscale Electrical Characterization." Microscopy Today 21, no. 6 (November 2013): 32–36. http://dx.doi.org/10.1017/s1551929513000965.

Повний текст джерела
Анотація:
Recently, a highly sensitive imaging mode for, complex, calibrated electrical and spatial measurements was made available to atomic force microscope (AFM) users. Scanning microwave microscopy (SMM), an award-winning AFM mode of operation developed by Agilent Technologies, combines the comprehensive electrical measurement capabilities of a microwave vector network analyzer (VNA) with the nanoscale spatial resolution of an AFM.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Anlage, S. M., C. P. Vlahacos, S. Dutta, and F. C. Wellstood. "Scanning microwave microscopy of active superconducting microwave devices." IEEE Transactions on Appiled Superconductivity 7, no. 2 (June 1997): 3686–89. http://dx.doi.org/10.1109/77.622218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun, Jie, Wei Ming Shi, Wei Guang Yang, Ping Sheng Zhou, and Lin Jun Wang. "Ni-Induced Lateral Fast Crystallization of Amorphous Silicon Film by Microwave Annealing." Advanced Materials Research 337 (September 2011): 133–37. http://dx.doi.org/10.4028/www.scientific.net/amr.337.133.

Повний текст джерела
Анотація:
Polycrystalline Si (poly-Si) thin films for application to display devices and solar cell are generally fabricated by crystallizing amorphous Si (a-Si) thin film precursors. In this paper, studies on Ni-induced lateral crystallization of a-Si thin films by microwave annealing at low temperature were reported. The crystallization of a-Si thin films was enhanced by applying microwaves to the films. The poly-Si films were invested by Optical Microscopy, X-ray Diffraction (XRD) , Raman Spectroscopy and Scanning Electron Microscope(SEM). After processing of Ni-induced lateral crystallization by microwave annealing above 500°C, the a-Si has begun to be crystallized with large grains having the main (111) orientation. The rate of crystallization at 550°C is about 0.033μm/min. Compared to Ni-induced lateral crystallization by conventional furnace annealing, Ni-induced lateral crystallization by microwave annealing both lowers the crystallization temperature and reduces the time of crystallization. The crystallization mechanism during microwave annealing was also studied. The technique that combines Ni-induced lateral crystallization with microwave annealing has potential applications in thin-film transistors (TFT’s) and solar cell.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schichnes, Denise, Jeffrey A. Nemson, and Steven E. Ruzin. "Microwave Protocols for Plant and Animal Paraffin Microtechnique." Microscopy Today 13, no. 3 (May 2005): 50–53. http://dx.doi.org/10.1017/s1551929500051658.

Повний текст джерела
Анотація:
The microwave oven is a valuable tool for light and electron microscopy microtechnique labs. Tissue processing times, traditionally taking up to two weeks, have been reduced to a few hours as a result of the implementation of microwave technology (Kok et al., 1988, Gibberson and Demaree, 2001). In addition, the quality of the tissue preparations has improved dramatically. Microwave ovens have also evolved since their first use in the laboratory. Early experiments were conducted using relatively crude commercial microwave ovens. Now, labs use microwave ovens with temperature probes, strict control over the magnetron (which generates the microwaves), variable power supplies, chamber cooling, and high microwave field uniformity.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lai, K., W. Kundhikanjana, H. Peng, Y. Cui, M. A. Kelly, and Z. X. Shen. "Tapping mode microwave impedance microscopy." Review of Scientific Instruments 80, no. 4 (April 2009): 043707. http://dx.doi.org/10.1063/1.3123406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Meckenstock, R., D. Spoddig, D. Dietzel, and J. Pelzl. "Scanning thermal microwave resonance microscopy." Superlattices and Microstructures 35, no. 3-6 (March 2004): 289–95. http://dx.doi.org/10.1016/j.spmi.2003.09.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Microwave microscopy"

1

Barker, Duncan James. "Evaluation of microwave microscopy for dielectric characterisation." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/1422/.

Повний текст джерела
Анотація:
A widely used analytical, image charge, model of the SNMM was analysed for the first time in terms of its ability to predict the response of the SNMM to both bulk and thin film dielectrics. For the first time it was shown that the uncertainty in fitting to the model reduces from 10% to 5% when the length of the tip protruding from within the cavity is reduced from 2mm to 1mm. A 5% uncertainty in fitting to the image charge model for the measurement of the relative permittivity of bulk samples is demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kleismit, Richard A. "EVANESCENT MICROWAVE MICROSCOPY OF PORCINE SKIN TISSUE." Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1221859953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cordoba, Erazo Maria Fernanda. "Near-field Microwave Microscopy for Surface and Subsurface Characterization of Materials." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5930.

