Добірка наукової літератури з теми "Methods of video data processing"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Methods of video data processing".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Methods of video data processing"
Chavate, Shrikant, and Ravi Mishra. "Efficient Detection of Abrupt Transitions Using Statistical Methods." ECS Transactions 107, no. 1 (April 24, 2022): 6541–52. http://dx.doi.org/10.1149/10701.6541ecst.
Повний текст джерелаGu, Chong, and Zhan Jun Si. "Applied Research of Assessment Methods on Video Quality." Applied Mechanics and Materials 262 (December 2012): 157–62. http://dx.doi.org/10.4028/www.scientific.net/amm.262.157.
Повний текст джерелаEt. al., G. Megala,. "State-Of-The-Art In Video Processing: Compression, Optimization And Retrieval." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 5 (April 11, 2021): 1256–72. http://dx.doi.org/10.17762/turcomat.v12i5.1793.
Повний текст джерелаWei, Bo, Kai Li, Chengwen Luo, Weitao Xu, Jin Zhang, and Kuan Zhang. "No Need of Data Pre-processing." ACM Transactions on Internet of Things 2, no. 4 (November 30, 2021): 1–26. http://dx.doi.org/10.1145/3467980.
Повний текст джерелаLi, Hui, Yapeng Liu, Wenzhong Lin, Lingwei Xu, and Junyin Wang. "Data Association Methods via Video Signal Processing in Imperfect Tracking Scenarios: A Review and Evaluation." Mathematical Problems in Engineering 2020 (August 31, 2020): 1–26. http://dx.doi.org/10.1155/2020/7549816.
Повний текст джерелаGuo, Jianbang, Peng Sun, and Sang-Bing Tsai. "A Study on the Optimization Simulation of Big Data Video Image Keyframes in Motion Models." Wireless Communications and Mobile Computing 2022 (March 16, 2022): 1–12. http://dx.doi.org/10.1155/2022/2508174.
Повний текст джерелаLi, Gang, Ainiwaer Aizimaiti, and Yan Liu. "Quaternion Model of Fast Video Quality Assessment Based on Structural Similarity Normalization." Applied Mechanics and Materials 380-384 (August 2013): 3982–85. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.3982.
Повний текст джерелаKandriasari, Annis, Robinson Situmorang, Suyitno Muslim, and Jhoni Lagun Siang. "HOW TO DEVELOP A BREAD PROCESSING VIDEO STORYBOARD." Asia Proceedings of Social Sciences 5, no. 2 (December 30, 2019): 137–41. http://dx.doi.org/10.31580/apss.v5i2.1132.
Повний текст джерелаSabot, F., M. Naaim, F. Granada, E. Suriñach, P. Planet, and G. Furdada. "Study of avalanche dynamics by seismic methods, image-processing techniques and numerical models." Annals of Glaciology 26 (1998): 319–23. http://dx.doi.org/10.3189/1998aog26-1-319-323.
Повний текст джерелаSabot, F., M. Naaim, F. Granada, E. Suriñach, P. Planet, and G. Furdada. "Study of avalanche dynamics by seismic methods, image-processing techniques and numerical models." Annals of Glaciology 26 (1998): 319–23. http://dx.doi.org/10.1017/s0260305500015032.
Повний текст джерелаДисертації з теми "Methods of video data processing"
Karlsson, Linda S. "Spatio-Temporal Pre-Processing Methods for Region-of-Interest Video Coding." Licentiate thesis, Mid Sweden University, Department of Information Technology and Media, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-51.
Повний текст джерелаIn video transmission at low bit rates the challenge is to compress the video with a minimal reduction of the percieved quality. The compression can be adapted to knowledge of which regions in the video sequence are of most interest to the viewer. Region of interest (ROI) video coding uses this information to control the allocation of bits to the background and the ROI. The aim is to increase the quality in the ROI at the expense of the quality in the background. In order for this to occur the typical content of an ROI for a particular application is firstly determined and the actual detection is performed based on this information. The allocation of bits can then be controlled based on the result of the detection.
In this licenciate thesis existing methods to control bit allocation in ROI video coding are investigated. In particular pre-processing methods that are applied independently of the codec or standard. This makes it possible to apply the method directly to the video sequence without modifications to the codec. Three filters are proposed in this thesis based on previous approaches. The spatial filter that only modifies the background within a single frame and the temporal filter that uses information from the previous frame. These two filters are also combined into a spatio-temporal filter. The abilities of these filters to reduce the number of bits necessary to encode the background and to successfully re-allocate these to the ROI are investigated. In addition the computational compexities of the algorithms are analysed.
The theoretical analysis is verified by quantitative tests. These include measuring the quality using both the PSNR of the ROI and the border of the background, as well as subjective tests with human test subjects and an analysis of motion vector statistics.
The qualitative analysis shows that the spatio-temporal filter has a better coding efficiency than the other filters and it successfully re-allocates the bits from the foreground to the background. The spatio-temporal filter gives an improvement in average PSNR in the ROI of more than 1.32 dB or a reduction in bitrate of 31 % compared to the encoding of the original sequence. This result is similar to or slightly better than the spatial filter. However, the spatio-temporal filter has a better performance, since its computational complexity is lower than that of the spatial filter.
Hamlet, Sean Michael. "COMPARING ACOUSTIC GLOTTAL FEATURE EXTRACTION METHODS WITH SIMULTANEOUSLY RECORDED HIGH-SPEED VIDEO FEATURES FOR CLINICALLY OBTAINED DATA." UKnowledge, 2012. http://uknowledge.uky.edu/ece_etds/12.
Повний текст джерелаSzolgay, Daniel. "Video event detection and visual data pro cessing for multimedia applications." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14313/document.
Повний текст джерелаThis dissertation (i) describes an automatic procedure for estimating the stopping condition of non-regularized iterative deconvolution methods based on an orthogonality criterion of the estimated signal and its gradient at a given iteration; (ii) presents a decomposition method that splits the image into geometric (or cartoon) and texture parts using anisotropic diffusion with orthogonality based parameter estimation and stopping condition, utilizing the theory that the cartoon and the texture components of an image should be independent of each other; (iii) describes a method for moving foreground object extraction in sequences taken by wearable camera, with strong motion, where the camera motion compensated frame differencing is enhanced with a novel kernel-based estimation of the probability density function of the background pixels. The presented methods have been thoroughly tested and compared to other similar algorithms from the state-of-the-art
Ліпчанська, Оксана Валентинівна. "Методи обробки та передачі даних для підсистеми інформаційного забезпечення машиніста локомотива". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41022.
Повний текст джерелаThe thesis is in candidacy for a scientific degree of candidate of technical sciences in specialty 05.13.05 – computer systems and components. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The thesis solves the problem of developing methods for processing and transmitting data for the locomotive driver's information support subsystem. Based on the study of modern methods and means of processing and transmitting data on railway transport, it is established that there is a contradiction between the increase in the speed and intensity of railway traffic, the increase in the number of emergency areas, the complexity of the railway transport management system, the increase in the requirements for railway transport safety and the applied mathematical apparatus and technologies of coding / decoding. The choice of technology of mathematical formalization based on queuing networks and neural networks is justified. A conceptual model of the wireless segment of the locomotive driver's information support subsystem has been developed, which is built using 4G technology and takes into account the QPSK modulation type and the interleaving procedure for frame transmission to reduce the probability of erroneous reception while ensuring a high data rate. A mathematical model of the process of transmitting video data over a physical distributed uplink channel that takes into account the peculiarities of video data transmission in accordance with the LTE standard under dynamic conditions of the railway main line is developed and allows to estimate a wide range of robabilitytemporal characteristics of the video data transmission process in the locomotive driver's information support subsystem. A mathematical model of access control to the segment of a locomotive driver's information support subsystem has been developed, which takes into account the peculiarities of video data transmission in accordance with the LTE standard in the dynamic conditions of the railway line. The procedure for noiseless decoding of streaming video in the wireless 4G network segment of the locomotive driver’s information support subsystem is improved. It allows to increase efficiency in data transfer, to reduce the total number of calculations during decoding and to release the computing resources of the computerized system. An intelligent system for monitoring the state of dangerous sections of the railway using an adapted convolution neural network has been developed, which makes it possible to increase the reliability of the recognition of dangerous situations at railway crossings and inform the driver in the event of a critical situation. Practical recommendations as for the developed methods application are substantiated.
Ліпчанська, Оксана Валентинівна. "Методи обробки та передачі даних для підсистеми інформаційного забезпечення машиніста локомотива". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40900.
Повний текст джерелаThe thesis is in candidacy for a scientific degree of candidate of technical sciences in specialty 05.13.05 – computer systems and components. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The thesis solves the problem of developing methods for processing and transmitting data for the locomotive driver's information support subsystem. Based on the study of modern methods and means of processing and transmitting data on railway transport, it is established that there is a contradiction between the increase in the speed and intensity of railway traffic, the increase in the number of emergency areas, the complexity of the railway transport management system, the increase in the requirements for railway transport safety and the applied mathematical apparatus and technologies of coding / decoding. The choice of technology of mathematical formalization based on queuing networks and neural networks is justified. A conceptual model of the wireless segment of the locomotive driver's information support subsystem has been developed, which is built using 4G technology and takes into account the QPSK modulation type and the interleaving procedure for frame transmission to reduce the probability of erroneous reception while ensuring a high data rate. A mathematical model of the process of transmitting video data over a physical distributed uplink channel that takes into account the peculiarities of video data transmission in accordance with the LTE standard under dynamic conditions of the railway main line is developed and allows to estimate a wide range of robabilitytemporal characteristics of the video data transmission process in the locomotive driver's information support subsystem. A mathematical model of access control to the segment of a locomotive driver's information support subsystem has been developed, which takes into account the peculiarities of video data transmission in accordance with the LTE standard in the dynamic conditions of the railway line. The procedure for noiseless decoding of streaming video in the wireless 4G network segment of the locomotive driver’s information support subsystem is improved. It allows to increase efficiency in data transfer, to reduce the total number of calculations during decoding and to release the computing resources of the computerized system. An intelligent system for monitoring the state of dangerous sections of the railway using an adapted convolution neural network has been developed, which makes it possible to increase the reliability of the recognition of dangerous situations at railway crossings and inform the driver in the event of a critical situation. Practical recommendations as for the developed methods application are substantiated.
Pinto, Allan da Silva 1984. "A countermeasure method for video-based face spoofing attacks : Detecção de tentativas de ataque com vídeos digitais em sistemas de biometria de face." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275616.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-23T22:22:57Z (GMT). No. of bitstreams: 1 Pinto_AllandaSilva_M.pdf: 47523880 bytes, checksum: 072eb0490c26631b80cdcc47d55a4817 (MD5) Previous issue date: 2013
Resumo: O resumo poderá ser visualizado no texto completo da tese digital
Abstract: The complete abstract is available with the full electronic document
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
Toivonen, T. (Tuukka). "Efficient methods for video coding and processing." Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514286957.
Повний текст джерелаJones, Jonathan A. "Nuclear magnetic resonance data processing methods." Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:7df97c9a-4e65-4c10-83eb-dfaccfdccefe.
Повний текст джерелаChen, Jiawen (Jiawen Kevin). "Efficient data structures for piecewise-smooth video processing." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66003.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 95-102).
A number of useful image and video processing techniques, ranging from low level operations such as denoising and detail enhancement to higher level methods such as object manipulation and special effects, rely on piecewise-smooth functions computed from the input data. In this thesis, we present two computationally efficient data structures for representing piecewise-smooth visual information and demonstrate how they can dramatically simplify and accelerate a variety of video processing algorithms. We start by introducing the bilateral grid, an image representation that explicitly accounts for intensity edges. By interpreting brightness values as Euclidean coordinates, the bilateral grid enables simple expressions for edge-aware filters. Smooth functions defined on the bilateral grid are piecewise-smooth in image space. Within this framework, we derive efficient reinterpretations of a number of edge-aware filters commonly used in computational photography as operations on the bilateral grid, including the bilateral filter, edgeaware scattered data interpolation, and local histogram equalization. We also show how these techniques can be easily parallelized onto modern graphics hardware for real-time processing of high definition video. The second data structure we introduce is the video mesh, designed as a flexible central data structure for general-purpose video editing. It represents objects in a video sequence as 2.5D "paper cutouts" and allows interactive editing of moving objects and modeling of depth, which enables 3D effects and post-exposure camera control. In our representation, we assume that motion and depth are piecewise-smooth, and encode them sparsely as a set of points tracked over time. The video mesh is a triangulation over this point set and per-pixel information is obtained by interpolation. To handle occlusions and detailed object boundaries, we rely on the user to rotoscope the scene at a sparse set of frames using spline curves. We introduce an algorithm to robustly and automatically cut the mesh into local layers with proper occlusion topology, and propagate the splines to the remaining frames. Object boundaries are refined with per-pixel alpha mattes. At its core, the video mesh is a collection of texture-mapped triangles, which we can edit and render interactively using graphics hardware. We demonstrate the effectiveness of our representation with special effects such as 3D viewpoint changes, object insertion, depthof- field manipulation, and 2D to 3D video conversion.
by Jiawen Chen.
Ph.D.
Grundmann, Matthias. "Computational video: post-processing methods for stabilization, retargeting and segmentation." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47596.
Повний текст джерелаКниги з теми "Methods of video data processing"
1947-, Trollip Stanley R., and Alessi Stephen M. 1951-, eds. Multimedia for learning: Methods and development. 3rd ed. Boston: Allyn and Bacon, 2001.
Знайти повний текст джерела1947-, Trollip Stanley R., ed. Computer-based instruction: Methods and development. Englewood Cliffs, N.J: Prentice-Hall, 1985.
Знайти повний текст джерела1947-, Trollip Stanley R., ed. Computer-based instruction: Methods and development. 2nd ed. Englewood Cliffs, N.J: Prentice Hall, 1991.
Знайти повний текст джерелаComaniciu, Dorin, Rudolf Mester, Kenichi Kanatani, and David Suter, eds. Statistical Methods in Video Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b104157.
Повний текст джерелаData driven statistical methods. London: Chapman & Hall, 1998.
Знайти повний текст джерелаGrigorev, Anatoliy. Methods and algorithms of data processing. ru: INFRA-M Academic Publishing LLC., 2017. http://dx.doi.org/10.12737/22119.
Повний текст джерелаGrigor'ev, Anatoliy, and Evgeniy Isaev. Methods and algorithms of data processing. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1032305.
Повний текст джерелаKiselev, I︠U︡. V. (I︠U︡riĭ Vasilʹevich), ed. Statistical methods of geophysical data processing. Singapore: World Scientific, 2010.
Знайти повний текст джерелаMcQuillin, Lon B. Computers in video production. White Plains, NY: Knowledge Industry Publications, 1986.
Знайти повний текст джерелаBrezinski, Claude. Extrapolation methods: Theory and practice. Amsterdam: North-Holland, 1991.
Знайти повний текст джерелаЧастини книг з теми "Methods of video data processing"
Jinbo, Wu. "Semantic Marking Method of Video Scene Based on 3D Convolutional Neural Network." In Data Processing Techniques and Applications for Cyber-Physical Systems (DPTA 2019), 2019–26. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1468-5_238.
Повний текст джерелаFrejlichowski, Dariusz. "A Method for Data Extraction from Video Sequences for Automatic Identification of Football Players Based on Their Numbers." In Image Analysis and Processing – ICIAP 2011, 356–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24085-0_37.
Повний текст джерелаMüller, Karsten, Heiko Schwarz, Peter Eisert, and Thomas Wiegand. "Video Data Processing." In Digital Transformation, 43–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58134-6_4.
Повний текст джерелаTöppe, Eno, Martin R. Oswald, Daniel Cremers, and Carsten Rother. "Silhouette-Based Variational Methods for Single View Reconstruction." In Video Processing and Computational Video, 104–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24870-2_5.
Повний текст джерелаBraithwaite, A., and F. J. Smith. "Processing chromatographic data." In Chromatographic Methods, 399–425. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-0599-6_8.
Повний текст джерелаFurht, Borko, Stephen W. Smoliar, and HongJiang Zhang. "Video Processing Using Compressed Data." In Video and Image Processing in Multimedia Systems, 323–34. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2277-5_13.
Повний текст джерелаSinghal, Kanika, and Abhineet Anand. "Video Processing Using Data Mining." In Proceedings of International Conference in Mechanical and Energy Technology, 41–48. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2647-3_4.
Повний текст джерелаSalomon, David. "Video Compression." In A Guide to Data Compression Methods, 227–39. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21708-6_6.
Повний текст джерелаLeal-Taixé, Laura, Matthias Heydt, Axel Rosenhahn, and Bodo Rosenhahn. "Understanding What we Cannot See: Automatic Analysis of 4D Digital In-Line Holographic Microscopy Data." In Video Processing and Computational Video, 52–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24870-2_3.
Повний текст джерелаBraithwaite, A., and F. J. Smith. "Processing of Chromatographic Data." In Chromatographic Methods, 322–39. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4093-2_8.
Повний текст джерелаТези доповідей конференцій з теми "Methods of video data processing"
he, wei. "Research on mixed data processing methods in Raman spectrum." In 2018 International Conference on Image, Video Processing and Artificial Intelligence, edited by Ruidan Su. SPIE, 2018. http://dx.doi.org/10.1117/12.2513979.
Повний текст джерелаLiu, Yifei, Yuzhe Wang, Wenhui Wang, and Minda Zhang. "Comparison on video object segmentation: methods and results." In International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2021), edited by Feng Wu, Jinping Liu, and Yanping Chen. SPIE, 2022. http://dx.doi.org/10.1117/12.2631435.
Повний текст джерелаYang, Shuang, Jiawei Ren, Xiuhua Jiang, and Hao Liu. "The New Improved Data Processing Methods in Video Quality Subjective Assessment." In 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, 2016. http://dx.doi.org/10.1109/ihmsc.2016.162.
Повний текст джерелаWang, Hongtao, Xinhua Li, and Shusheng Wang. "A Video Data Processing Method for Space Application." In ICDSP 2020: 2020 4th International Conference on Digital Signal Processing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3408127.3408147.
Повний текст джерелаYang, Shuang, Yifan Wang, Fang Meng, Xiuhua Jiang, and Hao Liu. "The comparison and improvement of data processing methods in video quality subjective assessment." In 2014 7th International Congress on Image and Signal Processing (CISP). IEEE, 2014. http://dx.doi.org/10.1109/cisp.2014.7003852.
Повний текст джерелаPyataeva, A. V., and M. S. Eliseeva. "Video based human smoking event detection method." In Spatial Data Processing for Monitoring of Natural and Anthropogenic Processes 2021. Crossref, 2021. http://dx.doi.org/10.25743/sdm.2021.75.39.041.
Повний текст джерелаMaungMaung, Imdad, KokSheik Wong, and Kiyoshi Tanaka. "Reversible data hiding methods based on audio and video synchronization in MP4 container." In 2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). IEEE, 2016. http://dx.doi.org/10.1109/ispacs.2016.7824699.
Повний текст джерелаMacHuchon, Keith R., Wehan J. Wessels, Chin H. Wu, and Paul C. Liu. "The Use of Streamed Digital Video Data and Binocular Stereoscopic Image System (BiSIS) Processing Methods to Analyze Ocean Wave Field Kinematics." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79853.
Повний текст джерелаZhao, Shiwei, Li Zhuo, Zhu Xiao, and Lansun Shen. "A Data-Mining Based Video Shot Classification Method." In 2009 2nd International Congress on Image and Signal Processing (CISP). IEEE, 2009. http://dx.doi.org/10.1109/cisp.2009.5303957.
Повний текст джерелаMomeni, Hamed, and Arvin Ebrahimkhanlou. "Applications of High-Dimensional Data Analytics in Structural Health Monitoring and Non-Destructive Evaluation: Thermal Videos Processing Using Tensor-Based Analysis." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-71878.
Повний текст джерелаЗвіти організацій з теми "Methods of video data processing"
Bates, C. Richards, Melanie Chocholek, Clive Fox, John Howe, and Neil Jones. Scottish Inshore Fisheries Integrated Data System (SIFIDS): Work package (3) final report development of a novel, automated mechanism for the collection of scallop stock data. Edited by Mark James and Hannah Ladd-Jones. Marine Alliance for Science and Technology for Scotland (MASTS), 2019. http://dx.doi.org/10.15664/10023.23449.
Повний текст джерелаDeVore, Ronald A., Peter G. Binev, and Robert C. Sharpley. Advanced Mathematical Methods for Processing Large Data Sets. Fort Belvoir, VA: Defense Technical Information Center, October 2008. http://dx.doi.org/10.21236/ada499985.
Повний текст джерелаHealey, Glenn. Advanced Methods for Representing and Processing Hyperspectral Image Data. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada581465.
Повний текст джерелаChouikha, Mohamed F. A Study of Inverse Methods for Processing of Radar Data. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada462060.
Повний текст джерелаCarter, R. J. Modification and Validation of an Automotive Data Processing Unit, Compessed Video System, and Communications Equipment. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/2734.
Повний текст джерелаWalsh, Jon. On-the-fly nuclear data processing methods for Monte Carlo simulations of fast spectrum systems. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1213517.
Повний текст джерелаBoyd, Thomas J., and Richard B. Coffin. Isotope Ratio Spectrometry Data Processing Software: Multivariate Statistical Methods for Hydrocarbon Source Identification and Comparison. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada422798.
Повний текст джерелаSelvaraju, Ragul, SHABARIRAJ SIDDESWARAN, and Hariharan Sankarasubramanian. The Validation of Auto Rickshaw Model for Frontal Crash Studies Using Video Capture Data. SAE International, September 2020. http://dx.doi.org/10.4271/2020-28-0490.
Повний текст джерелаSelvaraju, Ragul, SHABARIRAJ SIDDESWARAN, and Hariharan Sankarasubramanian. The Validation of Auto Rickshaw Model for Frontal Crash Studies Using Video Capture Data. SAE International, September 2020. http://dx.doi.org/10.4271/2020-28-0490.
Повний текст джерелаLabonté, M. Description of computer methods and computer programs for correspondence analysis and use of the dendograph analysis as means of coal data processing. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1989. http://dx.doi.org/10.4095/126758.
Повний текст джерела