Добірка наукової літератури з теми "Microscopie cellulaire"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Microscopie cellulaire".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Microscopie cellulaire"
Laporte, Marine H., Éloïse Bertiaux, Virginie Hamel, and Paul Guichard. "L’organisation native de la cellule révélée grâce à la cryo-microscopie à expansion." médecine/sciences 39, no. 4 (April 2023): 351–58. http://dx.doi.org/10.1051/medsci/2023052.
Повний текст джерелаMéry, Annabelle, and Michel Pucéat. "Visualisation de la différenciation cellulaire cardiaque par microscopie confocale." Journal de la Société de Biologie 198, no. 2 (2004): 145–51. http://dx.doi.org/10.1051/jbio/2004198020145.
Повний текст джерелаArizono, Misa, and U. Valentin Nägerl. "Plus vive, plus nette : la microscopie STED du cerveau." Photoniques, no. 114 (2022): 36–39. http://dx.doi.org/10.1051/photon/202111436.
Повний текст джерелаJouchet, Pierre, Abigail Illand, Guillaume Dupuis, Emmanuel Fort, and Sandrine Lévêque-Fort. "Dépasser la limite de diffraction en microscopie de fluorescence." Photoniques, no. 108 (May 2021): 44–48. http://dx.doi.org/10.1051/photon/202110845.
Повний текст джерелаSentenac, Anne. "Améliorer la résolution de la microscopie optique de fluorescence." Photoniques, no. 114 (2022): 45–50. http://dx.doi.org/10.1051/photon/202111445.
Повний текст джерелаGiocondi, Marie-Cécile, Pierre Emmanuel Milhiet, Eric Lesniewska, and Christian Le Grimellec. "Microscopie à force atomique : de l’imagerie cellulaire à la manipulation moléculaire." médecine/sciences 19, no. 1 (January 2003): 92–99. http://dx.doi.org/10.1051/medsci/200319192.
Повний текст джерелаIlland, Abigail, Pierre Jouchet, Emmanuel Fort, and Sandrine Lévêque-Fort. "Localisation nanométrique de molécules uniques par modulation du signal de fluorescence." Photoniques, no. 114 (2022): 30–35. http://dx.doi.org/10.1051/photon/202111430.
Повний текст джерелаLévy, Daniel, Aurélie Di Cicco, Aurélie Bertin, and Manuela Dezi. "La cryo-microscopie électronique révèle une nouvelle vision de la cellule et de ses composants." médecine/sciences 37, no. 4 (April 2021): 379–85. http://dx.doi.org/10.1051/medsci/2021034.
Повний текст джерелаPerrot, J. L., B. Labeille, and F. Cambazard. "Visualisation de la nécrose cellulaire d’un carcinome basocellulaire traité par photothérapie dynamique en microscopie confocale." Annales de Dermatologie et de Vénéréologie 138, no. 12 (December 2011): A211. http://dx.doi.org/10.1016/j.annder.2011.10.211.
Повний текст джерелаPerrot, J. L., A. Biron, E. Couty, L. Tognetti, C. Couzan, R. Rossi, P. Rubegni, and E. Cinotti. "Premiers cas de corrélation parfaite à l’échelle cellulaire entre image de microscopie confocale in vivo et dermatoscopie." Annales de Dermatologie et de Vénéréologie 145, no. 12 (December 2018): S186. http://dx.doi.org/10.1016/j.annder.2018.09.261.
Повний текст джерелаДисертації з теми "Microscopie cellulaire"
Mercier, Luc. "Disséquer la cascade métastatique par des approches innovantes d'imagerie cellulaire." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ091/document.
Повний текст джерелаMetastasis can be considered as the end product of a multistep bio-mechano-chemical process where cancer cells disseminate to anatomically distant organs and home and establish themselves in a new tissue microenvironment. Although metastasis is the leading cause of cancer-related death, the main cellular mechanisms enabling this process remain to be elucidated. Importantly, the scientific community lacks adapted imaging technologies to accurately dissect, at the highest resolution possible, tumor cell behavior in vivo. Therefore, the main goal of my PhD thesis was to develop an intravital and non-invasive imaging approach to track tumor progression in the living mouse. This approach was included in the development of an intravital Correlative Light and Electron Microscopy protocol allowing to track tumor cells at different scales in their natural environment. It was used to study single invasive tumor cells in the mouse ear and brain and to describe the details of cell protrusions and cell-matrix interactions during invasion and intravasation of cancer cells
Moreaux, Laurent. "Microscopie par génération du second harmonique : applications à l'imagerie cellulaire." Paris 11, 2002. http://www.theses.fr/2002PA112113.
Повний текст джерелаBy far the most well known form of non-linear microscopy is based on two-photon excited fluorescence (TPEF), which bas now become a laboratory standard for biological imaging. A lesser known form of this microscopy, however, was used several years prior to the invention of TPEF microscopy, based on the generation of second harmonic light either from surfaces or from endogenous tissue structures. Because of difficulties in signal, second-harmonic generation (SHG) microscopy has gone by relatively unnoticed until only very recently. This work present a detailed experimental and theoretical analysis of the generation of second-harmonic radiation from biological membranes labeled with exogenous markers. We demonstrate that simultaneous second-harmonic generation and two-photon excited fluorescence can be used to image biological membranes labeled with properly designed chromophore. Moreover, we show that spatial resolutions provided by SHG and TPEF microscopies are commensurate, meaning that the two contrast modes can very often be conveniently derived from the same instrument. Based on phased-array antennas model, we derive expressions for the SHG radiation power, angular distribution and polarization dependence in the cases of ideal or non-ideal molecular alignment in the membrane. We define an SHG cross-section similar to that used in two-photon excited fluorescence to allow direct comparison. Despite their similarities, however, SHG and TPEF are fundamentally different phenomena. The first is coherent whereas the second is not. We demonstrate, moreover, that this basic difference provides a unique window into molecular spatial organization which is inaccessible to fluorescence. At least, we present a screening technique to quantify and ascertain the nature of the second-harmonic generation response of chromophores to a trans-membrane electric field. These results are specifically directed to the optimisation of membrane potential response in SHG microscopy
Colomb, Evelyne. "Etude du cycle cellulaire de l'épithelium mammaire humain par microscopie quantitative." Aix-Marseille 2, 1991. http://www.theses.fr/1991AIX22026.
Повний текст джерелаValon, Léo. "Contrôle Optogénétique de la Polarité Cellulaire." Thesis, Paris, Ecole normale supérieure, 2014. http://www.theses.fr/2014ENSU0008/document.
Повний текст джерелаIn this thesis we focus on the mechanisms that establish cell polarization, particularly during cell migration. Despite latest developments that enable visualization of RhoGTPases activity, the underlying principles dictating the cell’s ability to coordinates multiple signaling modules is still unclear. Optogenetic methods have been recognized as promising tools to dissect these intracellular signaling networks by allowing perturbations to be spatially and temporally controlled. We established the quantitative relationship between illumination patterns and the corresponding gradients of induced signaling activity through the characterization of the biophysical properties of CRY2/CIBN. We determined that it is possible to create subcellular gradients of recruited proteins of different shapes of choice up to spatial resolutions of 5μm and temporal ones of ca. 3 minutes.We applied the aforementioned optogenetic approach as a means to perturb the activity of cdc42, Rac1 and RhoA. We characterized the effects of subcellular activation of those RhoGTPases using membrane activity, cell shape changes and cell displacement as reporters of cell polarization and migration. We show that localized activation of RhoGTPases can trigger cellular organization and drive the cell into a migrating state.We also characterized the effects of local activation of RhoA on different cellular effectors as focal adhesion complexes, actin filaments and myosin molecular motors. We measured the dynamics of the newly formed focal adhesion complexes and the acto-myosin complex during retraction events.Altogether, our optogenetic methodology enables simultaneous measurement of the imposed perturbation and the cell response in a straightforward and reproducible way. It provides a quantitative way to control cell polarity and a step forward in the dissection of subcellular signaling networks
Combes, Julien. "Etude de l'adhésion d'ostéoblastes sur substituts apatitiques par microscopie à force atomique." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2009. http://tel.archives-ouvertes.fr/tel-00445705.
Повний текст джерелаCaillat, Ludovic. "Nano-sondes optiques à forte non-linéarite pour l'imagerie cellulaire à haute résolution." Paris 6, 2013. http://www.theses.fr/2013PA066059.
Повний текст джерелаMajor bottleneck in microscopic imaging is the limited lateral resolution due to the diffraction of light. To overcome this limit, here we demonstrate the up-conversion process in the rare earth doped nanoparticles, which may serve as an original fluorescence source mechanism. Rare earth doped nanoparticles, have been reported to serve as efficient bio-labels for cellular and small animal imaging. In this work, we demonstrate that non-linearity of up-conversion allows achieving high lateral resolution in the images using multiphoton microscopy, demonstrating significant improvement in lateral resolution, using low pumping laser power. This new technique may serve as another approach for high-resolution optical imaging
Aimon, Sophie. "Study of a voltage-gated potassium channel in giant unilamellar vesicles." Paris 6, 2011. http://www.theses.fr/2011PA066196.
Повний текст джерелаSchultz, Patrick. "Etudes structurales du minichromosome du virus sv40 et de la chromatine cellulaire : approches en microscopie electronique." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13082.
Повний текст джерелаCayron, Julien. "Caractérisation de la réponse cellulaire associée à différents stress chez la bactérie Escherichia coli." Thesis, Lyon, 2019. https://n2t.net/ark:/47881/m6qv3kv7.
Повний текст джерелаBacterial growth requires coordination between the main cell cycle processes that are DNA replication and segregation, elongation and cell division. During their life, bacteria are exposed to different endogenous or exogenous stresses (antibiotics, pH, nutrients starvation…) that can disturb the bacteria cell cycle. Those hostile life conditions trigger a cellular response aiming at improving survival in stress conditions. In E. coli, DNA breaks induce the SOS response that inhibits cell division while the bacteria continue to elongate, resulting in the formation of a filamentous cell. Filamentation has long been considered as a symptom of cell death, however recent studies suggest that this phenotype could instead be a transient morphology change improving the survival in hostile environments. The main objective of this thesis is to characterize the filamentation process, especially the restart of the filament division allowing to resume normal bacterial growth. To do so, I developped an approach combining live-cell microscopy in microfluidic chamber, flow cytometry, traditional microbiology technics and bacterial genetics. Association of those techniques constitutes a global approach allowing characterization of the stress effect on bacterial viability, morphology and DNA content, from the single cell to the population level. This experimental framework allowed to describe how filamentous cells quickly divide into viable cells, thus understanding how this transient and reversible cellular differentiation state constitute an efficient stress-survival strategy. Furthermore, the expertise I developed during this ph.D. project allowed me to be involved into the study of drug-resistance acquisition by gene transfer through bacterial DNA conjugation. Besides, I contributed to the characterization of the effects of biocides inducing envelop stress response and to the characterize the impact on E. coli of the production of Acinetobacter baumannii toxins predicted to be involved in contact-dependant growth inhibition
Becker, Martine. "Une structure de membrane en microscopie électronique dans les leucémies aiguës de l'adulte." Bordeaux 2, 1988. http://www.theses.fr/1988BOR23016.
Повний текст джерелаКниги з теми "Microscopie cellulaire"
1961-, Duijn Bert van, and Wiltink Anneke 1961-, eds. Signal transduction--single cell techniques. Berlin: Springer, 1998.
Знайти повний текст джерелаRichard, McIntosh J., ed. Cellular electron microscopy. Amsterdam: Elsevier/Academic Press, 2007.
Знайти повний текст джерелаCheville, Norman F. Ultrastructural pathology: An introduction to interpretation. Ames: Iowa State University Press, 1994.
Знайти повний текст джерелаAmmasi, Periasamy, ed. Methods in cellular imaging. Oxford: Published for the American Physiological Society by Oxford University Press, 2001.
Знайти повний текст джерелаLászló, Módis. Organization of the extracellular matrix: A polarization microscopic approach. Boca Raton, Fla: CRC Press, 1991.
Знайти повний текст джерелаL, Shorte Spencer, and Frischknecht Friedrich, eds. Imaging cellular and molecular biological functions. Berlin: Springer, 2007.
Знайти повний текст джерелаRobert, Jacques. Signalisation cellulaire et cancer: Un manuel pour les étudiants et les oncologues. Paris: Springer-Verlag Paris, 2010.
Знайти повний текст джерелаL, Shorte Spencer, and Frischknecht Friedrich, eds. Imaging cellular and molecular biological functions. Berlin: Springer, 2007.
Знайти повний текст джерелаCulling, C. F. A. Cellular pathology technique. 4th ed. London: Butterworths, 1985.
Знайти повний текст джерелаT, Allison R., Barr W. T, and Culling C. F. A, eds. Cellular pathology technique. 4th ed. London: Butterworths, 1985.
Знайти повний текст джерелаЧастини книг з теми "Microscopie cellulaire"
Cinquin, Bertrand, Joyce Y. Kao, and Mark L. Siegal. "i.2.i. with the (Fruit) Fly: Quantifying Position Effect Variegation in Drosophila Melanogaster." In Bioimage Data Analysis Workflows ‒ Advanced Components and Methods, 147–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76394-7_7.
Повний текст джерелаde Chastellier, Chantal. "Electron Microscopy." In Cellular Microbiology, 451–71. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817633.ch19.
Повний текст джерелаLoseva, Elizaveta, Jaap van Krugten, Aniruddha Mitra, and Erwin J. G. Peterman. "Single-Molecule Fluorescence Microscopy in Sensory Cilia of Living Caenorhabditis elegans." In Single Molecule Analysis, 133–50. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3377-9_7.
Повний текст джерелаSpring, Kenneth R. "Detectors for Fluorescence Microscopy." In Methods in Cellular Imaging, 40–52. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_3.
Повний текст джерелаAxelrod, Daniel. "Total Internal Reflection Fluorescence Microscopy." In Methods in Cellular Imaging, 362–80. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_21.
Повний текст джерелаWeimar, Jörg R. "Coupling Microscopic and Macroscopic Cellular Automata." In Cellular Automata: Research Towards Industry, 38–41. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-1281-5_4.
Повний текст джерелаGladstein, Scott, Andrew Stawarz, Luay M. Almassalha, Lusik Cherkezyan, John E. Chandler, Xiang Zhou, Hariharan Subramanian, and Vadim Backman. "Measuring Nanoscale Chromatin Heterogeneity with Partial Wave Spectroscopic Microscopy." In Cellular Heterogeneity, 337–60. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7680-5_19.
Повний текст джерелаCheng, Li, Ning Ye, Weimiao Yu, and Andre Cheah. "Discriminative Segmentation of Microscopic Cellular Images." In Lecture Notes in Computer Science, 637–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23623-5_80.
Повний текст джерелаZaborina, Olga, John Alverdy, Megha Shah, and Yimei Chen. "Microscopic Analysis: Morphotypes and Cellular Appendages." In Methods in Molecular Biology, 99–107. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0473-0_11.
Повний текст джерелаSo, Peter T. C., Ki H. Kim, Christof Buehler, Barry R. Masters, Lily Hsu, and Chen-Yuan Dong. "Basic Principles of Multiphoton Excitation Microscopy." In Methods in Cellular Imaging, 147–61. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_9.
Повний текст джерелаТези доповідей конференцій з теми "Microscopie cellulaire"
Huang, Han-Xiong, Xiao-Hui Sun, and Jian-Kang Wang. "Effect of Nano-Particles on Cellular Structure of Foamed PP-HDPE Blend Using Supercritical Fluid." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43906.
Повний текст джерелаAgard, David A., Yashushi Hiraoka, and John W. Sedat. "Three-dimensional Optical Microscopy of Biological Specimens." In Signal Recovery and Synthesis. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/srs.1986.thd1.
Повний текст джерелаNessaee, Ameer, Kivanc Kose, Elena F. Brachtel, and Dongkyun Kang. "Deep Neural Network-Based Classification of Spectrally Encoded Confocal Microscopy Images of Breast Cancer Tissue." In Microscopy Histopathology and Analytics. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/microscopy.2024.mm3a.6.
Повний текст джерелаTu, Haohua. "Supercontinuum Intrinsic Fluorescence Imaging (SCIFI) Empowers Biomarker Discovery." In Microscopy Histopathology and Analytics. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/microscopy.2024.mm5a.3.
Повний текст джерелаSugimura, Momoka, Kenneth Marcelino, Rafael Romero, Jingwei Zhao, Kyungjo Kim, Ameer Nessaee, Yongjun Kim, et al. "Speckle Noise Reduction in Portable Confocal Microscopy for in vivo Human Skin Imaging." In Microscopy Histopathology and Analytics. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/microscopy.2024.mm1a.6.
Повний текст джерелаBoppart, Stephen A., Gary J. Tearney, Brett E. Bouma, James G. Fujimoto, and Mark E. Brezinski. "Optical Coherence Tomography of Embryonic Morphology During Cellular Differentiation." In Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/aoipm.1996.cit231.
Повний текст джерелаAzartash, Kaveh, and Enrico Gratton. "Measuring the Cell-Induced Deformation of Collagen Matrix Detected With Digital Holographic Microscopy." In ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38064.
Повний текст джерелаAguirre, Paulina. "Image processing of microscopic cellular samples." In MELECON 2012 - 2012 16th IEEE Mediterranean Electrotechnical Conference. IEEE, 2012. http://dx.doi.org/10.1109/melcon.2012.6196450.
Повний текст джерелаKachouie, Nezamoddin N., and Paul Fieguth. "Background estimation for microscopic cellular images." In 2008 15th IEEE International Conference on Image Processing. IEEE, 2008. http://dx.doi.org/10.1109/icip.2008.4712436.
Повний текст джерелаDong, Chen-Yuan, Hayden Huang, Jason D. B. Sutin, Hyuk-Sang Kwon, George E. Cragg, R. Gilbert, Richard T. Lee, et al. "Magnetic tweezers microscope for cellular manipulation." In BiOS 2000 The International Symposium on Biomedical Optics, edited by Daniel L. Farkas and Robert C. Leif. SPIE, 2000. http://dx.doi.org/10.1117/12.384210.
Повний текст джерелаЗвіти організацій з теми "Microscopie cellulaire"
Sadot, Einat, Christopher Staiger, and Zvi Kam Weizmann. functional genomic screen for new plant cytoskeletal proteins and the determination of their role in actin mediated functions and guard cells regulation. United States Department of Agriculture, January 2003. http://dx.doi.org/10.32747/2003.7587725.bard.
Повний текст джерелаLoo, Jr., Billy W., W. Meyer-Ilse, and S. S. Rothman. Mechanism of cellular secretion studied by high resolution soft-x-ray microscopy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603457.
Повний текст джерелаYang, Haw, and Preston Snee. Final Scientific/Technical Report for Time-Resolved 3D Multi-Resolution Microscopy for Real-Time Cellulase Actions in Situ. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1887802.
Повний текст джерелаStead, A. D., T. W. Ford, A. M. Page, J. T. Brown, and W. Meyer-Ilse. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603459.
Повний текст джерелаWANG, MIN, Sheng Chen, Changqing Zhong, Tao Zhang, Yongxing Xu, Hongyuan Guo, Xiaoying Wang, Shuai Zhang, Yan Chen, and Lianyong Li. Diagnosis using artificial intelligence based on the endocytoscopic observation of the gastrointestinal tumours: a systematic review and meta-analysis. InPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2023. http://dx.doi.org/10.37766/inplasy2023.2.0096.
Повний текст джерелаEhrlich, Marcelo, John S. Parker, and Terence S. Dermody. Development of a Plasmid-Based Reverse Genetics System for the Bluetongue and Epizootic Hemorrhagic Disease Viruses to Allow a Comparative Characterization of the Function of the NS3 Viroporin in Viral Egress. United States Department of Agriculture, September 2013. http://dx.doi.org/10.32747/2013.7699840.bard.
Повний текст джерелаDroby, Samir, Michael Wisniewski, Ron Porat, and Dumitru Macarisin. Role of Reactive Oxygen Species (ROS) in Tritrophic Interactions in Postharvest Biocontrol Systems. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7594390.bard.
Повний текст джерелаEpel, Bernard L., Roger N. Beachy, A. Katz, G. Kotlinzky, M. Erlanger, A. Yahalom, M. Erlanger, and J. Szecsi. Isolation and Characterization of Plasmodesmata Components by Association with Tobacco Mosaic Virus Movement Proteins Fused with the Green Fluorescent Protein from Aequorea victoria. United States Department of Agriculture, September 1999. http://dx.doi.org/10.32747/1999.7573996.bard.
Повний текст джерела