Повний текст джерела
Анотація:
This dissertation presents an investigation on the capabilities of Near-Field Microwave Microscopy (NFMM) for the characterization of surface and subsurface materials. Subsurface characterization refers to the detection, differentiation and imaging of dielectric, and metallic features that are coated with an insulating layer. The design, simulation and modeling, and testing of a dielectric resonator (DR)-based NFMM and a coaxial transmission line resonator-based NFMM are discussed in detail in this work. Additionally, materials differentiation and imaging capabilities of each microscope are examined using several bulk samples, liquids, GaAs MMIC circuits, and gold/glass testing patterns. The 5.7 GHz DR-based NFMM uses a microwave probe that consists of a commercial gold-coated probe tip coupled to a DR through a non-resonant microstrip line. The probe is enclosed in an aluminum cavity to preserve the quality factor of the probe (Q=986) and therefore to enhance its sensitivity. The development of a lumped-element model of this DR-based probe is discussed in this work. Characteristics of this design are its high Q and the ability to resolve differences in permittivity (E’r) of insulting bulk samples and liquids as small as ∆E’r =1.75 and ∆E’r =0.04, respectively. The imaging capabilities of this design were verified using a GaAs MMIC phase shifter. It was found that a 10 um wide microstrip line is successfully resolved and that the spatial resolution of the microscope is 50 um when using a tungsten tip with an apex radius of 25 um. Additionally, measurement of the electrical resistance of an additive manufactured resistor was measured using the DR-based NFMM without the need of contacts. The percent difference between the electrical resistance measured using the DR-based NFMM and a four-point probe is 9.6%. Furthermore, the DR-based NFMM allows simultaneous imaging of topography and RF electrical conductivity of rough thick films without the need of an additional distance sensor; this ability is demonstrated for a rough CB028 thick film. The 5GHz coaxial resonator transmission line-based NFMM employs a half-wavelength coaxial transmission line resonator terminated in a sharp tungsten tip as the microwave probe. A quartz-tuning fork based distance following feedback system is integrated with the microwave probe in order for the NFMM to operate in non-contact mode. The Q of the probe is degraded by 30% (Q=55) due to the presence of the quartz tuning fork. Despite the low Q, this NFMM is able to differentiate several insulating bulk samples (3.8 < E’r < 25) even if they are coated with an insulating layer of thickness similar to the apex radius of the tungsten tip. Finally, the coaxial resonator transmission line-based NFMM is able to image subsurface permittivity distribution of a flexible polymer-composite PDMS-Ba0.55Sr0.45TiO3 49% which is coated with 10 um thick parylene-C layer. Measurements performed at a tip-sample distance of 100 nm reveal that within an area of 50 um x 50 um, the relative permittivity of the polymer-composite is not constant but varies between 6.63 and 11.78.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Monti, Tamara. "Microwave microscopy and spectroscopy techniques with applications in nanotechnology and biology." Doctoral thesis, Università Politecnica delle Marche, 2014. http://hdl.handle.net/11566/242394.

Повний текст джерела
Анотація:
Un Microscopio a Scansione di sonda a Microonde e’ stato sviluppato e applicato in vari contesti. Esso lavora attraverso l’interazione di campo vicino a microonde tra una sonda emittente e il campione in analisi. La sua applicazione principale e’ la misura delle proprieta’ elettromagnetiche su scale estremamente piccole. Modelli con circuiti a parametri concentrati e distribuiti consentono di ottenere dati quantitativi dalle misure. Tali modelli diventano piu’ complessi se si considerano ambienti diversi. Questo e’ fondamentale per analizzare campioni biologici (in vitro o in vivo). Durante questo lavoro sono state fatte sia applicazioni a campioni biologici sia analisi “in-liquido”. Un’ulteriore potenzialita’ del microscopio a microonde e’ la spettroscopia a livello atomico/molecolare. Uno degli argomenti di questa ricerca, affrontato presso la University of Maryland, e’ stato lo sviluppo di uno strumento, che lavorasse in ambiente criogenico, per la spettroscopia a microonde di materiali superconduttori ad alta temperature. La risoluzione atomica sarebbe stata utile per investigare i fenomeni non-lineari sulla nanoscala. Un’ulteriore tematica e’ stata la detection di Risonanze di Spin Elettronico a microonde. Il microscopio e’ stato modificato per effettuare spettroscopie, con campioni immerse in flussi di campo magnetico. Inoltre, un’esaustiva descrizione della risoluzione del microscopio e’ essenziale. Quindi, indagini riguardo la penetrazione “in-profondita’” del campo evanescente sono qui presentate. Questa capacita’ e’ estremamente interessante per ottenere una tomografia “a corto raggio” di campioni complessi (es.: cellule). E’ stata applicata una conversione nel dominio del tempo dei dati in frequenza a microonde. Infine, il Microscopio a Scansione di sonda a Microonde e’ stato impiegato per creare pattern riproducibili sul grafene. Questo tipo di pattern e’ stato osservato sperimentalmente, e quindi e’ stato oggetto di studi teorici e numerici. Questa parte della ricerca e’ stata sviluppata in collaborazione con gli Oak Ridge National Laboratories che hanno fornito anche i campioni.
A Scanning Microwave Microscope has been developed and applied within different contexts. It works through near-field microwave interaction between an emitting probe and a target sample. Its main application is the measurement, at extremely small scale, of electromagnetic features. Lumped and distributed circuit models allow getting quantitative data from measurements, although with limitations. Such models become even more complicated if considering different environments. This is fundamental for analyzing biological samples (in vitro or in vivo). During this work, both applications to biological samples and “in-liquid” analysis have been performed. Another potentiality of the microwave microscope is the spectroscopy at atomic/molecular level. One of the topics of this research, performed at University of Maryland, was the development of an instrument, working in cryogenic environment, for microwave spectroscopy of high-temperature superconductive materials. Atomic resolution would be useful in order to investigate non-linear phenomena at nanoscale. Another topic was the Electron Spin Resonance detection at microwave. The microscope has been modified in order to perform spectroscopy, with samples immersed in a magnetic field flux. Furthermore, the comprehensive description of the microscope resolution is essential. Then, investigations related to the “in-depth” penetration of the evanescent field are hereby presented. This capability is extremely interesting in order to get a “short-range” tomography of complex samples (e.g., cells). A “time-domain” conversion of the frequency microwave data has been applied. Finally, the Scanning Microwave Microscope has been employed in creating reproducible nanopatterns on graphene. This kind of pattening was observed experimentally, and then it was subject of theoretical and numerical investigation. This part of the research has been developed with Oak Ridge National Laboratories that provided the samples too.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vitry, Pauline. "Applications and development of acoustic and microwave atomic force microscopy for high resolution tomography analysis." Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOS046/document.

Повний текст джерела
Анотація:
La microscopie à force atomique (AFM) est un outil de caractérisation d’échantillons tant organiques qu’inorganiques d’intérêt en physique, en biologie et en métallurgie. Le champ d’investigation de la microscopie AFM reste néanmoins restreint à l’étude des propriétés surfaciques des échantillons et la caractérisation sub-surfacique à l’échelle nanométrique n’est pas envisageable au-delà de la nano-indentation. Lors de ce travail, nous nous sommes intéressés à deux techniques de sonde locale complémentaires pour l’investigation volumique haute résolution.La première technique proposée est la microscopie de champ proche ultrasonore (MS-AFM), mise en place et exploitée en collaboration avec Dr. L. Tétard de l’Université Centrale de Floride. Cette technique fournie des informations localisées en profondeur en utilisant des ondes acoustiques dans la gamme de fréquences du MHz. Une étude complète de l’influence des paramètres de fréquences a été réalisée sur des échantillons de calibration et a permis de valider un modèle d’interprétation numérique. Cette technique ultrasonore, non invasive, a été appliquée à la caractérisation de vésicules lipidiques au sein de bactéries lors d’une collaboration avec les Pr. A. Dazzi et M.-J. Virolle, de l’Université Paris Sud Orsay. Un couplage a été réalisé avec la microscopie AFM infra-rouge (AFM-IR). Cette étude a démontré le potentiel d’investigation et d’analyse volumique et chimique d’échantillons biologiques.La seconde technique étudiée est la microscopie micro-onde (SMM), développée en collaboration avec la société Keysight. Cette technique, tout comme la microscopie acoustique, est non invasive et conduit à une caractérisation physico-chimique basée sur l’interaction de micro-ondes (0.2-16 GHz) avec la matière. Dans le cas de métaux, un lien entre la fréquence et la profondeur d’investigation a été mis en évidence. Cette technique a été appliquée à l’étude de la diffusion d’élément chimique léger au sein de métaux et à la mesure des propriétés mécaniques des matériaux. L’ensemble de ces résultats ouvre un nouveau champ d’investigation de la tomographie 3D dans l’analyse volumique à l’échelle nanométrique que ce soit dans le domaine de la biologie ou de la métallurgie
The atomic force microscope (AFM) is a powerful tool for the characterization of organic and inorganic materials of interest in physics, biology and metallurgy. However, conventional scanning probe microscopy techniques are limited to the probing surface properties, while the subsurface analysis remains difficult beyond nanoindentation methods. Thus, the present thesis is focused on two novel complementary scanning probe techniques for high-resolution volumetric investigation that were develop to tackle this persisting challenge in nanometrology. The first technique considered, called Mode Synthesizing Atomic Force Microscopy (MSAFM), has been exploited in collaboration with Dr. Laurene Tetard of University of Central Florida to explore the volume of materials with high spatial resolution by means of mechanical actuation of the tip and the sample with acoustic waves of frequencies in the MHz range. A comprehensive study of the impact of the frequency parameters on the performance of subsurface imaging has been conducted through the use of calibrated samples and led to the validation of a numerical model for quantitative interpretation. Furthermore, this non-invasive technique has been utilized to locate lipid vesicles inside bacteria (in collaboration with Pr. A. Dazzi and M.-J. Virolle of Université Paris Sud, Orsay). Furthermore, we have combined this ultrasonic approach with infra-red microscopy, to add chemical speciation aimed at identifying the subsurface features, which represents a great advance for volume and chemical characterization of biological samples. The second technique considered is the Scanning Microwave Microscopy, which was developed in collaboration with Keysight society. Similar to acoustic-based microscopy, this non-invasive technique provided physical and chemical characterizations based on the interaction of micro-waves radiations with the matter (with frequency ranging from 0.2 and 16 GHz). Particularly, for metallic samples we performed volumetric characterization based on the skin effect of the materials. On the other hand, we have used this technique to analyze the diffusion of light chemical elements in metals and measured the effect of changes in mechanical properties of materials on their conductivity.Overall, these results constitute a new line of research involving non-destructive subsurface high resolution analysis by means of the AFM of great potential for several fields of research
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Myers, Joshua Allen. "Nano-scale RF/Microwave Characterization of Materials' Electromagnetic Properties." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1340883872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gu, Sijia. "Contribution to broadband local characterization of materials by near-field microwave microscopy." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10175/document.

Повний текст джерела
Анотація:
Les microscopes champ proche micro-ondes sont des instruments émergents pour la caractérisation de matériaux. Dans ce travail, un microscope champ proche micro-ondes fait maison est d'abord décrit et analysé en termes de résolution et de largeur de bande de fréquences de fonctionnement. Ensuite, il est mis en œuvre pour la caractérisation d'une grande variété de matériaux tels que par exemple des métaux, des semi-conducteurs, des diélectriques, des liquides et des nanomatériaux 2D. Le système intégre un interférométre pour améliorer la sensibilité de la mesure pour des fréquences de fonctionnement couvrant la bande 2-18 GHz. La sensibilité et les différents modes de fonctionnement disponibles (contact, sans contact, environnement liquide) permettent d'adresser une grande variété de domaines d'applications. La résolution latérale obtenue par cet instrument est plus petite de plusieurs ordres de grandeur que la longueur d'onde de fonctionnement, ouvrant ainsi la voie à une caractérisation locale. Les propriétés électromagnétiques des matériaux ont été extraites en utilisant la méthode de perturbation et celle de la ligne de transmission. En particulier, les propriétés diélectriques de solutions salines aqueuses et l’impédance complexe du graphène ont été étudiées dans une large bande de fréquence. Ce microscope champ proche micro-ondes basé sur une méthode interférométrique qui permet une analyse quantitative des propriétés des matériaux de manière non-destructive peut adresser un grand éventail d’applications dans de nombreux domaines scientifiques. Enfin, l’ensemble des résultats montre que potentiellement la microscopie champ proche micro-ondes dispose des atouts pour devenir un outil de métrologie important pour la caractérisation en micro- et nano-électronique
Near-field microwave microscopes are emerging instruments for materials characterization. In this work, a home-made near-field microwave microscope is first described and analyzed in terms of resolution performance and frequency band of operation. Then, it is applied to the characterization of a large variety of materials such as metals, semiconductors, dielectrics, liquids and 2D nanomaterials. The system is based on an interferometric technique to improve the measurement sensitivity in the entire frequency range of operation spanning from 2 to 18 GHz. The sensitivity and the different operating modes available (contact, non-contact, liquid environment) allow addressing a large variety of application fields. The instrument allows a sub-wavelength lateral resolution which is more than two orders of magnitude smaller than the operating wavelength, opening the way to a local characterization. The cavity perturbation and transmission line approaches have been used to extract the electromagnetic properties of materials. In particular dielectric properties of saline aqueous solutions and complex impedance of graphene have been investigated in a broad frequency band. It provides a quantitative analysis of material properties in a non-destructive manner to address numerous applications in many scientific fields. Finally, all the results together show that the interferometer-based near-field microwave microscope has the potential to become an important metrology tool for characterizations in micro- and nano-electronics
Стилі APA, Harvard, Vancouver, ISO та ін.
8

FABI, GIANLUCA. "Modelling and Experimental Characterization of new Microwave Microscopy Techniques for Quantitative Measurements." Doctoral thesis, Università Politecnica delle Marche, 2021. http://hdl.handle.net/11566/287825.

Повний текст джерела
Анотація:
Tecniche classiche di microscopia basate su interazioni in campo-lontano, come ad esempio il ben noto microscopio ottico tradizionale, hanno una risoluzione spaziale dell'ordine della lunghezza d'onda utilizzata. Perciò, se le dimensioni e le proprietà del campione variano in una scala di lunghezza minore della lunghezza d'onda, la risposta elettromagnetica del materiale è mediata su scale maggiori, e molti dettagli del campione vengono persi. Il Microscopio a Scansione a Microonde in Campo-vicino (NFSMM o semplicemente SMM) ha superato questo paradigma con il concetto di interazione di campo-vicino tra una sonda (sorgente) ed il campione. In questo caso la sonda eccita il campione con un segnale a microonde e genera un campo evanescente focalizzato in un'area estremamente piccola del materiale. Il microscopio misura le proprietà del campione catturando il segnale di risposta generato da questa interazione, con una risoluzione determinata principalmente dalla dimensione della punta piuttosto che dalla lunghezza d'onda. Inoltre, l'SMM non solo misura strutture superficiali, ma anche proprietà elettromagnetiche fino ad alcuni micrometri sotto la superficie del campione, grazie alla profondità di penetrazione delle microonde. Nonostante le interessanti possibilità ed applicazioni della tecnica, l'SMM presenta alcune limitazioni schematizzate di seguito: 1) banda e sensibilità limitata; 2) elevato numero di elementi parassiti; 3) ipersensibilità alla topografia del campione. Come conseguenza, molte proprietà elettromagnetiche del campione (oltre alla topografia) possono essere per la maggior parte invisibili nei dati acquisiti, poichè il contributo della topografia domina e nasconde questi effetti; 4) incompatibilità di utilizzo della tecnica in ambienti liquidi con perdite, come ad esempio all'interno di soluzioni saline. Questo rende l'utilizzo della tecnica estremamente complicata per applicazioni bio-compatibili, poichè il materiale biologico vivo è generalmente preservato all'interno di soluzioni fisiologiche per sopravvivere. Di conseguenza, l'SMM è ampiamente utilizzato nello studio dei materiali semiconduttori o superfici inorganiche, ma presenta molte difficoltà per l'analisi di materiali rugosi e morbidi, come ad esempio cellule biologiche vive. In questo contesto, il presente manoscritto illustra alcune soluzioni tecniche innovative, in particolare: 1) una nuova tecnica per la rimozione in tempo reale di effetti topografici indesiderati nelle immagini SMM. Il metodo ci ha permesso di rivelare proprietà elettromagnetiche dei materiali analizzati che erano inizialmente nascoste nei dati originali per via della ipersensibilità alla topografia del campione; 2) una nuova configurazione di microscopia chiamata microscopio a microonde invertito. Questo strumento presenta una banda migliorata e minor effetti parassiti rispetto a sistemi SMM convenzionali, permette l'analisi quantitativa delle proprietà elettromagnetiche dei campioni, ed è compatibile con l'ambiente fisiologico utilizzato per preservare materiale biologico vivo. In quest'ottica, il presente documento riporta i principali risultati sperimentali delle metodologie e degli strumenti sviluppati, illustra i loro aspetti teorici e descrive il range di applicazioni delle tecniche proposte, includendo una discussione sulle direzioni future della ricerca.
The Near-field Scanning Microwave Microscopy (NFSMM or simply SMM) employs the near-field interaction between a probe (source) and a sample to image and characterize materials with atomic resolution. In these systems, the probe excites the sample with microwave frequencies and generates a near-field focused in an extremely small area of the material surface. The microscope measures the local properties of the sample by collecting the response signal originated from this interaction, and the probe dimension mainly determines the resolution, rather than the excitation wavelength. Moreover, the SMM senses not only surface structures, but also electromagnetic properties up to a few micrometres below the sample surface, due to the microwave penetration. Despite the intriguing features and possible applications of the technique, the SMM presents some limitations summarized below: - limited bandwidth and sensitivity; - high number of parasitic components; - hypersensitivity to sample topography; As a consequence, many electromagnetic properties of the sample (beyond the sample topography) can be mostly invisible in SMM data, because the topographic contribution dominates and masks these effects. - incompatibility with the lossy liquid environment, such as inside saline solutions. This makes the application of SMM in bio-compatible environments highly challenging because live biological material is generally stored inside physiological solutions to survive. As a consequence, SMM is mainly limited to studies of semiconductor materials or inorganic surfaces, and it presents many difficulties for the analysis of non-flat and soft samples such as a living biological cell. In this context, the present manuscript illustrates some innovative technical solutions, in particular - a new technique for the real-time removal of unwanted topographic effects in SMM images. This method enabled us to reveal electromagnetic features of the material, that were hidden in the original data due to the hypersensitivity to sample topography; - a new microscope configuration called inverted Scanning Microwave Microscope. This setup has higher bandwidth and reduced parasitic components with respect to existing conventional SMM systems, it enables the local quantitative characterization of sample properties, and it is compatible with the physiological environment used to preserve live biological material. With this in mind, the present dissertation reports the main experimental results of the developed instruments and methodologies, illustrates their theoretical aspects, and discusses the range of applications of the proposed techniques, including the future directions of the research.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Haenssler, Olaf Christian. "Multimodal sensing and imaging technology by integrated scanning electron, force, and near-field microwave microscopy and its application to submicrometer studies." Thesis, Lille, 2018. http://www.theses.fr/2018LIL1I006.

Повний текст джерела
Анотація:
La combinaison de plusieurs procédés d’imagerie et de mesure permet d’obtenir des ensembles de données complémentaires et parfois uniques. A l’aide d’une technique hybride de microscopie présentant des modalités de mesure différentes et des enregistrements synchrones, on peut recueillir des informations complémentaires sur des échantillons à l’échelle nanométrique. De plus, l’intégration de procédés nanorobotiques et de logiciels open-source permet une approche technologique pour la recherche sur les semi-conducteurs et les sciences des matériaux. Ce travail démontre le potentiel d’une telle technologie. Ce démonstrateur fonctionne dans la chambre d‘un MEB et sert de plateforme technologique dans laquelle sont intégrés différentes modalités, technologies et procédés. Un AFM basé sur un interféromètre optique compact permet l’imagerie de la topographie de surface tandis qu’un microscope à micro-ondes à balayage enregistre les caractéristiques électromagnétiques dans la gamme de fréquence des micro-ondes, le tout opérant dans le même MEB. L’engin est contrôlé par un ensemble de logiciels qui est optimisé pour la nanorobotique basée sur l‘imagerie. Ce démonstrateur technologique permet d’observer en direct la région d’intérêt à l’aide du microscope électronique tandis qu’est effectuée en champ proche la caractérisation de la surface de l’échantillon par intermédiaire des micro-ondes évanescentes et des forces intermoléculaires. Ensuite, est présenté un standard multimodal de test et qui valide la fonctionnalité de l’instrument démonstrateur. Le présent travail est complété par une analyse électrique de capacités MOS ainsi que leur approximation destinée au calibrage
Various disciplines of micro- and nanotechnology requires combinatorial tools for the investigation, manipulation and transport of materials in the submicrometer range. The coupling of multiple sensing and imaging techniques allows for obtaining complementary and often unique datasets of samples under test. By means of an integrated microscopy technique with different modalities, it is possible to gain multiple information about nanoscale samples by recording at the same time. The expansion with nanorobotics and an open-source software framework, leads to a technology approach for semiconductor research and material science. This work shows the potential of such a multimodal technology approach by focusing on a demonstrator setup. It operates under high-vacuum conditions inside the chamber of a Scanning Electron Microscope and serves as a technology platform by fusing various microscopy modalities, techniques and processes. An Atomic Force Microscope based on a compact, optical interferometer performs imaging of surface topography, and a Scanning Microwave Microscope records electromagnetic properties in the microwave frequency domain, both operating inside an SEM. A software framework controls the instrument. The setup allows for observing with SEM, while imaging and characterizing with interacting evanescent microwaves and intermolecular forces simultaneously. In addition, a multimodal test standard is introduced and subsequently confirms the functionality of the demonstrator. Within this context, the work also includes an electrical analysis of micro-scale MOS capacitors, including an approximation for use in the calibration
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schlegel, Jennifer Lynn. "Imaging the spatial variation of dielectric constant in materials using microwave near field microscopy." Available to US Hopkins community, 2003. http://wwwlib.umi.com/dissertations/dlnow/3080759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Microwave microscopy"

1

Kok, L. P. Microwave cookbook for microscopists: Art and science of visualization. 3rd ed. Leiden: Coulomb Press Leyden, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Boon, Mathilde E. Microwave cookbook of pathology: The art of microscopic visualization. 2nd ed. Leiden: Coulomb Press Leyden, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

M, Dvorak Ann, ed. The microwave tool book: A practical guide for microsopists. Boston: Beth Israel Hospital, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jumer, Patricia A. Microwave modified procedures for the histotechnician in an hour or less. Anchorville, Mich: I.S.A.C. Technologies, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kao, Fu-Jen, and Peter Török. Optical imaging and microscopy: Techniques and advanced systems. Berlin: Springer, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ohtsu, Motoichi. Handbook of Nano-Optics and Nanophotonics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mauro, Nisoli, Hill III Wendell T, and SpringerLink (Online service), eds. Progress in Ultrafast Intense Laser Science VIII. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

service), SpringerLink (Online, ed. Handbook of Spectral Lines in Diamond: Volume 1: Tables and Interpretations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

(Editor), Richard T. Giberson, and Richard S. Demaree Jr. (Editor), eds. Microwave Techniques and Protocols (None). Humana Press, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Giberson, Richard T., and Richard S. Demaree Jr. Microwave Techniques and Protocols. Humana Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Microwave microscopy"

1

Yang, Yongliang, Nicholas Antoniou, and Ravi Chintala. "Scanning Microwave Impedance Microscopy." In Atomic Force Microscopy for Energy Research, 185–212. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003174042-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Anlage, Steven M., D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C. Wellstood. "Near-Field Microwave Microscopy of Materials Properties." In Microwave Superconductivity, 239–69. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0450-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Petrali, John P., and Kenneth R. Mills. "Microwave-Assisted Immunoelectron Microscopy of Skin." In Springer Protocols Handbooks, 173–80. Totowa, NJ: Humana Press, 2001. http://dx.doi.org/10.1007/978-1-59259-128-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chapman, J. N. "Lorentz Microscopy of Magnetic Thin Films and Nanostructures." In Microwave Physics and Techniques, 205–15. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5540-3_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ubic, R., I. M. Reaney, and W. E. Lee. "Microwave resonators in the system BaO•Nd2O3•TiO2." In Electron Microscopy and Analysis 1997, 613–16. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003063056-159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lee, Kiejin, Harutyun Melikyan, Arsen Babajanyan, and Barry Friedman. "Near-Field Microwave Microscopy for Nanoscience and Nanotechnology." In Scanning Probe Microscopy in Nanoscience and Nanotechnology 2, 135–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10497-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rubin, Kurt A., Yongliang Yang, Oskar Amster, David A. Scrymgeour, and Shashank Misra. "Scanning Microwave Impedance Microscopy (sMIM) in Electronic and Quantum Materials." In Electrical Atomic Force Microscopy for Nanoelectronics, 385–408. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15612-1_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Webster, Paul. "Microwave-Assisted Processing and Embedding for Transmission Electron Microscopy." In Methods in Molecular Biology, 47–65. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-294-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Webster, Paul. "Microwave-Assisted Processing and Embedding for Transmission Electron Microscopy." In Methods in Molecular Biology, 21–37. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-776-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Demaree, Richard S., and Richard T. Giberson. "Overview of Microwave-Assisted Tissue Processing for Transmission Electron Microscopy." In Springer Protocols Handbooks, 1–11. Totowa, NJ: Humana Press, 2001. http://dx.doi.org/10.1007/978-1-59259-128-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Microwave microscopy"

1

Leidenberger, Patrick, and Christian Hafner. "Dielectric slot tip for scanning near-field microwave microscope." In Scanning Microscopy 2010, edited by Michael T. Postek, Dale E. Newbury, S. Frank Platek, and David C. Joy. SPIE, 2010. http://dx.doi.org/10.1117/12.853727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tabib-Azar, Massood. "Microwave microscopy and its applications." In The 27th annual review of progress in quantitative nondestructive evaluation. AIP, 2001. http://dx.doi.org/10.1063/1.1373786.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Drevniok, Benedict, St John Dixon-Warren, Oskar Amster, Stuart L. Friedman, and Yongliang Yang. "Extending Electrical Scanning Probe Microscopy Measurements of Semiconductor Devices Using Microwave Impedance Microscopy." In ISTFA 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.istfa2015p0082.

Повний текст джерела
Анотація:
Abstract Scanning microwave impedance microscopy was used to analyze a CMOS image sensor sample to reveal details of the dopant profiling in planar and cross-sectional samples. Sitespecific capacitance-voltage spectroscopy was performed on different regions of the samples.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sarkar, Neil, Mostafa Azizi, Siamak Fouladi, and R. R. Mansour. "Self-actuating scanning microwave microscopy probes." In 2012 IEEE/MTT-S International Microwave Symposium - MTT 2012. IEEE, 2012. http://dx.doi.org/10.1109/mwsym.2012.6259774.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Horibe, Masahiro, Seitaro Kon, and Iku Hirano. "Quantitative Measurement in Scanning Microwave Microscopy." In 2018 91st ARFTG Microwave Measurement Conference (ARFTG). IEEE, 2018. http://dx.doi.org/10.1109/arftg.2018.8423831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wallis, T. M., A. Imtiaz, A. E. Curtin, P. Kabos, J. J. Kopanski, H. P. Huber, and F. Kienberger. "Calibration techniques for scanning microwave microscopy." In 2012 Conference on Precision Electromagnetic Measurements (CPEM 2012). IEEE, 2012. http://dx.doi.org/10.1109/cpem.2012.6251036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hirano, Iku, Seitaro Kon, and Masahiro Horibe. "Metrological Challenge for Scanning Microwave Microscopy." In 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). IEEE, 2018. http://dx.doi.org/10.1109/cpem.2018.8500989.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chintala, Ravi Chandra, Nicholas Antoniou, and Yongliang Yang. "Advances in Scanning Microwave Impedance Microscopy." In ISTFA 2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.istfa2021p0436.

Повний текст джерела
Анотація:
Abstract This paper discusses advancements that have been made in scanning microwave impedance microscopy (sMIM) and how they are being used to measure various electrical properties in semiconductor devices. It explains that sMIM has a sensitivity of less than 0.1 aF and can measure minute changes in dielectric constant (k-value) and distinguish dopant levels over a wide range of concentrations with a spatial resolution of a few nm. For dielectric films and dopant levels, measurements are conveniently given in log-linear form with a repeatability well within the typical requirements for process monitoring. This, in turn, has enabled reliable quantification, where once only qualitative information was provided. The paper presents real-device results representing a wide range of measurement scenarios.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Yaqiang, and Massood Tabib-Azar. "Fabrication and Characterization of Evanescent Microwave Probes Compatible With Atomic Force Microscope for Scanning Near-Field Microscopy." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33291.

Повний текст джерела
Анотація:
The design and microfabrication of silicon co-axial evanescent microwave probes (EMP) compatible with atomic force microscope (AFM) imaging was discussed. Scanning EMP (SEMP) imaging is suitable for nondestructive surface and subsurface characterization of materials over a wide frequency range-between 0.1 GHz and 140 GHz. The microfabricated EMP consists of a silicon V-shaped cantilever beam, a co-axial tip, and aluminum co-planar waveguides. The coaxial tip has an apex radius of ∼80 Å. The tip itself is oxidation-sharpened heavily-doped silicon surrounded by an oxide layer that acts as insulator and covered with an aluminum co-axial layer. The tip apex is electrically connected to a strip of aluminum that forms the active part of the waveguide. The design and microfabrication procedure are described. Mechanical and electrical characterizations are discussed. Contact mode and SEMP surface measurement results are reported. The first ever simultaneous contact AFM and scanning near-field microwave microscopy (SNMM) surface imaging are presented. Using the microwave measurement along with the AFM imaging opens up a new window to see inside the materials and sets the stage for hyperspectral imaging of organelles of biological objects as well as electronic devices and structural materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tami, Diego, Douglas A. A. Ohlberg, Jhonattan C. Ramirez, Cássio Gonçalves do Rego, and Gilberto Medeiros-Ribeiro. "Multiscale Numerical Modeling for Near-Field Microwave Impedance Microscopy." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jw3a.6.

Повний текст джерела
Анотація:
In this work, we analyzed numerically a multiscale nanosystem based on sMIM on TBG. Spontaneous formation of a water-meniscus by the approximation between the tip-sample concentrates the microwave fields, reaching resolutions of up to 1nm.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Microwave microscopy"

1

Ruggiero, S. T. Single-electron tunneling. [Microwave scanning tunneling microscope]. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6854553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії