Добірка наукової літератури з теми "Métrologie des rayonnements ionisants"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Métrologie des rayonnements ionisants".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Métrologie des rayonnements ionisants"
Nourreddine, A., J. C. Adloff, M. Debeauvais, C. Heilmann, S. Higueret, A. Haessler, D. Husson, et al. "R&D métrologie des rayonnements ionisants à l’IPHC : de l’application des détecteurs visuels aux mesures environnementales." Radioprotection 41 (2006): S53—S69. http://dx.doi.org/10.1051/radiopro:2007015.
Повний текст джерелаMasse, Roland. "Rayonnements ionisants." Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie 323, no. 7 (July 2000): 633–40. http://dx.doi.org/10.1016/s0764-4469(00)00160-8.
Повний текст джерелаWassilieff, S. "Cataracte et rayonnements ionisants." Radioprotection 44, no. 4 (October 2009): 505–17. http://dx.doi.org/10.1051/radiopro/2009020.
Повний текст джерелаCoffigny, H., and B. Dutrillaux. "Effets héréditaires des rayonnements ionisants." Revue Générale Nucléaire, no. 3 (May 2004): 33–36. http://dx.doi.org/10.1051/rgn/20043033.
Повний текст джерелаAurengo, A. "Effets biologiques des rayonnements ionisants." Journal de Radiologie 89, no. 10 (October 2008): 1277. http://dx.doi.org/10.1016/s0221-0363(08)75804-9.
Повний текст джерелаAurengo, A. "Effets biologiques des rayonnements ionisants." Journal de Radiologie 90, no. 10 (October 2009): 1240. http://dx.doi.org/10.1016/s0221-0363(09)74959-5.
Повний текст джерелаLaroche, P. "Rayonnements ionisants : ombres et lumières." Archives des Maladies Professionnelles et de l'Environnement 70, no. 4 (September 2009): 371–72. http://dx.doi.org/10.1016/j.admp.2009.06.001.
Повний текст джерелаBOBYK, L., and M. VALENTE. "Le Laboratoire de Dosimétrie Biologique des Irradiations." Revue Médecine et Armées, Volume 50, Numéro 2 (June 6, 2024): 39–48. http://dx.doi.org/10.17184/eac.8637.
Повний текст джерелаBranchet, Éric, Simone Jaffre, and Brigitte Gougeon. "Les rayonnements ionisants à usages thérapeutiques." La Revue de l'Infirmière 64, no. 214 (October 2015): 47–48. http://dx.doi.org/10.1016/j.revinf.2015.07.015.
Повний текст джерела-WOLF, Pr Didier. "Rayonnements ionisants appliqués à la médecine." Revue de l'Electricité et de l'Electronique -, no. 03 (2000): 79. http://dx.doi.org/10.3845/ree.2000.028.
Повний текст джерелаДисертації з теми "Métrologie des rayonnements ionisants"
Schwendenmann, Grégory. "Étude de l'écoulement des bétons autoplaçants dans les coffrages à l'aide de la métrologie des rayonnements ionisants." Artois, 2006. http://www.theses.fr/2006ARTO0213.
Повний текст джерелаSelf compacting concretes (SCC) are particularly fluid. Thanks to this characteristic, they are set by a simple gravity effect without vibration. This leads to many advantages : savings thanks to an easy and fast setting, which save time and reduce tiresome work and noise pollution, etc. . . But SCC is a new material and it is important to know its specifications, in order to avoid disappointments due to a false use. The purpose of this thesis has been a development of measuring instruments so as to study SCC during its setting into the formworks. Methods using ionising rays, which allows very precise measures with a non-distroying manner for the fluid or hardened concrete, have been applied to the SCC study on behalf of the Commissariat à l’Énergie Atomique (CEA, Sarclay). The developped instruments have made possible to measure the characteristics from a micronic scale to the pluricentimetric scale. Several measures have been made : SCC has been studied within different conditions in laboratory and in situ, thanks to the partnership established with the Projet National Béton Autoplaçant (PN B@P). The results have allowed a better knowlegde of the SCC settings conditions, its behaviour during setting in the formworks and the effects on its characteristics at the hardened state. Thanks to the results realised within this research study, it is now known how thick the oil film sediment on the formwork face, the concrete composition next to the formwork face and the variations in the structure according to the composition and the setting conditions. The contribution of these measuring instruments is interesting to bring light into the dark for the actual knowledge
Salem, Youbba Ould. "Etude expérimentale et modélisation Monte Carlo des grandeurs opérationnelles en métrologie des rayonnements ionisants : application à la dosimétrie neutrons par radiophotoluminescence." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE016/document.
Повний текст джерелаWe characterize a passive dosimeter capable of measuring both fast and thermal neutrons for ambiant and persona! dosimetry. These neutrons can be detected in a mixed neutron-gamma field with appropriate converters (polyethylene for fast neutrons, cadmium for thermal neutrons). Monte Carlo simulations with MCNPX helped with the geometrical conception of the dosimeter and the choice of materials. The responses of the RPL dosimeter to these neutrons are linear in H*(1 O) and Hp(10) with detection limits of 2 mSv for fast neutrons and 0.19 mSv for thermal neutrons. The angular dependencies are satisfactory according to the ISO 21909 norm. A calibration factor of (9.5 +- 0.5)x10 exponent -2 mSv.cm2/RPL signal is obtained to the fast neutrons of the IPHC's 241 Am-Be calibrator. This factor is (9.7 +- 0.3)x10 exponent -3 mSv.cm2/RPL signal for the thermalized neutrons
Rodrigues, Matias. "Développement d'un bolomètre magnétique haute résolution en énergie pour la spectrométrie gamma appliquée à la détermination des intensités d'émission photonique." Paris 11, 2007. http://www.theses.fr/2007PA112277.
Повний текст джерелаThe analysis of radioactive materials requires a good knowledge of photon emission intensities. The goal of this thesis is to develop a detector that permits the improvement of the determination of photon emission intensities up to 200 keV, which are actually measured by semiconductor detectors. The performances of these detectors are close to their theoretical limits in terms of energy resolution. Hence we have chosen to develop detectors with a different physics principle: the magnetic calorimeters. This principle is based on a magnetization variation induced by a temperature rise consecutive to a photon interaction in the calorimeter. In order to maximize the signal to noise ratio, the magnetic calorimeters operate at very low temperatures (< 100 mK). A magnetic calorimeter has been optimised and built in order to have a theoretical energy resolution of 50 eV (FWHM) and an intrinsic detection efficiency of 69 % at 100 keV. The variation of magnetization has been read-out by a two-stage SQUID electronics via a pick-up coil. This coil was realised in thin films using photolithography in order to reduce the sensitivity to magnetic Johnson noise. The performances of the magnetic calorimeter were determined from the photon energy spectrum of a 133Ba source. These performances (linearity, energy resolution, detection efficiency curve…) have been compared with those of a germanium detector and with Monte Carlo simulations. The energy resolution was 340 eV up to 160 keV. The different ways to improve this energy resolution are discussed
Zahir, Mostafa Lokman. "Nouvelles références en énergie X et gamma inférieures à 100 keV établies à l'aide de calorimètres magnétiques ultra haute résolution." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP125.
Повний текст джерелаThe X and gamma rays emitted by radionuclides can be used to calibrate the energy scale of energy-dispersive detectors. This is particularly the case for cryogenic detectors, which offer excellent resolution but have non-linearities that need to be corrected. In order to calibrate these detectors accurately below 200 keV, it is necessary to have X-rays and gamma rays with an uncertainty of the order of 0.1 eV. However, recommended gamma-ray photon energies meeting this criterion are rare or based on a single experimental measurement. The main objective of this thesis is to measure gamma photons below 200 keV with excellent resolution in order to improve the uncertainties on their energies to around 0.1 eV. To meet this objective, a new cryogenic detector has been designed. It is a Metallic Magnetic Calorimeter (MMC) with eight 50 µm-thick gold absorbers covering a total surface area of 8.4 mm². An assembly was built to house: four MMC chips, two SQUID chips for reading-out the MMCs, and the printed circuits to connect them to the cables of the dilution refrigerator. The set-up also includes a cryogenic radioactive source sampler, specially designed to operate at very low temperatures and to measure up to four sources sequentially. The sources measured are mixtures of several radionuclides: three standard radionuclides used to correct the non-linearity of the MMC (169Yb, 57Co and 153Gd) and seven radionuclides used to measure their X and gamma energies with very low uncertainty (109Cd, 133Ba, 155Eu, 210Pb, 239Np, 241Am and 243Am). Mixtures of radionuclides in the sources were chosen by Monte Carlo simulations to minimise spectral interference. Ytterbium-169 was produced by irradiating a thulium foil with deuterons at the Arronax cyclotron.Two independent measurement sessions on two set of four sources were carried out at around 16 mK during two weeks, with different temperature control conditions. The energy resolution of the detector is 15 eV to 36 eV for gamma-rays between 0 keV and 200 keV. The non-linearity of each absorber was corrected using the lines of the standard radionuclides and a second-degree polynomial. The X-ray and gamma-ray energies measured were analysed and combined using various methods. Regardless ofthe measurement session and analysis method used, the energies obtained are consistent with each other, with only the uncertainties differing. In the end, the energies of 15 gamma-ray lines were measured and for 14 of them, the uncertainty obtained, around 0.2 eV, is lower than the recommended values. Eight Kα X-ray photon energies were also measured; for these well-known lines, very good agreement was observed with the recommended values, thus validating the methodology used in the work presented
Le, Bret Cindy. "Développement de calorimètres métalliques magnétiques pour le spectrométrie bêta." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112149/document.
Повний текст джерелаThe aim of this thesis is to demonstrate the potential of metallic magnetic calorimeters for beta spectrometry by measuring the spectrum of 63-Ni. This nuclide is one of the beta emitters for which theory is well-known and calculation reliable. We propose a method for experimental observation, especially at low energies, which allows to validate the theoretical calculation.A dedicated data analysis has been established and optimized. It takes into account the parameters of a cryogenic measurement and also the specific requirements of beta spectrometryTwo types of sources have been realized, a deposit of nickel salt from a dried drop of a solution of NiCl2 and a metallic electroplated source of Ni. The electroplated sources turn out to be the appropriate type of source for 63-Ni spectrometry.The performances of metallic magnetic calorimeters, such as high detection efficiency and low energy threshold, lead to results precise enough to validate experimentally the theory
Le-bret, Cindy. "Développement de Calorimètres Métalliques Magnétiques pour le Spectrométrie Bêta." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00740438.
Повний текст джерелаPerichon, Nicolas. "Etablissement des références nationales, en termes de dose absorbée, par calorimétrie dans l’eau, pour les faisceaux de rayons X de moyenne énergie, applicables en radiothérapie." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112153/document.
Повний текст джерелаLNE-LNHB current references for medium energy X-rays are established in terms of air kerma. Absorbed dose to water, which is the quantity of interest for radiotherapy, is obtained by transfer dosimetric techniques following a methodology described in international protocols. The aim of the thesis is to establish standards in terms of absorbed dose to water in the reference protocol conditions by water calorimetry. The basic principle of water calorimetry is to measure the absorbed dose from the rise in temperature of water under irradiation. A calorimeter was developed to perform measurements at a 2 cm depth in water according to IAEA TRS-398 protocol for medium energy x-rays. Absorbed dose rates to water measured by calorimetry were compared to the values established using protocols based on references in terms of air kerma. A difference lower than 2.1% was reported. Standard uncertainty of water calorimetry being 0.8%, the one associated to the values from protocols being around 3.0%, results are consistent considering the uncertainties. Thanks to these new standards, it will be possible to use IAEA TRS-398 protocol to determine absorbed dose to water: a significant reduction of uncertainties is obtained (divided by 3 by comparison with the application of the IAEA TRS-277 protocol). Currently, none of the counterparts’ laboratories own such an instrument allowing direct determination of standards in the reference conditions recommended by the international radiotherapy protocols
Dupont, Gabriel. "Dosimétrie pour la radioprotection dans des champs de rayonnements X jusqu'à des énergies de 3 MeV." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC231.
Повний текст джерелаThe evaluation of the dosimetric protection quantities used to ensure the three principles of the radiation protection is achieved by radiation survey meters. With a proper calibration, which is periodically controlled, these instruments give a dosimetric operational quantity, as the ambient dose equivalent rate H*(10) for example, which represents a good estimator of the effective dose E used to define regulatory ionizing radiation exposition limits for workers.So far before this thesis work, the periodic calibration control of radiation survey meters was achieved only by using radioactive sources, as the 137Cs, which emit mono-energetic gamma rays. Although this method is well known and standardized, it suffers from an energetic representativeness defect. Indeed, the ionizing radiation sources encountered are generally many and the environment enables diffusions which imply a broadened energetic spectrum. But the radiation survey meters are sensitive on large energetic ranges which response is not homogeneous.As part of this thesis work, realized in collaboration between ATRON METROLOGY and the LPC Caen, a calibration and calibration control of radiation survey meters method has been developed, validated and implemented. Broadened energetic X-rays fields, produced by the braking of electrons pre-accelerated by an electrostatic accelerator, are used rather than the mono-energetic gamma rays. This method offers a better representativeness in terms of metrology but is also a sustainable approach allowing to free the use of radioactive sources for calibration and calibration control of radiation survey meters
Boissière, Arnaud. "Contribution "K" à l'effet biologique des rayonnements ionisants." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2004. http://tel.archives-ouvertes.fr/tel-00006928.
Повний текст джерелаBERTIN, FEURGARD CATHERINE. "Effets des rayonnements ionisants sur les lipoproteines plasmatiques." Paris 6, 1998. http://www.theses.fr/1998PA066414.
Повний текст джерелаКниги з теми "Métrologie des rayonnements ionisants"
Laroche, Pierre. Terrorisme radiologique. Paris: Elsevier, 2004.
Знайти повний текст джерелаEstades, Elisabeth Remy Jacqueline. L'EXPERTISE EN PRATIQUE - Les risques liés à la vache folle et aux rayonnements ionisants. Paris: Editions L'Harmattan, 2003.
Знайти повний текст джерелаTubiana, Maurice, André Aurengo, and Dietrich Averbeck. La relation dose-effet et l'estimation des effets cancérogènes des faibles doses de rayonnements ionisants. Paris: Éditions Nucléon, 2005.
Знайти повний текст джерелаGuessab, Ali. Contribution à l'étude des effets psychophysiologiques (spécifiques) des rayonnements non-ionisants: Action des micro-ondes sur les mono-aminés biogènes dans le tissu cérébral et du comportement chez le rat blanc. Lille: A.N.R.T. Université de Lille III, 1986.
Знайти повний текст джерела1929-, Young Jack P., and Yalow Rosalyn S. 1921-, eds. Radiation and public perception: Benefits and risks. Washington, DC: American Chemical Society, 1995.
Знайти повний текст джерелаTakeshi, Yamada, ed. Biological effects of low dose radiation: Proceedings of the International Meeting on Biological Effects of Low Dose Radiation held in Cork, Ireland on 25-26 July 1999. Amsterdam: Elsevier, 2000.
Знайти повний текст джерелаBlanc. Les Rayonnements ionisants: Détection, dosimétrie, spectrométrie. Dunod, 1997.
Знайти повний текст джерелаBourgois, Laurent, and Rodolphe Antoni. Résolutions de problèmes sur les rayonnements ionisants. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2312-3.
Повний текст джерелаDuchêne, Arlette, and Jacques Joussot-Dubien. Les effets biologiques des rayonnements non ionisants. Flammarion Médecine, 2001.
Знайти повний текст джерелаIAEA. Normes Fondamentales Internationales de Protection Contre les Rayonnements Ionisants et de Sûreté des Sources de Rayonnements. International Atomic Energy Agency, 1997.
Знайти повний текст джерелаЧастини книг з теми "Métrologie des rayonnements ionisants"
Clavere, Pierre, Annie Bonnafoux-Clavere, and Jean-Marie Bonnetblanc. "Réactions cutanées induites par les rayonnements ionisants." In Manifestations dermatologiques des maladies du système hématopoïétique et oncologie dermatologique, 318–26. Paris: Springer Paris, 2009. http://dx.doi.org/10.1007/978-2-287-72092-5_25.
Повний текст джерелаAntoni, Rodolphe, and Laurent Bourgois. "Interaction des rayonnements ionisants dans les tissus : évaluations du kerma et de la dose absorbée." In Ingénierie et Développement Durable, 43–148. Paris: Springer Paris, 2013. http://dx.doi.org/10.1007/978-2-8178-0311-1_2.
Повний текст джерелаLaurier, Dominique, Enora Cléro, Claire Demoury, Aimée Lauzon, and Jean-François Lecomte. "Chapitre 31. Rayonnements ionisants." In Environnement et santé publique, 829–49. Presses de l’EHESP, 2023. http://dx.doi.org/10.3917/ehesp.goupi.2023.01.0829.
Повний текст джерелаCordoliani, Yves-Sébastien, and Hervé Foehrenbach. "Effets biologiques des rayonnements ionisants." In Radioprotection en milieu médical, 55–69. Elsevier, 2014. http://dx.doi.org/10.1016/b978-2-294-73982-8.00005-0.
Повний текст джерелаWhaites, Eric, and Nicholas Drage. "Rayonnements ionisants, dosimétrie et radioprotection." In Radiographie et Radiologie Dentaires, 57–64. Elsevier, 2019. http://dx.doi.org/10.1016/b978-2-294-74352-8.00006-x.
Повний текст джерелаGauron, M.-C., and A. Poivey-Bellagamba. "7 Risques des rayonnements ionisants." In Grossesse et travail, 283–304. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0847-2-011.
Повний текст джерелаGauron, M.-C., and A. Poivey-Bellagamba. "7 Risques des rayonnements ionisants." In Grossesse et travail, 283–304. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0847-2.c011.
Повний текст джерелаCordoliani, Yves-Sébastien, Jean-François Chateil, and Hubert Ducou le Pointe. "Effets biologiques des rayonnements ionisants." In Guide de Radioprotection en Milieu Médical, 59–74. Elsevier, 2023. http://dx.doi.org/10.1016/b978-2-294-78210-7.00005-0.
Повний текст джерелаPlante, Michel, Geneviève Ostiguy, and Martine Souques. "Chapitre 30. Rayonnements non ionisants." In Environnement et santé publique, 799–827. Presses de l’EHESP, 2023. http://dx.doi.org/10.3917/ehesp.goupi.2023.01.0799.
Повний текст джерела"Chapitre 6 : Détection des rayonnements ionisants." In Principes de radioprotection - Réglementation, 151–82. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0316-3-009.
Повний текст джерела