Добірка наукової літератури з теми "Metal recycling industry"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Metal recycling industry".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Metal recycling industry"
Philipp, J. A., and W. Theobald. "Recycling in the steel industry." Revue de Métallurgie 90, no. 4 (April 1993): 545–54. http://dx.doi.org/10.1051/metal/199390040545.
Повний текст джерелаBirat, J. P. "Recycling and by-products in the steel industry." Revue de Métallurgie 100, no. 4 (April 2003): 339–48. http://dx.doi.org/10.1051/metal:2003192.
Повний текст джерелаBalogun-Adeleye, Rahmot, Joy T. Adu, and Ramon O. Adisa. "Assessment and Impacts of Metal Recycling on Groundwater Quality in Ogijo, Ogun State, Nigeria." FUOYE Journal of Engineering and Technology 7, no. 2 (April 21, 2022): 244–48. http://dx.doi.org/10.46792/fuoyejet.v7i2.799.
Повний текст джерелаSmirnov, V. V. "Recycling as a Strategic Direction to Improve Efficiency of Steel Industry in the Russian Federation." Accounting. Analysis. Auditing 5, no. 4 (September 14, 2018): 30–39. http://dx.doi.org/10.26794/2408-9303-2018-5-4-30-39.
Повний текст джерелаKovalčík, Jakub, Martin Straka, Peter Kačmáry, and Tomáš Pavlík. "CATALYST PROCESSING AND RECYCLING." Acta Tecnología 7, no. 3 (September 30, 2021): 99–104. http://dx.doi.org/10.22306/atec.v7i3.118.
Повний текст джерелаSchultmann, Frank, Bernd Engels, and Otto Rentz. "Flowsheeting-based simulation of recycling concepts in the metal industry." Journal of Cleaner Production 12, no. 7 (September 2004): 737–51. http://dx.doi.org/10.1016/s0959-6526(03)00050-7.
Повний текст джерелаGaikdad, Niranjan Sanjay. "Design and Manufacturing of Metal & Non-metal Sorting Using Metal Detector." International Journal for Research in Applied Science and Engineering Technology 10, no. 7 (July 31, 2022): 485–87. http://dx.doi.org/10.22214/ijraset.2022.45302.
Повний текст джерелаHan, Yue Bin, Guang Ming Li, and Wen Zhi He. "Research Review of Recycling of Nonmetal Fraction from Waste Print Circuit Boards Treatment." Advanced Materials Research 997 (August 2014): 831–34. http://dx.doi.org/10.4028/www.scientific.net/amr.997.831.
Повний текст джерелаZhang, Bo, Chengjun Liu, and Maofa Jiang. "A new method of red mud recycling in the process of hot metal pretreatment." Metallurgical Research & Technology 117, no. 1 (2020): 115. http://dx.doi.org/10.1051/metal/2020010.
Повний текст джерелаCheng, Hui Qiang, and Wen Yang Zhao. "Decision-Making Strategy in Scraped Automobiles Recycling Industry Based on Properties of Recycling Materials." Advanced Materials Research 788 (September 2013): 737–40. http://dx.doi.org/10.4028/www.scientific.net/amr.788.737.
Повний текст джерелаДисертації з теми "Metal recycling industry"
Koermer, Scott Carl. "The Application of Mineral Processing Techniques to the Scrap Recycling Industry." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/63994.
Повний текст джерелаMaster of Science
Reuter, Markus Andreas. "The fundamental limits of recycling : from minerals processing to computer aided design of automobiles and other consumer goods." Thesis, Stellenbosch : Stellenbosch University, 2006. http://hdl.handle.net/10019.1/1331.
Повний текст джерелаMy applied engineering research and industrial application work of the past 20 years is presented in this dissertation. It is the conjecture of my work that only if thorough first principles knowledge of the depth of process metallurgy and recycling is available, can meaningful first principles environmental models be developed. These models can then evaluate technology, provide well argued and first principles environmental information to our tax paying consumer society as well as to legislators and environmentalists. Only through this path can one estimate the limits of recycling and its technology, hence evaluate the true boundaries of sustainability. My work with students has presently culminated in the detailed modelling and simulation of recycling systems for post-consumer goods. Notably the models are finding an application in the prediction of legally required recycling rates for automobiles. The models provide first principles arguments for less stringent EU recycling legislation and the integration of the first principles models in computer aided design tools of the automotive industry as part of a large EU 6th Framework (project managed by Volkswagen and the other European car producers). Presently these models are also being converted to model the Waste Electric and Electronic Equipment (WEEE) as well as water recycling systems respectively, both for industry in The Netherlands. This unique rigorous integration of systems engineering, reactor technology and process control theory is the basis of all my work to describe recycling systems as dynamic feedback control loops. My large body of acquired industrial knowledge renders these models practical and can hence be used by the automotive and recycling industries. The origins of this work may be found in the various cited publications and reports to industry by myself (due to my close association with industry as well as industrial experience) over the past 20 years as well as the work of my students, covering topics such as: • system optimization models for flotation, mineral beneficiation and recycling systems and applying these for design for recycling and argue for better/improved first-principles based legislation, • industrial measurement, modelling and simulation of industrial extractive process pyrometallurgical reactors as well waste incinerators and recycling plants, • various activities in other areas such as hydrometallurgy, clean and new breakthrough technology, and • process control of industrial metallurgical reactors by among others the application of artificial intelligence techniques. All the ideas of the last years have been worked out with students and have been summarized in our book: “The Metrics of Material and Metal Ecology, Harmonizing the resource, technology and environmental cycles”.
Abedi, Melika, and Elin Thun. "Implementation of a Value-Based Pricing Model for a Customised Metal Recycling Solution." Thesis, KTH, Industriell ekonomi och organisation (Inst.), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283558.
Повний текст джерелаMedans den rostfria stålindustrin fortsätter att växa ökar även miljöpåverkan från dess olika produktionsprocesser. Sådana effekter påverkar inte bara miljön, utan utgör även stora hälsoproblem för människor och andra levande organismer. För att minska dess miljöpåverkan är det nödvändigt för alla parter inom industrin att kontinuerligt förbättra sitt hållbarhetsarbete. Ett alternativt sätt detta kan göras på är med hjälp av metallåtervinning. Det finns olika företag och organisationer inom den rostfria stålindustrin, som alla troligen kan dra nytta av metallåtervinningslösningar. Det är dock inte uppenbart vilka modeller för värdefångst som är mest lämpliga för en sådan teknik, vilket är problematiskt för de som erbjuder en sådan lösning. Att bestämma en lämplig modell för värdefångst är dock avgörande för alla organisationer som erbjuder en tjänst eller produkt. Det är det som i slutändan avgör en organisations intäkter, vinster samt de belopp som återinvesteras i organisationens tillväxt för dess långvariga överlevnad. Genom att studera ett företag som erbjuder en metallåtervinningslösning har denna studie som syfte att undersöka hur ett sådant företag bäst kan utnyttja det värde som skapas av deras teknik. Detta uppnås genom att implementera en kvalitativ metod som består av en litteraturstudie, följt av empiriska resultat från intervjuer med potentiella kunder till företaget. Olika faktorer som påverkar formuleringen av en produkt/tjänst och en värdebaserad prissättningsmodell för den produkten/tjänsten analyseras. Detta arbete tar fram och föreslår ett ramverk för hur organisationer effektivt kan implementera en värdebaserad prissättningsmodell för ett visst erbjudande. Detta ramverk sätts sedan i sammanhang i samband med de empiriska resultaten. Den empiriska studien identifierar även de potentiella kundernas upplevda värde till följd av metallåtervinningslösningen som; möjligheter för materialanvändning och cirkulär ekonomi i produktionen, förbättrad avfallshantering, förbättrat varumärke och företagsimage och ökad operativ effektivitet. Slutligen identifierades viktiga avgörande faktorer för värdeförverkligande ur kundperspektivet som; återbetalningstid, operativa aspekter, organisatorisk och operativ storlek, typ av erbjudande av metallåtervinningslösning, regler och offentlig processövervakning och syn på prisstrategi.
ORTIZ, NILCE. "Estudo da utilizacao de magnetita como material adsorvedor dos metais Cusup(2+), Pbsup(2+), Nisup(2+) e Cdsup(2+), em solucao." reponame:Repositório Institucional do IPEN, 2000. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10825.
Повний текст джерелаMade available in DSpace on 2014-10-09T14:07:22Z (GMT). No. of bitstreams: 1 06909.pdf: 4920910 bytes, checksum: d6e37e56c96b5266b7fcce3da3d56d3b (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Johansson, Ingrid, and Walter Deltin. "Utilization of Pulp and Paper Waste Products in the Metal Industry : Initial testing of carbon-containing waste material briquettes." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231792.
Повний текст джерелаIdag läggs en stor del av restprodukter från pappers och massaindustrin på deponi, vilket innebär såväl ekonomiska som miljömässiga nackdelar. Den här rapporten undersöker möjligheterna att använda dessa restprodukter som slaggskummare och bränsle i de olika ugnarna inom metallindustrin. Restprodukterna innehåller värdefulla ämnen, framförallt kol. Därför finns det ett ökat intresse för att hitta möjliga användningsområden för restprodukterna inom metallindustrin. Denna återanvändning skulle bidra till energibevarande eftersom fossila bränslen kan ersättas. I den här rapporten undersöks två restmaterial, blandat biologiskt slam och fiberavfall. Experimenten utfördes med dessa restprodukter pressade samman med ett basmaterial och cement till en brikett. Kraven som undersöks är styrka för både transport och användning i ugnarna samt förmågan att skumma en slagg. Resultaten för briketternas styrka var tvetydiga, inga av briketterna innehållande restprodukter satisfierade det uppsatta kriteriet. Styrkan är troligtvis för låg för att transport ska vara möjlig. Ingen skumning skedde under experimentet, men endast ett experiment genomfördes. Därför behöver ytterligare experiment genomföras innan några slutsatser kan dras. Men briketterna tros kunna ersätta koks och kol där styrkan inte är viktig. Men det är osäkert om briketterna påverkar stålkvaliteten.
CHEPCANOFF, VERA. "Separacao e recuperacao de cromio e outros elementos de valor em solucoes de trabalho e residuos industriais de galvanoplastia por troca ionica." reponame:Repositório Institucional do IPEN, 2001. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10909.
Повний текст джерелаMade available in DSpace on 2014-10-09T13:59:37Z (GMT). No. of bitstreams: 1 07174.pdf: 7729112 bytes, checksum: 448b0bbb9302347b89a39b90929d3bf4 (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Merendino, Edy Maicon. "Estudo de processo de reciclagem do composto de polietileno e alumínio proveniente de embalagens cartonadas assépticas através de simulação computacional usando o método dos elementos discretos (DEM)." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266814.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-19T14:59:08Z (GMT). No. of bitstreams: 1 Merendino_EdyMaicon_M.pdf: 4244405 bytes, checksum: c56623b83b7e229872966885f5e9eca5 (MD5) Previous issue date: 2011
Resumo: As embalagens cartonadas assépticas para alimentos são comuns em nosso dia-a-dia. Tais embalagens são compostas por três materiais: papel, polietileno de baixa densidade e alumínio. Seu processo de reciclagem se dá em duas etapas sucessivas: a reciclagem do papel e a posterior reciclagem do composto de polietileno e alumínio. Durante a primeira etapa de reciclagem, um percentual das fibras de papel não é retirado do composto de polietileno e alumínio o que pode comprometer a qualidade de produtos feitos a partir da reciclagem deste composto. Para a extração do papel residual foi desenvolvido de maneira empírica um equipamento centrífugo em escala industrial. Visando o estudo do funcionamento deste equipamento fez-se a simulação deste usando o método dos elementos discretos (DEM). O primeiro passo foi a determinação de parâmetros físicos e de interação através de experimentos práticos e respectivas simulações computacionais para a calibração de um modelo, o qual foi conseguido de maneira satisfatória. Uma vez tendo o modelo calibrado, foram realizadas simulações com diferentes geometrias para o rotor e parte estática deste equipamento buscando levantar hipóteses para o entendimento do funcionamento do equipamento. Os resultados para diferentes especificações foram comparados e discutidos
Abstract: Milk and beverages carton packages are very common in our lives. These packages are made of three different materials: paper, low density polyethylene and aluminium. The recycling process of these packages takes place in two successive stages: the recycling of paper and the subsequent recycling of polyethylene and aluminium composite. During the first stage of recycling a percentage of the paper is not removed from the composite of polyethylene and aluminium which can compromise the quality of products made from recycling of this composite. An industrial-scale centrifuge equipment was developed empirically for extraction of residual paper. In order to study the operation of this equipment, it was made its simulation using the discrete element method (DEM). The first step was set-up of physical and interaction parameters through practical experiments and computer simulations to calibrate a model, which was achieved satisfactorily. Once the model was calibrated, simulations were performed with different geometries for rotor and static body of this equipment seeking hypotheses in order to understand equipment operation. The results for different specifications were compared and discussed
Mestrado
Processos em Tecnologia Química
Mestre em Engenharia Química
Lindeberg, Sara. "Disclosing the definition on the upcycling concept : An exploratory study investigating the concept of upcycling and standardisation and its role on the path towards a circular textile industry." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-23895.
Повний текст джерелаCombe, Quentin. "Éjection électromagnétique : modèle et réalisation." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0107.
Повний текст джерелаThis thesis focuses on the subject of electromagnetic ejection applied in the context of the metal recycling industry. The aim of this thesis is the modeling and the development of an architecture of energy conversion allowing the realization of this ejection. The generated variable magnetic field is used to separate non-ferromagnetic metallic materials such as aluminum or copper from a waste stream by means of a Laplace force generated by the conjunction between the magnetic field created and the magnetic field induced by the eddy currents in the conductive materials.The developed architecture is composed of several elements: a rectifier, an inverter and an inductor. The rectifier part with a wide operating range connected to the three-phase grid network allows to obtain an adjustable DC voltage and ensures a sinusoidal current in phase with the voltage. The inverter part allows to control the transferred power, by adjusting the amplitude and frequency of the current flowing through the last part of the system represented by the inductor, responsible for the generation of the variable magnetic field.The rectifier is based on the classical Buck rectifier structure because of the low impedance of the inductor used. Although this structure allows to lower the three-phase grid voltage, its operating range can be easily increased without the addition of passive components. The classical control of this rectifier is based only on its output variables which can lead to uncontrolled oscillations caused by the resonance of the lightly damped input LC filter excited by the harmonics generated by the switching of transistors. In this thesis, we proposed a new control method that deals with both its input and output variables and that allows both to control the oscillations of the input LC filter while obtaining a better dynamic response when the system is subjected to a load step. This control method is based on the flatness properties of differential systems, so it does not depend on the operating point and guarantees the large signal stability of the system.The single-phase inverter is based on a full bridge structure allowing the application of three voltage levels and a wide choice of control of the amplitude, shape and frequency of the current flowing through the inductor. Different controls of this converter have been studied and compared. These allow to vary the power injected in the inductor, have an impact on the harmonic content of the current flowing through it and on the constraints of the different components of the system.A modeling of the inductor as well as an estimation of the value of the magnetic field necessary for the ejection is carried out. The different methods proposed are verified by numerical simulations but also by experimental tests performed on the whole system
Cheng, Po-jen, and 鄭博仁. "Research on the Metal Recycling Industry in Taiwan - A Case Study of A Company." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/m4mc2j.
Повний текст джерела國立中央大學
高階主管企管碩士班
103
Abstract Urban mining has become one of most discussed areas in recent years. As the public’s environmental awareness increases, the role of the recycling industry has become increasingly important. Industrialization has transformed the human group from an agrarian society into an industry one, and as a result, supply and demand for raw materials skyrocketed. Many decades later, the 3C era has manifested very similar results, particularly with rare materials, such as gold, platinum, etc. Generally, 150 grams of gold, 100 kg of copper, and 3 kg of silver can be extracted from 1000 kg of mobile phone circuit boards; this amount of gold is 30 times more than that extracted from traditional mines, and this is the sprouting idea of urban mining, which many in the industry have their hungry eyes at. All data of this research is obtained from a major precious metal recycling company in Taiwan (Company A). Through interviews, and intensive literature review, this research aims to gain a more thorough understanding of the metal recycling industry and relevant legal issues. Data are collected and analyzed based on the business model provided in Osterwalder and Pigneur (2010). This research has three primary objectives: (a) overview of the recycling business in Taiwan; (b) identification of Company A’s business model using Osterwalder and Pigneur’s (2010) Business Model Generation; and (c) future envisioning of the metal recycling industry in Taiwan. Some of the major challenges the industry currently faces include: (a) unclear authority designation between waste disposal body and materials recycling body; (b) high set up cost and complicated licensing process; (c) scarce land resources and difficult to iron out conflicts with environmental groups; and (d) technology lag between upstream and downstream suppliers. In view of these issues, and for the betterment of the metal recycling industry, this study suggests: (a) to establish a central smelting body; (b) to establish agreements with environmental groups in South East Asia and China; (c) to fine tune existing laws to narrow the consensus gap between waste disposal body and materials recycling body; and (d) allow import of recyclable waste to enhance Taiwan's competitiveness in the metal recycling industry. Keywords: Material recycling, Metal recycling, Business model generation
Книги з теми "Metal recycling industry"
Breckling, John. Recycling opportunities. Cleveland Hts., OH: Leading Edge Reports, 1990.
Знайти повний текст джерела(Canada), Mineral Sciences Laboratories. An overview of the metals recycling industry in Canada. Ottawa, Ont: Mineral Sciences Laboratories, 1993.
Знайти повний текст джерелаHenstock, Michael E. The recycling of non-ferrous metals. Ottawa: International Council on Metals and the Environment, 1996.
Знайти повний текст джерелаZhongguo fei gang tie chan ye yan jiu. Beijing: Ye jin gong ye chu ban she, 2014.
Знайти повний текст джерела), Industrial Waste Diversion Program (Ont. Preliminary evaluation of copper, nickel, and chromium recovery from wastes generated by the metal finishing industry in Ontario. Toronto, Ont: Queen's Printer for Ontario, 1991.
Знайти повний текст джерелаGabler, Robert C. A platinum-group metals consumption and recycling flow model. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1991.
Знайти повний текст джерелаGabler, Robert C. A platinum-group metals consumption and recycling flow model. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1991.
Знайти повний текст джерелаGabler, Robert C. A platinum-group metals consumption and recycling flow model. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1991.
Знайти повний текст джерелаGabler, Robert C. A platinum-group metals consumption and recycling flow model. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1991.
Знайти повний текст джерелаGabler, Robert C. A platinum-group metals consumption and recycling flow model. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1991.
Знайти повний текст джерелаЧастини книг з теми "Metal recycling industry"
Ndlovu, Sehliselo, Geoffrey S. Simate, and Elias Matinde. "Ferrous Metals Waste Production and Recycling." In Waste Production and Utilization in the Metal Extraction Industry, 113–208. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153896-4.
Повний текст джерелаdos Santos, Emanuele Caroline Araújo, Tamires Augustin da Silveira, Angéli Viviani Colling, Carlos Alberto Mendes Moraes, and Feliciane Andrade Brehm. "Recycling Processes for the Recovery of Metal from E-waste of the LED Industry." In E-waste Recycling and Management, 159–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14184-4_9.
Повний текст джерелаShahbazi, Sasha, Patricia van Loon, Martin Kurdve, and Mats Johansson. "Metal and Plastic Recycling Flows in a Circular Value Chain." In Towards a Sustainable Future - Life Cycle Management, 195–206. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77127-0_18.
Повний текст джерелаRejaee, Mazi. "Addressing Some of the Key Recycling Issues in the Magnesium Industry with Integration of Primary Metal Production, Die Casting and Recycling." In Recycling of Metals and Engineercd Materials, 1331. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788073.ch116.
Повний текст джерелаAntrekowitsch, Jürgen. "Recycling of Poly-Metallic Residues from Metal Industry - Current Status and Future Developments." In Rewas 2016: Towards Materials Resource Sustainability, 1–9. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119275039.ch1.
Повний текст джерелаAntrekowitsch, Jürgen. "Recycling of Poly-Metallic Residues from Metal Industry — Current Status and Future Developments." In REWAS 2016, 3–9. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48768-7_1.
Повний текст джерелаChohaney, Michael L., Charles D. Yeager, Jay D. Gatrell, and David J. Nemeth. "Poverty, Sustainability, & Metal Recycling: Geovisualizing the Case of Scrapping as a Sustainable Urban Industry in Detroit." In Urban Sustainability: Policy and Praxis, 99–133. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26218-5_8.
Повний текст джерелаHagelüken, Christian. "Recycling of Precious and Special Metals." In Eco-Efficiency in Industry and Science, 221–41. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5712-7_15.
Повний текст джерелаBalasubramanian, G., M. T. Nimje, and V. V. Kutumbarao. "Conversion of Aluminium Industry Wastes into Glass-Ceramic Products." In Recycling of Metals and Engineercd Materials, 1223–28. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788073.ch107.
Повний текст джерелаAposhian, A. N. "Recycling of Tin/Lead Bearing by-Products from the Electronics Industry." In Recycling of Metals and Engineercd Materials, 661–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788073.ch57.
Повний текст джерелаТези доповідей конференцій з теми "Metal recycling industry"
Dodd, Kevin, Joe Robinson, and Maria Lindberg. "BPEO/BPM in Recycling of Low Level Waste Metal in the UK." In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16210.
Повний текст джерелаSunk, Werner. "Survey of Metal Recovery in the U.S. WTE Industry." In 15th Annual North American Waste-to-Energy Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/nawtec15-3219.
Повний текст джерелаPesente, S., S. Vanini, M. Benettoni, G. Bonomi, P. Calvini, P. Checchia, E. Conti, et al. "Securing the metal recycling chain for the steel industry by detecting orphan radioactive sources in scrap metal." In VIII LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS. AIP, 2010. http://dx.doi.org/10.1063/1.3480208.
Повний текст джерелаAli, Ahmed K. "From Conventional Recycling to Creative Reuse: Empowering Local Industrial Resources Through Synergistic Practices." In 2018 ACSA International Conference. ACSA Press, 2018. http://dx.doi.org/10.35483/acsa.intl.2018.22.
Повний текст джерелаBalderston, Dayton, John Eric Kelley, James Crowder, Thomas DeAgostino, and Christopher Depcik. "Repurposing of a Hybrid Vehicle Nickel Metal Hydride Battery Pack for Electrical Grid Storage." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70897.
Повний текст джерелаSchulz, A., J. Eckebrecht, M. Weber, and H. Grützner. "Wiederverwertung aufbereiteter Schleifschlämme durch thermisches Spritzen (Re-Usage of Upgraded Grinding Muds by Thermal Spraying)." In ITSC 1999, edited by E. Lugscheider and P. A. Kammer. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 1999. http://dx.doi.org/10.31399/asm.cp.itsc1999p0111.
Повний текст джерелаLi, Yong, Joseph McManus, and Howard Thompson. "Cost-Effective and Environmentally Sustainable Permanent Magnet Motor for Artificial Lift." In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210208-ms.
Повний текст джерелаCraze, Andrew, Pete Davis, and Matthew Clark. "Strategic Environmental Assessment for UK LLW Management." In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16392.
Повний текст джерелаPonnet, Mathieu, Michel Klein, André Rahier, Luc Noynaert, and Gérard Aleton. "Thorough Chemical Decontamination MEDOC®: An Effective Way to Reduce Metallic Waste Volume of the Dismantled Materials." In ASME 2001 8th International Conference on Radioactive Waste Management and Environmental Remediation. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/icem2001-1308.
Повний текст джерелаQuade, Ulrich, and Thomas Kluth. "Waste Minimization by Melting–Recycling of Radioactive Metals: 20 Years Operation of the Melting Plant CARLA by Siempelkamp Nukleartechnik GmbH." In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59040.
Повний текст джерела