Добірка наукової літератури з теми "Microfluidic processes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Microfluidic processes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Microfluidic processes"
Babikian, Sarkis, Brian Soriano, G. P. Li, and Mark Bachman. "Laminate Materials for Microfluidic PCBs." International Symposium on Microelectronics 2012, no. 1 (January 1, 2012): 000162–68. http://dx.doi.org/10.4071/isom-2012-ta54.
Повний текст джерелаBianchi, Jhonatan Rafael de Oliveira, Lucimara Gaziola de la Torre, and Ana Leticia Rodrigues Costa. "Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type." Foods 12, no. 18 (September 9, 2023): 3385. http://dx.doi.org/10.3390/foods12183385.
Повний текст джерелаAlexandre-Franco, María F., Rahmani Kouider, Raúl Kassir Al-Karany, Eduardo M. Cuerda-Correa, and Awf Al-Kassir. "Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview." Micromachines 15, no. 9 (September 6, 2024): 1137. http://dx.doi.org/10.3390/mi15091137.
Повний текст джерелаBouhid de Aguiar, Izabella, and Karin Schroën. "Microfluidics Used as a Tool to Understand and Optimize Membrane Filtration Processes." Membranes 10, no. 11 (October 29, 2020): 316. http://dx.doi.org/10.3390/membranes10110316.
Повний текст джерелаGiri, Kiran, and Chia-Wen Tsao. "Recent Advances in Thermoplastic Microfluidic Bonding." Micromachines 13, no. 3 (March 20, 2022): 486. http://dx.doi.org/10.3390/mi13030486.
Повний текст джерелаTsur, Elishai Ezra. "Computer-Aided Design of Microfluidic Circuits." Annual Review of Biomedical Engineering 22, no. 1 (June 4, 2020): 285–307. http://dx.doi.org/10.1146/annurev-bioeng-082219-033358.
Повний текст джерелаMarzban, Mostapha, Ehsan Yazdanpanah Moghadam, Javad Dargahi, and Muthukumaran Packirisamy. "Microfabrication Bonding Process Optimization for a 3D Multi-Layer PDMS Suspended Microfluidics." Applied Sciences 12, no. 9 (May 4, 2022): 4626. http://dx.doi.org/10.3390/app12094626.
Повний текст джерелаNaderi, Arman, Nirveek Bhattacharjee, and Albert Folch. "Digital Manufacturing for Microfluidics." Annual Review of Biomedical Engineering 21, no. 1 (June 4, 2019): 325–64. http://dx.doi.org/10.1146/annurev-bioeng-092618-020341.
Повний текст джерелаCha, Haotian, Hedieh Fallahi, Yuchen Dai, Dan Yuan, Hongjie An, Nam-Trung Nguyen, and Jun Zhang. "Multiphysics microfluidics for cell manipulation and separation: a review." Lab on a Chip 22, no. 3 (2022): 423–44. http://dx.doi.org/10.1039/d1lc00869b.
Повний текст джерелаKurniawan, Yehezkiel Steven, Arif Cahyo Imawan, Sathuluri Ramachandra Rao, Keisuke Ohto, Wataru Iwasaki, Masaya Miyazaki, and Jumina. "Microfluidics Era in Chemistry Field: A Review." Journal of the Indonesian Chemical Society 2, no. 1 (August 31, 2019): 7. http://dx.doi.org/10.34311/jics.2019.02.1.7.
Повний текст джерелаДисертації з теми "Microfluidic processes"
Haswell, Stephen John. "The development of microfluidic based processes." Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/4189.
Повний текст джерелаKim, Jae Jung Ph D. Massachusetts Institute of Technology. "Microfluidic processes to create structured microparticle arrangements and their applications." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/115018.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 136-145).
Multifunctional polymeric microparticles have shown the great potentials in a variety of fields. While the advance in particle synthesis allows for fine tuning of their physical properties and chemical functionality, particle manipulation is still appealing, but challenging issue in colloidal science. In order to expand the utility of microparticles, many particle manipulation techniques have been developed to arrange large-scale of particles at precise locations. However, current approaches cannot simultaneously fulfill desired capabilities of arrangement: scalability, precision, specificity, and versatility. This thesis explores the ability to synthesize particles with a controllability of characteristics, and development of a new microfluidic platform, porous microwell arrays, to create structured large-scale microparticle arrays using a scaling theory, which is a function of particles' characteristics. Lastly, we demonstrate the potential of generated particle arrays in various bioengineering application and material sciences. First, we synthesize anisotropic, cell-adhesive microparticles using stop flow lithography (SFL) and carbodimide coupling. Synthesized microparticles are functionalized with collagen or poly-L-lysine using streptavidin-biotin interaction, resulting in cell-adhesiveness. After functionalization, target cells are spread on the particles and spatially patterned only on the functionalized region. Thus, cells are not exposed to potentially harmful components of particle synthesis processes, photoinitiators and ultraviolet light, ensuring no physiological changes. Second, we synthesize multi-striped, upconverting nanocrystal (UCN)-laden microparticles using SFL. Distinct upconversion emission colors are combined with the ability to spatial pattern them, providing superior encoding capacities. We can fine-tune upconversion emission by controlling the dopant composition in nanocrystal, and synthesize microparticles in a highly reproducible manner by SFL, allowing for the development of predictable decoding system. Two types of particles are synthesized with this appealing encoding strategy for two distinct applications: thermally stable particles for anti-counterfeiting application; and porous hydrogels for multiplexed microRNA detection. Third, we develop a microfluidic platform, porous microwell arrays, to manipulate microparticles while fulfilling all four desired capabilities (i.e. scalability, precision, specificity, and versatility). Microwells are fabricated on top of porous membrane by a vacuum-assisted molding method. Particles are guided and assembled into wells by hydrodynamic force associated with fluid flow through pores in microwell. Iteration of assembly and washing steps ensures high-throughput, large-scale particle arrangement with high yields on filling and capturing. Scaling theory allows for the rational design of platform to specifically position microparticles depending on their physical characteristics (i.e. size, shape, and modulus), enabling to generate complex patterns. We utilize this platform in three practical applications: high-throughput, large-scale single-cell arrays; microenvironment fabrication for neutrophil chemotaxis; and UCN-laden covert 2D tags for anti-counterfeiting. Lastly, we modified the porous microwell platform to a closed system, microfluidic channels, to park and isolate particles in monodisperse droplets surrounded by fluorinated oil. Rational modification retains the platform's desired capabilities, resulting in a single particle in a droplet with high yields on both parking and isolation. Particle-in-droplet arrays enables the observation of reaction in confined volume over the time. Such arrays can be utilized to accumulate the desired product from enzymatic reaction, amplifying the signal and improving the sensitivity of bioassays. We demonstrate the highly sensitive, multiplexed miRNA detections with these particle-in-droplet arrays.
by Jae Jung Kim.
Ph. D.
Tarn, Mark Duncan. "Continuous flow processes on single magnetic and diamagnetic particles in microfluidic devices." Thesis, University of Hull, 2011. http://hydra.hull.ac.uk/resources/hull:4915.
Повний текст джерелаSendekie, Zenamarkos Bantie. "Clogging dynamics of particles and bacteria in microfluidic systems mimicking microfiltration processes." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30355/document.
Повний текст джерелаThe aim of the PhD is to progress in the understanding of the fouling phenomena during filtration of soft matter (colloidal particles and bacteria) and to examine the efficiency and feasibility of microfluidic separators. These studies are realized with microfluidic devices constituted of micrometric channels having the same size range as the materials being filtered. These devices, which mimic membrane dead-end and cross-flow microfiltration processes, allow in-situ and direct microscopic observations of the fouling mechanisms. The microfluidic system is equipped with flow rate and pressure measurement devices allowing a dynamic cross analysis of the observations with the variations of permeability. Experiments have been realized for different hydrodynamic conditions (flow rate, filtration mode) and for different colloidal interactions (by varying the ionic strength) in order to analyse their interplay in the clogging mechanism by soft matter (interacting particles). The results evidenced the importance of clogs formation, fragility and sweeping out dynamics during the fouling process. These dynamic events at bottlenecks induce important permeability fluctuations. The particle-particle and particle-wall interactions also play important roles on the clogging dynamics. Three different scenarios are discussed by analogy to crowd swarming: panic scenario (0.01 mM) where repulsion between particles induce pushing effects leading to the creation of robust arches at pore entrances; herding instinct scenario (10 mM) where the attraction (in secondary minima) between particles enhances the transport in pores and delays clogging; sacrifice scenario (100 mM) where the capture efficiency is high but the aggregates formed at the wall are fragile. These analyses illustrate the importance of collective behaviour exhibited by interacting particles during fouling. The fouling phenomena by biological particles (bacteria) are analysed in terms of the streamer formation conditions and mechanisms. The streamer formation phenomena are in turn analysed by playing with the cultivation conditions (the carbon to nitrogen ratio in the substrate) in order to study the effect of extracellular polymeric substances (EPS) on the process. The results show that EPS (and hence the bacterial cultivation conditions) play crucial role in streamer formation by microorganisms under flow in constrictions. Furthermore, the presence of non-EPS producing bacterial species along with EPS producing species in a mixed culture enhances the streamer formation. On the other hand, filtration of mixed particles and bacteria suspensions show that the presence of bacteria substantially modifies the clogging dynamics. Microfluidic devices with specific configurations have also been developed for fractionation in order to maximize performances of these processes. The preliminary results with these chips in cross-flow conditions show that it is possible to limit the clogging impact by working below a critical flux; their use for continuous microparticles fractionation could be then considered
Xu, Jin (Jin C. ). "Fabrication and function of microfluidic devices for monitoring of in-vitro fertilization processes." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40930.
Повний текст джерелаIncludes bibliographical references (leaf 36).
The process of assistive reproduction is often a headache and heartache for those who choose to go through it. The field currently relies heavily on morphological characteristics to determine embryo health and development success, a highly unreliable method. While they appear healthy at implantation, many embryos, in reality, have poor development potential and fail to survive within the womb. Therefore, to offset the high chances of miscarriage, multiple eggs are implanted in the uterus. This has occasionally lead to multi-fetal pregnancies, which have a higher maternal mortality risk, and, in general, is more physically demanding. This thesis researches a microfluidic device that aids in the crucial stages of in vitro- fertilization. The device allows for a fertilized egg to be cultured within, and provides the ability to carefully monitor its health through a series of metabolic assays, a better indication of embryo health. This microfluidic embryo health monitoring device is comprised of two layers of channel networks. It works through passing fluids along flow channels that are driven by control channels. The control layer, when pressurized with gas, operates as valves and peristaltic pumps along the flow layer to pump and transport fluids through the flow channels. As embryonic fluids are passed through the channels, the status of the fertilized egg can be monitored with metabolic assays taken of the embryo at various detection sites.
by Jin Xu.
S.B.
Abdelhady, Ahmed Mohammed Said lutfi. "Developing novel processes in chemistry for several types of nanoparticles." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/developing-novel-processes-in-chemistry-for-several-types-of-nanoparticles(0712d3c6-e2d5-415a-b787-c9ce457e1355).html.
Повний текст джерелаHaben, Patrick. "Controlling the Synthesis of Bunte Salt Stabilized Gold Nanoparticles Using a Microreactor Platform in Concert with Small Angle X-ray Scattering Analysis." Thesis, University of Oregon, 2013. http://hdl.handle.net/1794/13429.
Повний текст джерела2015-10-10
Janakiraman, Vijayakumar. "DESIGN, FABRICATION AND CHARACTERIZATION OF BIFURCATING MICROFLUIDIC NETWORKS FOR TISSUE-ENGINEERED PRODUCTS WITH BUILT-IN MICROVASCULATURE." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1196457966.
Повний текст джерелаSchianti, Juliana de Novais. "Sistemas de microcanais em vidro para aplicações em microfluidica." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-19082008-083259/.
Повний текст джерелаIn this work, a process for the fabrication of microchannels over borlosilicate 7059 Corning Glass is presented. The main objective is to develop a simple and complete process for the fabrication of microfluidic systems over glass, that can be further improved in the future, with the integration of optical, electronic and active microfluidic devices such as valves and micropumps, for sensing and flow control. The fabrication process has three main parts. The first part is the microchannel production, which is achieved through contact-lithography and wet etching. In the etching studies, a solution that led to the fabrication of channels with uniform and smooth surfaces, without residue formation was sought. The best results were attained with a HF + HCl + H2O (1:2:3), which allow for the production of channels with depths of up to 150 µm. The second part of the fabrication process is the microchannels encapsulation, which is achieved through direct (glass-glass) bonding at room temperature, with applied pressure ranging from 0.1 to 1.0 MPa. The best results were obtained with pressure values above 0.5 MPa, which allowed for the bonding of up to 95 -100% of the glass sufaces. The third part of the fabrication process concerns the interconnection with the outside environment, which involves hole production and the introduction of tubes, to allow external access of liquids. For the hole production, a computer controlled positioning system was developed, for accurate positioning of the glass substrate in the x, y and z directions, with a precision of a few micrometers. This system guaranteed the necessary alignment of the upper and lower glass substrates, which were bonded for the encapsulation of the microchannels. The holes were made with diamond burs with a common drill. Medical catheters and scalps were used as access tubes, with epoxy resin. The characterization of the fabricated microfluidic systems was achieved by monitoring the flow of aniline aqueous solutions, which was maintained through a peristaltic pump. Reproducible results were obtained, with the production smooth and residue free microchannels, which did not present leakage and exhibited a laminar flow behavior. These results are very promising for the future application of this process in the fabrication of devices for areas such as biotechnology and chemical analysis, among others.
Kirschbaum, Michael. "A microfluidic approach for the initiation and investigation of surface-mediated signal transduction processes on a single-cell level." Phd thesis, Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2009/3957/.
Повний текст джерелаZelluläre Interaktionen sind wirkungsvolle Mechanismen zur Kontrolle zellulärer Zustände in vivo. Für die Entschlüsselung der dabei beteiligten Signaltransduktionsprozesse müssen definierte Ereignisse entlang der zellulären Signalkaskade erfasst und ihre wechselseitige Beziehung zueinander aufgeklärt werden. Dies kann von Ensemble-Messungen nicht geleistet werden, da die Mittelung biologischer Daten die Variabilität des Antwortverhaltens individueller Zellen missachtet und verschwommene Resultate liefert. Nur eine Multiparameteranalyse auf Einzelzellebene kann die entscheidenden Informationen liefern, die für ein detailliertes Verständnis zellulärer Signalwege unabdingbar sind. Ziel der vorliegenden Arbeit war die Entwicklung einer Methode, welche die gezielte Kontaktierung einzelner Zellen mit anderen Zellen oder Partikeln ermöglicht und mit der die dadurch ausgelösten zellulären Reaktionen auf unterschiedlichen zeitlichen Ebenen analysiert und miteinander korreliert werden können. Da dies die schonende Handhabung einzeln adressierbarer Zellen erfordert, wurde ein auf Dielektrophorese (DEP) basierendes mikrofluidisches System eingesetzt, welches die berührungslose Manipulation mikroskaliger Objekte mit hoher zeitlicher und örtlicher Präzision erlaubt. Das System besitzt ein hohes Potential zur Automatisierung und Parallelisierung, was für eine robuste und reproduzierbare Analyse lebender Zellen essentiell, und daher eine wichtige Voraussetzung für eine Anwendung in der Biomedizin ist. Als Modellsystem für interzelluläre Kommunikation wurde die T-Zell-Aktivierung gewählt. Die Aktivierung der einzelnen T-Zellen wurde durch ihre gezielte Kontaktierung mit Mikropartikeln („beads“) induziert, welche mit Antikörpern gegen spezielle Oberflächenproteine, wie die dem T-Zell-Rezeptor assoziierte Kinase CD3 oder das kostimulatorische Protein CD28, beschichtet waren. Die Stimulation der Zellen mit den funktionalisierten beads führte zu einem raschen Anstieg der intrazellulären Ca2+-Konzentration, welche über eine ratiometrische Detektion des Ca2+-sensitiven Fluoreszenzfarbstoffs Fura-2 gemessen wurde. Anschließend wurden die einzelnen Zellen aus dem mikrofluidischen System isoliert und weiterkultiviert. Am nächsten Tag wurden Zellteilung und die CD69-Expression – ein wichtiger Marker für aktivierte T-Zellen – analysiert und auf Ebene der individuellen Zelle mit dem zuvor gemessenen Ca2+-Signal korreliert. Es stellte sich heraus, dass der zeitliche Verlauf des intrazellulären Ca2+-Signals zwischen aktivierten und nicht aktivierten, sowie zwischen geteilten und nicht geteilten Zellen signifikant verschieden war. Dies zeigt, dass Ca2+-Signale in stimulierten T-Zellen wichtige Informationen über eine spätere Reaktion der Zelle liefern können. Da Einzelzellen äußerst empfindlich auf ihre Umgebungsbedingungen reagieren, war die Anpassung der experimentellen Vorgehensweise im Hinblick auf die Zellverträglichkeit von großer Bedeutung. Vor diesem Hintergrund wurde der Einfluss sowohl der mikrofluidischen Umgebung, als auch der elektrischen Felder auf die Überlebensrate und die intrazelluläre Ca2+-Konzentration der Zellen untersucht. Während eine kurzzeitige DEP-Manipulation im mikrofluidischen System die Vitalität der Zellen nicht beeinträchtigte, zeigten diese unregelmäßige Fluktuationen ihrer intrazellulären Ca2+-Konzentration selbst bei geringer elektrischer Feldexposition. Die Ausprägung dieser Fluktuationen war abhängig von der Expositionszeit, der elektrischen Feldstärke und der Feldfrequenz. Über die Minimierung ihres Auftretens konnten experimentelle Bedingungen mit dem geringsten Einfluss auf die Physiologie der Zellen identifiziert werden. Die Möglichkeit, einzelne Zellen zeitlich definiert und präzise mit anderen Zellen oder Oberflächen zu kontaktieren, die unmittelbare Reaktion der Zellen zu messen und diese mit späteren Ereignissen der Zellantwort zu korrelieren, macht die hier vorgestellte Methode einzigartig im Vergleich mit anderen Ansätzen und eröffnet neue Wege, die der interzellulären Kommunikation zugrunde liegenden Mechanismen aufzuklären.
Книги з теми "Microfluidic processes"
Chakraborty, Suman. Microfluidics and Microfabrication. Boston, MA: Springer Science+Business Media, LLC, 2010.
Знайти повний текст джерела1938-, Casas-Vázquez J. (José), and Lebon G. (Georgy), eds. Extended irreversible thermodynamics. 4th ed. New York: Springer, 2010.
Знайти повний текст джерелаChakraborty, Suman. Microfluidics and Microscale Transport Processes. Taylor & Francis Group, 2012.
Знайти повний текст джерелаChakraborty, Suman. Microfluidics and Microscale Transport Processes. Taylor & Francis Group, 2012.
Знайти повний текст джерелаChakraborty, Suman. Microfluidics and Microscale Transport Processes. Taylor & Francis Group, 2012.
Знайти повний текст джерелаMicrofluidics and Microscale Transport Processes. Taylor & Francis Group, 2012.
Знайти повний текст джерелаDelamarche, Emmanuel, and Govind V. Kaigala. Open-Space Microfluidics: Concepts, Implementations, Applications. Wiley & Sons, Incorporated, John, 2018.
Знайти повний текст джерелаDelamarche, Emmanuel, and Govind V. Kaigala. Open-Space Microfluidics: Concepts, Implementations, Applications. Wiley & Sons, Limited, John, 2018.
Знайти повний текст джерелаDelamarche, Emmanuel, and Govind V. Kaigala. Open-Space Microfluidics: Concepts, Implementations, Applications. Wiley & Sons, Limited, John, 2018.
Знайти повний текст джерелаDelamarche, Emmanuel, and Govind V. Kaigala. Open-Space Microfluidics: Concepts, Implementations, Applications. Wiley & Sons, Incorporated, John, 2018.
Знайти повний текст джерелаЧастини книг з теми "Microfluidic processes"
Matson, Dean W., Peter M. Martin, Wendy D. Bennett, Dean E. Kurath, Yuehe Lin, and Donald J. Hammerstrom. "Fabrication Processes for Polymer-Based Microfluidic Analytical Devices." In Micro Total Analysis Systems ’98, 371–74. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5286-0_88.
Повний текст джерелаGaa, Ramona, Hannah Melina Mayer, Daniela Noack, and Achim Doerner. "Efficient Microfluidic Downstream Processes for Rapid Antibody Hit Confirmation." In Methods in Molecular Biology, 327–41. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3279-6_18.
Повний текст джерелаPrzekwas, A., V. Makhijani, M. Athavale, A. Klein, and P. Bartsch. "Computational Simulation of Bio-Microfluidic Processes in Integrated DNA Biochips." In Micro Total Analysis Systems 2000, 561–64. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-2264-3_132.
Повний текст джерелаKockmann, Norbert. "Microfluidic Networks." In Micro Process Engineering, 41–59. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527631445.ch2.
Повний текст джерелаBarthel, Lars, Philipp Kunz, Rudibert King, and Vera Meyer. "Harnessing Genetic and Microfluidic Approaches to Model Shear Stress Response in Cell Wall Mutants of the Filamentous Cell Factory Aspergillus niger." In Dispersity, Structure and Phase Changes of Proteins and Bio Agglomerates in Biotechnological Processes, 467–90. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63164-1_15.
Повний текст джерелаRabhi, F., G. Cheng, and T. Barriere. "Modeling of Viscoelasticity of Thermoplastic Polymers Employed in the Hot Embossing Process." In Lecture Notes in Mechanical Engineering, 251–60. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58006-2_19.
Повний текст джерелаFletcher, David F., Brian S. Haynes, Joëlle Aubin, and Catherine Xuereb. "Modeling of Microfluidic Devices." In Micro Process Engineering, 117–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527631445.ch5.
Повний текст джерелаBuchberger, Gerda, Martina Muck, Cristina Plamadeala, and Johannes Heitz. "Laser Structuring for Biomedical Applications." In Springer Series in Optical Sciences, 1105–65. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-14752-4_31.
Повний текст джерелаDasGupta, Sunando. "Microscale Transport Processes and Interfacial Force Field Characterization in Micro-cooling Devices." In Microfluidics and Microfabrication, 113–30. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1543-6_3.
Повний текст джерелаKashid, Madhvanand, Albert Renken, and Lioubov Kiwi-Minsker. "Effects of Microfluidics on Preparative Chemistry Processes." In Microreactors in Preparative Chemistry, 13–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527652891.ch02.
Повний текст джерелаТези доповідей конференцій з теми "Microfluidic processes"
Sun, Jianren, Christopher Bock, and Quanfang Chen. "Mechanical Properties of PDMS and Influences by Micromachining Processes." In ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72296.
Повний текст джерелаLaura Jáuregui, Ana, Héctor R. Siller, Ciro A. Rodriguez, Alex Elías-Zúñiga, and Vicente Jesus Segui. "Evaluation of Manufacturing Processes for Microfluidic Devices." In THIRD MANUFACTURING ENGINEERING SOCIETY INTERNATIONAL CONFERENCE: MESIC-09. AIP, 2009. http://dx.doi.org/10.1063/1.3273635.
Повний текст джерелаGalambos, Paul, and Conrad James. "Surface Micromachined Microfluidics: Example Microsystems, Challenges and Opportunities." In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73491.
Повний текст джерелаLi, Dongqing. "Electrokinetic Microfluidics and Biomedical Lab-on-a-Chip Devices." In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58305.
Повний текст джерелаLi, Dongqing. "Electrokinetic-Based Microfluidic Processes in Lab-on-a-Chip Devices." In ASME 2004 2nd International Conference on Microchannels and Minichannels. ASMEDC, 2004. http://dx.doi.org/10.1115/icmm2004-2322.
Повний текст джерелаDel Giudice, F., G. D’Avino, M. M. Villone, F. Greco, and P. L. Maffettone. "Particle manipulation through polymer solutions in microfluidic processes." In THE SECOND ICRANET CÉSAR LATTES MEETING: Supernovae, Neutron Stars and Black Holes. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4937289.
Повний текст джерелаGonçalves, Inês, Miguel Madureira, Inês Miranda, Helmut Schütte, Ana Moita, Graça Minas, Stefan Gassmann, and Rui Lima. "Separation Microfluidic Devices Fabricated by Different Milling Processes." In 15th International Conference on Biomedical Electronics and Devices. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0010906500003123.
Повний текст джерелаCairone, F., and M. Bucolo. "Design of control systems for two-phase microfluidic processes." In 2016 24th Mediterranean Conference on Control and Automation (MED). IEEE, 2016. http://dx.doi.org/10.1109/med.2016.7535866.
Повний текст джерелаChen, Jyh Jian, Guan Wei Duan, Jyun Cian Jheng, Jhen Yu Wu, Muw Shing Liu, and Jenn Der Lin. "Filling Processes of Microfluidic Flows with Dynamic Contact Angles." In 38th Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4280.
Повний текст джерелаLiu, Miao, Jianren Sun, Ying Sun, and Quanfang Chen. "Mechanical Properties of PDMS Membrane and Influences of Commonly Used Chemicals in Microfabrication." In 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70343.
Повний текст джерелаЗвіти організацій з теми "Microfluidic processes"
Rose, K. A Programmable MicroFluidic Processor: Integrated and Hybrid Solutions. Office of Scientific and Technical Information (OSTI), May 2002. http://dx.doi.org/10.2172/15006001.
Повний текст джерела