Добірка наукової літератури з теми "METAMATERIA"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "METAMATERIA".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "METAMATERIA"
Hamid, Sofian. "Design of Multiband Miniaturized Antenna using Metamaterial Concept for WLAN/WiMAX Application." JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI 1, no. 1 (March 4, 2011): 1. http://dx.doi.org/10.36722/sst.v1i1.11.
Повний текст джерелаNasiri, Badr, Ahmed Errkik, Jamal Zbitou, Abdelali Tajmouati, Larbi El Abdellaoui, and Mohamed Latrach. "A Compact Planar Low-Pass Filter Based on SRR-Metamateria." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 6 (December 1, 2018): 4972. http://dx.doi.org/10.11591/ijece.v8i6.pp4972-4980.
Повний текст джерелаTan, Plum, and Singh. "Surface Lattice Resonances in THz Metamaterials." Photonics 6, no. 3 (June 26, 2019): 75. http://dx.doi.org/10.3390/photonics6030075.
Повний текст джерелаRen, Yi, Minghui Duan, Rui Guo, and Jing Liu. "Printed Transformable Liquid-Metal Metamaterials and Their Application in Biomedical Sensing." Sensors 21, no. 19 (September 22, 2021): 6329. http://dx.doi.org/10.3390/s21196329.
Повний текст джерелаZhou, Xiaoshu, Qide Xiao, and Han Wang. "Metamaterials Design Method based on Deep learning Database." Journal of Physics: Conference Series 2185, no. 1 (January 1, 2022): 012023. http://dx.doi.org/10.1088/1742-6596/2185/1/012023.
Повний текст джерелаLi, Yafei, Jiangtao Lv, Qiongchan Gu, Sheng Hu, Zhigang Li, Xiaoxiao Jiang, Yu Ying, and Guangyuan Si. "Metadevices with Potential Practical Applications." Molecules 24, no. 14 (July 22, 2019): 2651. http://dx.doi.org/10.3390/molecules24142651.
Повний текст джерелаHu, Hua-Liang, Ji-Wei Peng, and Chun-Ying Lee. "Dynamic Simulation of a Metamaterial Beam Consisting of Tunable Shape Memory Material Absorbers." Vibration 1, no. 1 (July 18, 2018): 81–92. http://dx.doi.org/10.3390/vibration1010007.
Повний текст джерелаGu, Leilei, Hongzhan Liu, Zhongchao Wei, Ruihuan Wu, and Jianping Guo. "Optimized Design of Plasma Metamaterial Absorber Based on Machine Learning." Photonics 10, no. 8 (July 27, 2023): 874. http://dx.doi.org/10.3390/photonics10080874.
Повний текст джерелаKaschke, Johannes, and Martin Wegener. "Optical and Infrared Helical Metamaterials." Nanophotonics 5, no. 4 (September 1, 2016): 510–23. http://dx.doi.org/10.1515/nanoph-2016-0005.
Повний текст джерелаHou, Zheyu, Pengyu Zhang, Mengfan Ge, Jie Li, Tingting Tang, Jian Shen, and Chaoyang Li. "Metamaterial Reverse Multiple Prediction Method Based on Deep Learning." Nanomaterials 11, no. 10 (October 11, 2021): 2672. http://dx.doi.org/10.3390/nano11102672.
Повний текст джерелаДисертації з теми "METAMATERIA"
Ni, Sisi (Sisi Sophie). "Phononic metamaterials based on complex geometries : "a new kind of metamaterial"." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89957.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references.
Facing the growing challenges of energy, environment, security and disease treatment, the demand for novel materials are growing. While the material centric approach have resulted in development of new materials for advanced applications, we introduce a geometric approach as a complementary point of view for further innovation in this ever expanding and growing field. Inspired by the ubiquitous fractals-like geometry of in natures, the scale transformation (i.e. dilation or contraction) is included in the framework since fractal geometries shows structures at all scales (usually discrete and finite in physical world). We developed our framework using metamaterials since it enable us to design "atoms" or "molecules" and their relative arrangement with greater freedom (i.e. not limited by the chemical bond or ionic bond in classical materials system). We studied metamaterials using prefractals from both exact-self similar fractal and random fractal samples. For exact-self similar fractals, we choose H tree based prefractals and Hilbert Curve prefractals bounded system given their unique geometric properties and wide applications. Guided by the framework, we investigated several key parameters (e.g. level of iteration, geometric anisotropy, impedance contrast, arrangement of subunit, resolution) that would dictate the dispersion behavior of the system. It was found that for exact-self similar prefractals, multiple spectrum bandgaps (i.e. broadband response) can be achieved with increased level of iterations where translation symmetry is imposed through boundary condition. Furthermore, the transition from scale dependence and independent described by the general framework has been observed for all the samples we studied. Furthermore, for single prefractal resonator, subwavelength (~1/75[lambda]) behavior has been observed and explained using a simple analytical model. For metamaterials based on fractional Brownian motion, the Hurst constant is found to be a good indicator of phononic behavior of the system, besides other parameters studied. Our findings does not only expand the repertoire for novel materials by introducing the ubiquitous yet unconventional geometry to metamaterials; but also have interdisciplinary applications in biology, seismology, arts, hence shine lights on our understanding of nature.
by Sisi (Sophie) Ni.
Ph. D.
Macêdo, Jorge Andrey da Silva. "Formalismo FDTD para a modelagem de meios dispersivos apresentando anisotropia biaxial." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/18/18155/tde-15102008-135510/.
Повний текст джерелаThis work introduces an extended two-dimensional finite difference time domain method (2D-FDTD) for the simulation of metamaterial based structures. The dispersive nature of these media is accurately taken into account through the inclusion of the Drude material models for the permittivity and permeability tensors. All tensor elements are properly accounted for, making the formalism quite attractive for the modeling of a general class of electromagnetic structures. Two striking effects are investigated with the proposed model, namely, the invisibility cloaking and the field rotation effects. Both effects require the utilization of a coordinate transformation technique which must be applied only in the region where the electromagnetic field needs to be manipulated, taking advantage of the invariance of Maxwell\'s equations with respect to these operations. This technique locally redefines the permittivity and permeability parameters of the transformed media. The implemented formalism has proved to be quite stable and accurate, a direct consequence of the dispersive nature of the Drude material model, which characterizes it as a good contribution to fully understand the phenomenology behind these fascinating effects. The numerical results are in good agreement with those available in the literature. It was also verified that both structures are very sensitive to frequency variations of the excitation field.
Martínek, Luděk. "Antény s kryty z metamateriálů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-219978.
Повний текст джерелаSartori, Eduardo Jose. "Metodologia experimental de desenvolvimento de grades metamateriais com permissividade quase-zero e negativa." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260806.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-14T23:26:41Z (GMT). No. of bitstreams: 1 Sartori_EduardoJose_D.pdf: 11903812 bytes, checksum: 6e06f001155d33b841c61ae93464c897 (MD5) Previous issue date: 2009
Resumo: Metamateriais são estruturas ou arranjos geométricos feitos a partir de materiais comuns, dielétricos, condutores, magnéticos ou por combinação destes. Os metamateriais caracterizam-se principalmente por apresentarem propriedades especiais de permissividade ( e) e permeabilidade ( µ) não encontradas nos materiais em estado natural, cujo principal efeito é o índice negativo de refração (n < 0). Essas características permitem seu emprego em diversos tipos de aplicações em eletromagnetismo e óptica, tais como filtros passa-faixa e rejeita-faixa, espelhos dielétricos, super lentes etc. Normalmente, o equacionamento envolvido no cálculo de parâmetros dos metamateriais são complexos e, na maioria das vezes, necessitam de apoio computacional. Por este motivo, o presente trabalho traz um estudo experimental sobre dois tipos de comportamento metamaterial, o de permissividade quase-zero e negativa, analisando seu desempenho sob vários aspectos geométricos e de características dos materiais envolvidos, além de propor uma metodologia de desenvolvimento, a qual possibilita um rápido dimensionamento de diversos tipos de grades metamateriais, baseada em cálculos simples ou consulta direta a tabelas e curvas de projeto.
Abstract: Metamaterials are structures or geometric arrangements made from common materials, dielectrics, conductors, magnetic or a combination of these. Metamaterials are characterized mainly because of their special characteristics of permittivity ( e) and permeability ( µ), not found in the materials at natural state, whose main effect is the negative index of refraction (n <0). These characteristics allow its use in several types of applications in electromagnetism and optics, such as band-pass and band-stop filters, dielectric mirrors, super lenses etc.. Typically, the equations involved in the calculation of parameters of metamaterials are complex and, in most cases, require high capability computational methods. For this reason, this work presents an experimental study on two types of metamaterial behavior, near-zero and negative permittivity, examining its performance in several geometric aspects and characteristics of the materials involved, and propose a development methodology, which allows a fast scaling of various types of metamaterials grids, based on simple calculations or direct consultation tables and curves design.
Doutorado
Telecomunicações e Telemática
Doutor em Engenharia Elétrica
Strikwerda, Andrew. "Metamaterial enhanced coupling." Thesis, Boston University, 2012. https://hdl.handle.net/2144/31611.
Повний текст джерелаPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
In the past decade interest in metamaterials has risen dramatically. This is due, in large part, to metamaterials' ability to exhibit electromagnetic behavior not normally found in nature. This is because these artificial structures display a strong electromagnetic response as a result of their geometry, as opposed to their chemistry, and that response typically dominates that of the substrate they are placed on. As a result, metamaterials can couple free space radiation in previously unheard of ways, and in this thesis I examine several of these coupling mechanisms. After an appropriate discussion of theoretical and experimental tools required for metamaterial study, the thesis turns to the metamaterial substrate and explores the coupling effects of the metamaterial and the substrate itself. We discuss the theory and experimentally demonstrate that the metamaterial and substrate composite can couple free space radiation for use in enhanced dielectric sensing, perfect absorption, and even mechanical deflection for electromagnetic detection. In addition to coupling with dielectric materials, the near field response of a metamaterial can also couple with another metamaterial. Subsequently, this thesis investigates the coupling between a pair of identical split ring resonators, and develops a general framework for evaluating the mode hybridization that results from their near field interaction. In fact, we find that the near field coupling is extremely sensitive to the relative orientation of the two metamaterials, and results in mode splitting between the two resonators. By manipulating their lateral displacement, the coupling, and the mode splitting, can be altered. In this way, an unprecedented modulation of the metamaterial response is demonstrated. Finally, we turn our attention to the effects that metamaterial behavior has on the far field response. Specifically, we focus on the symmetry, or lack thereof, of the unit cell and show that it manifests itself as a birefringence in the far field. As a result, metamaterials can be used as wave retarders to couple between polarization states. Herein we analyze this behavior and experimentally demonstrate functioning metamaterial based terahertz waveplates that are highly efficient at a previously unachieved sub wavelength size.
2031-01-01
Li, Lianbo. "Metamaterial based superdirectivity." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:65f10679-cbf2-4c86-897e-8121225c44eb.
Повний текст джерелаShepard, III Ralph Hamilton. "Metamaterial Lens Design." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/194734.
Повний текст джерелаEkmekci, Evren. "Design, Fabrication And Characterization Of Novel Metamaterials In Microwave And Terahertz Regions: Multi-band, Frequency-tunable And Miniaturized Structures." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612730/index.pdf.
Повний текст джерела-negative metamaterial structure, called double-sided SRR (DSRR), is proposed in the first part of this study. DSRR combines the features of a conventional split ring resonator (SRR) and a broadside-coupled SRR (BC-SRR) to obtain much better miniaturization at microwave frequencies for a given physical cell size. In addition to DSRR, double-sided multiple SRR (DMSRR), double-sided spiral resonator (DSR), and double-sided U-spiral resonator (DUSR) have been shown to provide smaller electrical sizes than their single-sided versions under magnetic excitation. In the second part of this dissertation, a novel multi-band tunable metamaterial topology, called micro-split SRR (MSSRR), is proposed. In addition to that, a novel magnetic resonator structure named single loop resonator (SLR) is suggested to provide two separate magnetic resonance frequencies in addition to an electric resonance in microwave region. In the third part, two different frequency tunable metamaterial topologies called BC-SRR and gap-to-gap SRR are designed, fabricated and characterized at terahertz frequencies with electrical excitation for the first time. In those designs, frequency tuning based on variations in near field coupling is obtained by in-plane horizontal or vertical displacements of the two SRR layers. The values of frequency shifts obtained for these tunable metamaterial structures are reported to be the highest values obtained in literature so far. Finally, in the last part of this dissertation, novel double-sided metamaterial based sensor topologies are suggested and their feasibility studies are presented.
Tan, Szu Hau. "Metamaterial for Radar Frequencies." Thesis, Monterey, California. Naval Postgraduate School, 2012. http://hdl.handle.net/10945/17465.
Повний текст джерелаThe objective of this thesis is to investigate a new design of periodic metamaterial (MTM) structure for radar cross-section (RCS) reduction application on aircraft and ships. MTMs are man-made materials, not found in nature, that exhibit unusual properties in the radio-, electromagnetic-, and optical-wave bands. The cells of these periodic MTM structures must be much smaller than the wavelength of the frequency of interest. In a MTM, the structure and dimensions of the design at the frequency of interest can produce negative values of permeability and/or permittivity, which define the electrical properties of the MTM. This study looks at various designs of absorbing layers presented in technical papers and verifies the results in simulations. Modifications are done to the existing designs to achieve good absorption level at the radar-frequency band of interest. Modeling and simulation are done in Microwave Studio by Computer Simulation Technology (CST). The S-parameters S11 (reflection coefficient) and S12 (transmission coefficient) are used to investigate the performance of the MTM as a radar-frequency absorber.
Demetriadou, Angela. "Studies of metamaterial structures." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/11396.
Повний текст джерелаКниги з теми "METAMATERIA"
Metamateriaru no gijutsu to ōyō: Technologies and applications of metamaterial. Tōkyō: Shīemushī Shuppan, 2011.
Знайти повний текст джерелаChoudhury, Pankaj K. Metamaterials. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003050162.
Повний текст джерелаEngheta, Nader, and Richard W. Ziolkowski, eds. Metamaterials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0471784192.
Повний текст джерелаCui, Tie Jun, David Smith, and Ruopeng Liu, eds. Metamaterials. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-0573-4.
Повний текст джерелаCraster, Richard V., and Sébastien Guenneau, eds. Acoustic Metamaterials. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4813-2.
Повний текст джерелаSakoda, Kazuaki, ed. Electromagnetic Metamaterials. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8649-7.
Повний текст джерелаCai, Wenshan, and Vladimir Shalaev. Optical Metamaterials. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-1151-3.
Повний текст джерелаAhmadivand, Arash, Burak Gerislioglu, and Zeinab Ramezani. Toroidal Metamaterials. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58288-3.
Повний текст джерелаRout, Saroj, and Sameer Sonkusale. Active Metamaterials. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52219-7.
Повний текст джерелаCaloz, Christophe. Electromagnetic Metamaterials. New York: John Wiley & Sons, Ltd., 2005.
Знайти повний текст джерелаЧастини книг з теми "METAMATERIA"
Chipouline, Arkadi, and Franko Küppers. "Applications of the “Classical” Metamaterial Model—Disordered Metamaterials." In Optical Metamaterials: Qualitative Models, 145–66. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77520-3_7.
Повний текст джерелаXu, Liu-Jun, and Ji-Ping Huang. "Theory for Thermoelectric Effect Control: Transformation Nonlinear Thermoelectricity." In Transformation Thermotics and Extended Theories, 35–51. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5908-0_4.
Повний текст джерелаSalvatore, Stefano. "Metamaterial Sensors." In Springer Theses, 71–76. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05332-5_8.
Повний текст джерелаVakula, D., and A. Sowjanaya. "Metamaterial Filters." In Metamaterials Science and Technology, 1–22. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-15-8597-5_30-1.
Повний текст джерелаVakula, D., and A. Sowjanaya. "Metamaterial Filters." In Metamaterials Science and Technology, 355–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6441-0_30.
Повний текст джерелаFedotov, Vassili. "Metamaterials." In Springer Handbook of Electronic and Photonic Materials, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48933-9_56.
Повний текст джерелаTrügler, Andreas. "Metamaterials." In Optical Properties of Metallic Nanoparticles, 171–84. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25074-8_9.
Повний текст джерелаHoke, Tomas. "Metamaterials." In Emanzipation und Konfrontation, 60–63. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-89016-5_15.
Повний текст джерелаMcGurn, Arthur. "Metamaterials." In Springer Series in Optical Sciences, 305–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77072-7_5.
Повний текст джерелаKužel, Petr, and Hynek Němec. "Metamaterials." In Terahertz Spectroscopy and Imaging, 569–610. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29564-5_22.
Повний текст джерелаТези доповідей конференцій з теми "METAMATERIA"
Mir, Fariha, and Sourav Banerjee. "Performance of a Multifunctional Spiral Shaped Acoustic Metamaterial With Synchronized Low-Frequency Noise Filtering and Energy Harvesting Capability." In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2264.
Повний текст джерелаSong, Yu, Sansriti Saxena, Justin Bishop, and Ryan L. Harne. "Constraint Tuning of Lightweight Elastomeric Metamaterials for Structural Impact Tolerance." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3910.
Повний текст джерелаLeGrande, Joshua, Mohammad Bukhari, and Oumar Barry. "Topological Properties and Localized Vibration Modes in Quasiperiodic Metamaterials With Electromechanical Local Resonators." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-90025.
Повний текст джерелаVogiatzis, Panagiotis, Shikui Chen, Xianfeng David Gu, Ching-Hung Chuang, Hongyi Xu, and Na Lei. "Multi-Material Topology Optimization of Structures Infilled With Conformal Metamaterials." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85663.
Повний текст джерелаZhang, Qianyun, Kaveh Barri, Zhong Lin Wang, and Amir H. Alavi. "Digital Information Storage Mechanical Metamaterials." In ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/smasis2022-90268.
Повний текст джерелаWang, Zihan, Ran Zhuang, Weikang Xian, Jiawei Tian, Ying Li, Shikui Chen, and Hongyi Xu. "Phononic Metamaterial Design via Transfer Learning-Based Topology Optimization Framework." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-89932.
Повний текст джерелаRodrigues, Gustavo Simão, Hans Ingo Weber, and Larissa Driemeier. "Elastic Metamaterial Design to Filter Harmonic Mechanical Wave Propagation." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87753.
Повний текст джерелаClimente, Alfonso, Daniel Torrent, and Jose´ Sa´nchez-Dehesa. "Noise Reduction by Perfect Absorbers Based on Acoustic Metamaterials." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65247.
Повний текст джерелаYang, Yunfang, and Zhong You. "3D Construction of a Tilted Cuboid Mechanical Metamaterial." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87050.
Повний текст джерелаZhang, Shu, Leilei Yin, and Nicholas Fang. "Design of Acoustic Metamaterials for Super-Resolution Ultrasound Imaging." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-44076.
Повний текст джерелаЗвіти організацій з теми "METAMATERIA"
Taylor, Antoinette. Novel Terahertz Metamaterials. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1107160.
Повний текст джерелаNemat-Nasser, Siavouche. Tunable Mechanical Metamaterials. Fort Belvoir, VA: Defense Technical Information Center, March 2011. http://dx.doi.org/10.21236/ada547020.
Повний текст джерелаStinson, Eric A. Metamaterial Resonant Absorbers for Terahertz Sensing. Fort Belvoir, VA: Defense Technical Information Center, December 2015. http://dx.doi.org/10.21236/ad1009293.
Повний текст джерелаSriniva, Sridar. Metamaterials for Antenna Technologies. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada455821.
Повний текст джерелаPendry, John B. Metamaterials and Transformation Optics. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada602461.
Повний текст джерелаPendry, John. Metamaterials and Transformation Optics. Fort Belvoir, VA: Defense Technical Information Center, June 2011. http://dx.doi.org/10.21236/ada545171.
Повний текст джерелаAndreev, Andrey D., and Kyle J. Hendricks. Metamaterial Cathodes in Multi-Cavity Magnetrons (Postprint). Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada599592.
Повний текст джерелаLee, Youn M. A Test Plan to Measure Metamaterial Performances. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada551770.
Повний текст джерелаKrushynska, Anastasiia, Igor Zhilyaev, Nitesh Anerao, Cihat Yilmaz, and Mostafa Ranjbar. 3D-Printed Flexible Wings With Metamaterial Functionalities. Peeref, September 2022. http://dx.doi.org/10.54985/peeref.2209p3789644.
Повний текст джерелаDalton, Larry R., and Bruce H. Robinson. Nano-Engineering of Active Metamaterials. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada610899.
Повний текст джерела