Добірка наукової літератури з теми "Metal oxide semiconductor field-effect transistors"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Metal oxide semiconductor field-effect transistors".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Metal oxide semiconductor field-effect transistors":

1

Kumar, Prateek, Maneesha Gupta, Naveen Kumar, Marlon D. Cruz, Hemant Singh, Ishan, and Kartik Anand. "Performance Evaluation of Silicon-Transition Metal Dichalcogenides Heterostructure Based Steep Subthreshold Slope-Field Effect Transistor Using Non-Equilibrium Green’s Function." Sensor Letters 18, no. 6 (June 1, 2020): 468–76. http://dx.doi.org/10.1166/sl.2020.4236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With technology invading nanometer regime performance of the Metal-Oxide-semiconductor Field Effect Transistor is largely hampered by short channel effects. Most of the simulation tools available do not include short channel effects and quantum effects in the analysis which raises doubt on their authenticity. Although researchers have tried to provide an alternative in the form of tunnel field-effect transistors, junction-less transistors, etc. but they all suffer from their own set of problems. Therefore, Metal-Oxide-Semiconductor Field-Effect Transistor remains the backbone of the VLSI industry. This work is dedicated to the design and study of the novel tub-type Metal-Oxide-Semiconductor Field-Effect Transistor. For simulation Non-Equilibrium Green’s Function is used as the primary model of simulation. The device is analyzed under different physical variations like work function, permittivity, and interface trap charge. This work uses Silicon-Molybdenum Disulphide heterojunction and Silicon-Tungsten Disulphide heterojunction as channel material. Results for both the heterojunctions are compared. It was analyzed that Silicon-Molybdenum Disulphide heterojunction provides better linearity and Silicon-Tungsten Disulphide heterojunction provides better switching speed than conventional Metal-Oxide-Semiconductor Field-Effect Transistor.
2

Anderson, Jackson, Yanbo He, Bichoy Bahr, and Dana Weinstein. "Integrated acoustic resonators in commercial fin field-effect transistor technology." Nature Electronics 5, no. 9 (September 23, 2022): 611–19. http://dx.doi.org/10.1038/s41928-022-00827-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractIn radio communication, the growth of beamforming and multiple-input–multiple-output technologies, which increase transceiver complexity, have led to a drive to reduce the size, weight and power of radio components by integrating them into a single system on chip. One approach is to integrate the frequency references of acoustic microelectromechanical systems (MEMS) with complementary metal–oxide–semiconductor processes, typically through a MEMS-first or MEMS-last approach that requires process customization. Here we report unreleased acoustic resonators that are fabricated in 14 nm fin field-effect transistor technology and operate in the X-band frequency range (8–12 GHz). The devices use phononic waveguides for acoustic confinement and exploit metal–oxide–semiconductor capacitors and transistors to electromechanically drive and sense acoustic vibrations. Fifteen device variations are analysed across 30 bias points, quantifying the importance of phononic confinement on resonator performance and demonstrating the velocity-saturated piezoresistive effect in active resonant transistors. Our results illustrate the feasibility of integrating acoustic devices directly into standard complementary metal–oxide–semiconductor processes.
3

Weng, Wu-Te, Yao-Jen Lee, Horng-Chih Lin, and Tiao-Yuan Huang. "Plasma-Induced Damage on the Reliability of Hf-Based High-k/Dual Metal-Gates Complementary Metal Oxide Semiconductor Technology." International Journal of Plasma Science and Engineering 2009 (December 14, 2009): 1–10. http://dx.doi.org/10.1155/2009/308949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study examines the effects of plasma-induced damage (PID) on Hf-based high-k/dual metal-gates transistors processed with advanced complementary metal-oxide-semiconductor (CMOS) technology. In addition to the gate dielectric degradations, this study demonstrates that thinning the gate dielectric reduces the impact of damage on transistor reliability including the positive bias temperature instability (PBTI) of n-channel metal-oxide-semiconductor field-effect transistors (NMOSFETs) and the negative bias temperature instability (NBTI) of p-channel MOSFETs. This study shows that high-k/metal-gate transistors are more robust against PID than conventional SiO2/poly-gate transistors with similar physical thickness. Finally this study proposes a model that successfully explains the observed experimental trends in the presence of PID for high-k/metal-gate CMOS technology.
4

John Chelliah, Cyril R. A., and Rajesh Swaminathan. "Current trends in changing the channel in MOSFETs by III–V semiconducting nanostructures." Nanotechnology Reviews 6, no. 6 (November 27, 2017): 613–23. http://dx.doi.org/10.1515/ntrev-2017-0155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe quest for high device density in advanced technology nodes makes strain engineering increasingly difficult in the last few decades. The mechanical strain and performance gain has also started to diminish due to aggressive transistor pitch scaling. In order to continue Moore’s law of scaling, it is necessary to find an effective way to enhance carrier transport in scaled dimensions. In this regard, the use of alternative nanomaterials that have superior transport properties for metal-oxide-semiconductor field-effect transistor (MOSFET) channel would be advantageous. Because of the extraordinary electron transport properties of certain III–V compound semiconductors, III–Vs are considered a promising candidate as a channel material for future channel metal-oxide-semiconductor transistors and complementary metal-oxide-semiconductor devices. In this review, the importance of the III–V semiconductor nanostructured channel in MOSFET is highlighted with a proposed III–V GaN nanostructured channel (thickness of 10 nm); Al2O3 dielectric gate oxide based MOSFET is reported with a very low threshold voltage of 0.1 V and faster switching of the device.
5

Ouyang, Zhuping, Wanxia Wang, Mingjiang Dai, Baicheng Zhang, Jianhong Gong, Mingchen Li, Lihao Qin, and Hui Sun. "Research Progress of p-Type Oxide Thin-Film Transistors." Materials 15, no. 14 (July 8, 2022): 4781. http://dx.doi.org/10.3390/ma15144781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The development of transparent electronics has advanced metal–oxide–semiconductor Thin-Film transistor (TFT) technology. In the field of flat-panel displays, as basic units, TFTs play an important role in achieving high speed, brightness, and screen contrast ratio to display information by controlling liquid crystal pixel dots. Oxide TFTs have gradually replaced silicon-based TFTs owing to their field-effect mobility, stability, and responsiveness. In the market, n-type oxide TFTs have been widely used, and their preparation methods have been gradually refined; however, p-Type oxide TFTs with the same properties are difficult to obtain. Fabricating p-Type oxide TFTs with the same performance as n-type oxide TFTs can ensure more energy-efficient complementary electronics and better transparent display applications. This paper summarizes the basic understanding of the structure and performance of the p-Type oxide TFTs, expounding the research progress and challenges of oxide transistors. The microstructures of the three types of p-Type oxides and significant efforts to improve the performance of oxide TFTs are highlighted. Finally, the latest progress and prospects of oxide TFTs based on p-Type oxide semiconductors and other p-Type semiconductor electronic devices are discussed.
6

Choi, Woo Young, Jong Duk Lee, and Byung-Gook Park. "Integration Process of Impact-Ionization Metal–Oxide–Semiconductor Devices with Tunneling Field-Effect-Transistors and Metal–Oxide–Semiconductor Field-Effect Transistors." Japanese Journal of Applied Physics 46, no. 1 (January 10, 2007): 122–24. http://dx.doi.org/10.1143/jjap.46.122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bendada, E., K. Raïs, P. Mialhe, and J. P. Charles. "Surface Recombination Via Interface Defects in Field Effect Transistors." Active and Passive Electronic Components 21, no. 1 (1998): 61–71. http://dx.doi.org/10.1155/1998/91648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recombination current at the oxide-semiconductor interface of metal-oxide-semiconductor devices has been analyzed and compared with the experimental result. The activity of interface traps is dependent on the energy level and on the operating conditions. A model is shown to be powerful to describe the effect of energy level of bulk recombination centers on the values of reverse recombination current.
8

Choi, Woo Young. "Comparative Study of Tunneling Field-Effect Transistors and Metal–Oxide–Semiconductor Field-Effect Transistors." Japanese Journal of Applied Physics 49, no. 4 (April 20, 2010): 04DJ12. http://dx.doi.org/10.1143/jjap.49.04dj12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Diao Wenhao, 刁文豪, 江伟华 Jiang Weihua, and 王新新 Wang Xinxin. "Marx generator using metal-oxide-semiconductor field-effect transistors." High Power Laser and Particle Beams 22, no. 3 (2010): 565–68. http://dx.doi.org/10.3788/hplpb20102203.0565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Irokawa, Y., Y. Nakano, M. Ishiko, T. Kachi, J. Kim, F. Ren, B. P. Gila, et al. "GaN enhancement mode metal-oxide semiconductor field effect transistors." physica status solidi (c) 2, no. 7 (May 2005): 2668–71. http://dx.doi.org/10.1002/pssc.200461280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Metal oxide semiconductor field-effect transistors":

1

Vega, Reinaldo A. "Schottky field effect transistors and Schottky CMOS circuitry /." Online version of thesis, 2006. http://hdl.handle.net/1850/5179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shi, Xuejie. "Compact modeling of double-gate metal-oxide-semiconductor field-effect transistor /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202006%20SHI.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Zhikuan. "Source/drain engineering for extremely scaled MOSFETs /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202005%20ZHANG.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fleischer, Stephen. "A study of gate-oxide leakage in MOS devices." Thesis, [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1364600X.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Höhr, Timm. "Quantum-mechanical modeling of transport parameters for MOS devices /." Konstanz : Hartnung-Gorre, 2006. http://www.loc.gov/catdir/toc/fy0707/2007358987.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Originally presented as the author's thesis (Swiss Federal Institute of Technology), Diss. ETH No. 16228.
Summary in German and English, text in English. Includes bibliographical references (p. 123-132).
6

Turner, Gary Chandler. "Zinc Oxide MESFET Transistors." Thesis, University of Canterbury. Electrical and Computer Engineering, 2009. http://hdl.handle.net/10092/3439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Zinc oxide is a familiar ingredient in common household items including sunscreen and medicines. It is, however, also a semiconductor material. As such, it is possible to use zinc oxide (ZnO) to make semiconductor devices such as diodes and transistors. Being transparent to visible light in its crystalline form means that it has the potential to be the starting material for so-called 'transparent electronics', where the entire device is transparent. Transparent transistors have the potential to improve the performance of the electronics currently used in LCD display screens. Most common semiconductor devices require the material to be selectively doped with specific impurities that can make the material into one of two electronically distinct types – p- or n-type. Unfortunately, making reliable p-type ZnO has been elusive to date, despite considerable efforts worldwide. This lack of p-type material has hindered development of transistors based on this material. One alternative is a Schottky junction, which can be used as the active element in a type of transistor known as a metal-semiconductor field effect transistor, MESFET. Schottky junctions are traditionally made from noble metal layers deposited onto semiconductors. Recent work at the Canterbury University has shown that partially oxidised metals may in fact be a better choice, at least to zinc oxide. This thesis describes the development of a fabrication process for metal-semiconductor field effect transistors using a silver oxide gate on epitaxially grown zinc oxide single crystals. Devices were successfully produced and electrically characterised. The measurements show that the technology has significant potential.
7

Randell, Heather Eve. "Applications of stress from boron doping and other challenges in silicon technology." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0010292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Xu Sheng. "Three dimensional multi-gates devices and circuits fabrication, characterization, and modeling /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202005%20WUX.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Modzelewski, Kenneth Paul. "DC parameter extraction technique for independent double gate MOSFETs a thesis presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2009. http://proquest.umi.com/pqdweb?index=11&did=1759989211&SrchMode=1&sid=1&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1250600320&clientId=28564.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Trivedi, Vishal P. "Physics and design of nonclassical nanoscale CMOS devices with ultra-thin bodies." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0009860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Metal oxide semiconductor field-effect transistors":

1

Pierret, Robert F. Field effect devices. 2nd ed. Reading, Mass: Addison-Wesley Pub. Co., 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Soclof, Sidney. Metal-oxide-semiconductor field-effect transistors (MOSFETS): Principles and applications. Boston: Artech House, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Baliga, B. Jayant. Advanced power MOSFET concepts. New York: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Croon, Jeroen A. Matching properties of deep sub-micron MOS transistors. New York: Springer, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shur, Michael. Physics of semiconductor devices. Englewood Cliffs, N.J: Prentice Hall, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Korec, Jacek. Low voltage power MOSFETs: Design, performance and applications. New York: Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Paul, Reinhold. MOS-Feldeffekttransistoren. Berlin: Springer-Verlag, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

T, Andre Noah, and Simon Lucas M, eds. MOSFETS: Properties, preparations to performance. New York: Nova Science Publishers, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shur, Michael. Physics of semiconductor devices: Software and manual. London: Prentice-Hall, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Oktyabrsky, Serge, and Peide D. Ye. Fundamentals of III-V semiconductor MOSFETs. New York: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Metal oxide semiconductor field-effect transistors":

1

Li, Sheng S. "Metal—Oxide—Semiconductor Field-Effect Transistors." In Semiconductor Physical Electronics, 423–54. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4613-0489-0_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yuan, J. S., and J. J. Liou. "Metal—Oxide Semiconductor Field-Effect Transistors." In Semiconductor Device Physics and Simulation, 127–61. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-1904-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Yiming, Jam-Wem Lee, and Hong-Mu Chou. "Comparison of Nanoscale Metal-Oxide-Semiconductor Field Effect Transistors." In Simulation of Semiconductor Processes and Devices 2004, 307–10. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-0624-2_72.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Evstigneev, Mykhaylo. "Metal–Oxide–Semiconductor Field Effect Transistor (MOSFET)." In Introduction to Semiconductor Physics and Devices, 233–55. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08458-4_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tsang, Paul J. "Structures and Fabrication of Metal-Oxide-Silicon Field-Effect Transistor." In Handbook of Advanced Semiconductor Technology and Computer Systems, 92–147. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-011-7056-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Saha, Jhuma, Amrita Kumari, Shankaranand Jha, and Subindu Kumar. "On the Voltage Transfer Characteristics (VTC) of some Nanoscale Metal-Oxide-Semiconductor Field-Effect-Transistors (MOSFETs)." In Physics of Semiconductor Devices, 211–14. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tilak, Vinayak. "Inversion Layer Electron Transport in 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistors." In Silicon Carbide, 267–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527629077.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bharti, Deepshikha, and Aminul Islam. "Operational Characteristics of Vertically Diffused Metal Oxide Semiconductor Field Effect Transistor." In Nanoscale Devices, 91–108. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2019.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315163116-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumar, Prateek, Maneesha Gupta, Kunwar Singh, and Ashok Kumar Gupta. "Study of Transition Metal Dichalcogenides in Junctionless Transistors and Effect of Variation in Dielectric Oxide." In Sub-Micron Semiconductor Devices, 39–48. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003126393-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bharti, Deepshikha, and Aminul Islam. "U-Shaped Gate Trench Metal Oxide Semiconductor Field Effect Transistor: Structures and Characteristics." In Nanoscale Devices, 69–90. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2019.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315163116-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Metal oxide semiconductor field-effect transistors":

1

Lee, Ching-Ting, and Ya-Lan Chou. "GaN-based metal-oxide-semiconductor field-effect transistors." In 2014 IEEE 12th International Conference on Solid -State and Integrated Circuit Technology (ICSICT). IEEE, 2014. http://dx.doi.org/10.1109/icsict.2014.7021209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yu, Jeng-Wei, Yuh-Renn Wu, Jian-Jang Huang, and Lung-Han Peng. "75GHz Ga2O3/GaN Single Nanowire Metal- Oxide-Semiconductor Field-Effect Transistors." In 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). IEEE, 2010. http://dx.doi.org/10.1109/csics.2010.5619673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aihara, Takuma, Ayumi Takeda, Masashi Fukuhara, Yuya Ishii, and Mitsuo Fukuda. "Metal-oxide-semiconductor field-effect transistors operated by surface plasmon polaritons." In SPIE Micro+Nano Materials, Devices, and Applications, edited by James Friend and H. Hoe Tan. SPIE, 2013. http://dx.doi.org/10.1117/12.2033618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Okumura, H., T. Takahashi, and M. Shimizu. "Demonstration of m-plane GaN metal-oxide-semiconductor field-effect transistors." In 2019 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2019. http://dx.doi.org/10.7567/ssdm.2019.ps-4-25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sakai, Hiroki, Takuma Aihara, Masashi Fukuhara, Masashi Ota, Yu Kimura, Yuya Ishii, and Mitsuo Fukuda. "Integration of plasmonic device with metal-oxide-semiconductor field-effect transistors." In 2014 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2014. http://dx.doi.org/10.1109/omn.2014.6924581.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Koide, Yasuo. "High-k Oxides on Hydrogenated-Diamond for Metal-Oxide-Semiconductor Field-Effect Transistors [Invited]." In 2019 IEEE 32nd International Conference on Microelectronic Test Structures (ICMTS). IEEE, 2019. http://dx.doi.org/10.1109/icmts.2019.8730974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Girardi, Stefano, Marta Maschietto, Ralf Zeitler, Mufti Mahmud, and Stefano Vassanelli. "High resolution cortical imaging using electrolyte-(metal)-oxide-semiconductor field effect transistors." In 5th International IEEE/EMBS Conference on Neural Engineering (NER 2011). IEEE, 2011. http://dx.doi.org/10.1109/ner.2011.5910539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aihara, Takuma, Ayumi Takeda, Masashi Fukuhara, Yuya Ishii, and Mitsuo Fukuda. "Plasmonic signal amplification by monolithically integrated metal-oxide-semiconductor field-effect transistors." In 2013 IEEE Photonics Conference (IPC). IEEE, 2013. http://dx.doi.org/10.1109/ipcon.2013.6656689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vinod Adivarahan, Mikhail Gaevski, Naveen Tipirneni, Bin Zhang, Yanqing Deng, Zijiang Yang, and Asif Khan. "0.18 μm double-recessed III-nitride metal-oxide double heterostructure field-effect transistors." In 2007 International Semiconductor Device Research Symposium. IEEE, 2007. http://dx.doi.org/10.1109/isdrs.2007.4422460.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sonnet, A. M., R. V. Galatage, M. N. Jivani, M. Milojevic, R. A. Chapman, C. L. Hinkle, R. M. Wallace, and E. M. Vogel. "Interfacial engineering of InGaAs/high-k metal-oxide-semiconductor field effect transistors (MOSFETs)." In 2009 IEEE International Integrated Reliability Workshop (IRW). IEEE, 2009. http://dx.doi.org/10.1109/irws.2009.5383036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії