Добірка наукової літератури з теми "Membranes modèle"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Membranes modèle".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Membranes modèle"
Boucard, F., and A. Saboni. "Modélisation du transport des solutés neutres à travers des membranes de nanofiltration." Revue des sciences de l'eau 13, no. 4 (April 12, 2005): 405–19. http://dx.doi.org/10.7202/705400ar.
Повний текст джерелаMalériat, J. P., P. Jaouen, N. Rossignol, J. P. Schlumpf, and F. Quemeneur. "Influence de l'adsorption d'alginates sur les propriétés de membranes organiques d'ultra et de microfiltration." Revue des sciences de l'eau 13, no. 3 (April 12, 2005): 269–87. http://dx.doi.org/10.7202/705394ar.
Повний текст джерелаPelletier, Émilien, and Peter G. C. Campbell. "L’écotoxicologie aquatique - comparaison entre les micropolluants organiques et les métaux : constats actuels et défis pour l’avenir." Revue des sciences de l'eau 21, no. 2 (July 22, 2008): 173–97. http://dx.doi.org/10.7202/018465ar.
Повний текст джерелаRheinstädter, M. C., and T. Salditt. "La dynamique collective des membranes bicouches de modèle étudié par diffusion inélastique de neutrons." Journal de Physique IV (Proceedings) 130 (November 2005): 141–51. http://dx.doi.org/10.1051/jp4:2005130010.
Повний текст джерелаHatoum, Maher, Jean François Fabre, Joel Albet, Claire Vialle, Caroline Sablayrolles, and Pierre Yves Pontalier. "Intégration de la simulation de l’ingénierie des processus et de l’évaluation du cycle de vie pour la modélisation de l’impact environnemental de la filtration membranaire." MATEC Web of Conferences 407 (2025): 02001. https://doi.org/10.1051/matecconf/202540702001.
Повний текст джерелаPodbilewicz, Benjamin. "Membrane fusion as a morphogenetic force in nematode development." Nematology 2, no. 1 (2000): 99–111. http://dx.doi.org/10.1163/156854100508818.
Повний текст джерелаSchaetzel, Pierre, and Bernard Auclair. "Confrontation de l'équation de nernst-planck de diffusion-convection (dans le modèle homogène) avec les résultats experimentaux obtenus sur plusieurs membranes échangeuses d'ions." European Polymer Journal 24, no. 8 (January 1988): 719–22. http://dx.doi.org/10.1016/0014-3057(88)90004-3.
Повний текст джерелаHuang, Jian Ping, Yu Min Shao, Li Li Liu, and Chun Yan Ma. "Comparative Study on Anti-Fouling Properties and Application of Two PVDF Blend Membranes in Wastewater Treatment." Advanced Materials Research 550-553 (July 2012): 2164–69. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.2164.
Повний текст джерелаSeshimo, Masahiro, Hiromi Urai, Kazuaki Sasa, Hitoshi Nishino, Yuichiro Yamaguchi, Ryoichi Nishida, and Shin-ichi Nakao. "Bench-Scale Membrane Reactor for Methylcyclohexane Dehydrogenation Using Silica Membrane Module." Membranes 11, no. 5 (April 29, 2021): 326. http://dx.doi.org/10.3390/membranes11050326.
Повний текст джерелаZhu, Xue Feng, Ming Yuan Zhou, Zhi Wei Wang, Wen Yi Yuan, and Jie Guan. "Study on the Membrane Fouling of the Process of Using Two Layer Flat-Sheet Membrane for Sludge Thickening and Water Reuse." Applied Mechanics and Materials 768 (June 2015): 467–75. http://dx.doi.org/10.4028/www.scientific.net/amm.768.467.
Повний текст джерелаДисертації з теми "Membranes modèle"
Dimova, Rumiana. "Propriétéshydrodynamiques de membranes modèle : étude à l'aide de particules manipulées optiquement." Bordeaux 1, 1999. http://www.theses.fr/1999BOR10595.
Повний текст джерелаMarchal, Damien. "Développement d'un modèle biomimétique de membrane supportée : étude structurale et cinétique." Compiègne, 1998. http://www.theses.fr/1998COMP1176.
Повний текст джерелаFaye, Ibrahima. "Polymères en étoile de cyclodextrine amphiphiles et leurs interactions avec une membrane lipidique modèle." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLE002/document.
Повний текст джерелаThe aim of this work is the synthesis of amphiphilic star copolymers based on -cyclodextrin and their possible interactions with model lipid bilayers, such as artificial nanopores. In a first step, the synthesis of multifunctional initiator, per(2-O-methyl-3,6-di-O-hydroxypropyl)--CD, was performed and its characterization by 1H, 13C NMR and ESI-mass spectrometry confirms itsstructure. The polymerization of butylene oxide initiated by -CD derivative, in presence of phosphazene base, was then performed and allowed us to synthesize hydrophobic 14-arm star polymers, characterizedby NMR (1H, 13C, DOSY) and size exclusion chromatography. Hydrophilic macromolecular chains (polyethylene glycol, polyglycidol) are coupled to those latter hydrophobic polymers, using ‘grafting onto’ and ‘grafting from’ methods, and the characterization of the resulting copolymer architecture was performed (NMR, SEC). Finally, among the different potential applications, the ability of the star copolymers to form artificial nanoporeswas evaluated by patch-clamp technique
Perrot, Carine. "Mécanismes de dégradation des membranes polyaromatiques sulfonées en pile à combustible." Phd thesis, Université Joseph Fourier (Grenoble), 2006. http://tel.archives-ouvertes.fr/tel-00145619.
Повний текст джерелаCette étude porte sur la compréhension des mécanismes mis en jeu lors du vieillissement de membranes alternatives, non fluorées, de type PEEKs et PIs, étape indispensable au développement de structures plus stables. Dans ce cas, le processus est avant tout chimique. Une démarche originale, qui consiste à étudier le mécanisme de dégradation sur des structures modèles, a été adoptée afin de contourner les difficultés analytiques propres aux polymères. Les vieillissements sont réalisés dans l'eau, éventuellement additionnée de H2O2 (identifié comme une des causes du vieillissement chimique des membranes en pile), à différentes températures. La démarche consiste à isoler par chromatographie les différents produits formés, à les identifier (RMN, IR, SM) et à les quantifier. Ceci nous a permis d'établir le mécanisme de vieillissement. Nous avons en particulier montré que le vieillissement d'une structure PEEKs résulte principalement d'une attaque par les bouts de chaîne qui se propage à l'ensemble. Ce mécanisme a été validé sur une membrane vieillie en ex-situ et testée en pile. Ces deux types de vieillissement conduisent à une diminution importante du degré de polymérisation (déterminé par CES) et à la formation des mêmes produits primaires de dégradation. En pile, une dégradation hétérogène est mise en évidence essentiellement côté cathode.
Les PIs sont connus pour leur forte sensibilité à l'hydrolyse. Toutefois, nous avons pu montrer que la dégradation est relativement limitée à 80°C en raison d'une recombinaison des espèces hydrolysées.
Freudenthal, Oona. "Étude de l’action de peptides antimicrobiens par méthodes spectroscopiques : de la membrane modèle au biofilm bactérien." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0197/document.
Повний текст джерелаThe emergence and multiplication of infections involving resistant and multi-resistant antibiotic-resistant bacteria is currently a major challenge in the field of health. Indeed, the resistance of microorganisms to antibiotic molecules has become an increasingly worrying phenomenon, particularly in hospitals, hence the need for new therapies and new antimicrobial agents that are more effective. Many conventional antibiotic agents have been developed in recent years, but many of them still present risks of more or less toxic side effects on eukaryotic cells, and despite their high effectiveness against multi-resistant microorganisms. Thus, antimicrobial peptides are considered good candidates in the fight against multi-resistant microorganisms, mainly because of their low toxicity to eukaryotic cells and their different modes of action compared to conventional antibiotics. Indeed, the latter are generally non-specific and are less likely to lead to the observed resistance phenomena for conventional antibiotics.The aim of the work carried out in this thesis was to study the modes of action of the two different antimicrobial agents; (I) colistin, a cyclic polypeptide already used to treat infections caused by multi-resistant bacteria; and (ii) bovine catestatin (CAT), a recently discovered linear peptide belonging to the Host Defense Peptides Ie produced by the endocrine and immune system of mammals. This study was carried out mainly using different physico-chemical characterization methods such as Atomic Force Microscopy (AFM) and Fourier Transform Infrared Spectroscopy (ATR-FTIR). The activity of colistin on pure and mixed phospholipid membranes (based on DPPC, DOPC and DPPE) was monitored in real time and in situ by these two techniques. The changes in the biochemical fingerprint of the membranes, in particular in the Amide II band and in the Amide II / C = O integrated intensity ratio allowed us to reinforce the hypothesis that the activity of the peptide was more intense On mixed membranes than on pure membranes. Similar changes in the biochemical footprint of these membranes were observed when they were exposed to catestatin. In addition, infrared spectroscopy has also demonstrated conformational changes in the structure of catestatin, in particular by the passage from a so-called random coil structure to an alpha-helix structure, and only in contact with the structure membrane. Such conformational changes could be implicated in the antimicrobial activity and mode of action of this peptide. In addition, we have also been interested in the action of the two peptides on more complex phospholipid membranes since they consist mainly of natural extracts of bacterial lipopolysaccharides (lipid A, LPS-s and LPS-re). Our results showed that the two antimicrobial agents were responsible for a reorganization of the structure of the membranes and in some cases the peptide was at the origin of the formation of the pores of different sizes. The influence of the elasticity of the membrane has also been studied using force spectroscopy (AFM). This study revealed a considerable impact of the peptides on the mechanical properties of the membranes and in particular on their elasticity. In order to approximate the actual conditions of antimicrobial treatment, we exhibited different bacterial E. coli biofilms from doses of two antimicrobial peptides. This latter study was carried out in real time and in situ using infrared spectroscopy and atomic force microscopy. Infrared spectroscopy allowed us to follow the modifications of the biochemical fingerprint of the biofilm on the course of the treatment. Also provided information on possible changes in bacterial metabolism. In parallel with these measurements, the AFM allowed us to observe the changes in the morphology and mechanical properties of the bacterial biofilm as a function of the antimicrobial treatment applied. [...]
Lefebvre, Xavier. "Etude des modèles de transfert en nanofiltration : application du modèle hybride basé sur les équations de Nernst-Planck étendues par le développement du logiciel de simulation "nanoflux"." Montpellier 2, 2003. http://www.theses.fr/2003MON20082.
Повний текст джерелаAit, Ben Aoumar Abdellah. "Synthèse et caractérisation de membranes bio. Et hémocompatibles à base de polyhydroxybutyrate : essai d'application dans un modèle expérimental : le pancréas bio-artificiel." Montpellier 2, 1989. http://www.theses.fr/1989MON20120.
Повний текст джерелаRubatat, Laurent. "Nouveau modèle structural des membranes Nafion ®, polymère de référence pour l'application pile à combustible basse température." Université Joseph Fourier (Grenoble), 2003. http://www.theses.fr/2003GRE10142.
Повний текст джерелаDelrue, Florian. "Modélisation du procédé bioréacteur à membranes immergées : calage et validation du modèle ASM1 sur un site réel : étude des interactions boues activées, conditions opératoires et membrane." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13760/document.
Повний текст джерелаMembrane bioreactors (MBRs) are becoming increasingly popular for the treatment of municipal wastewater especially when land is limited or when the treatment requirements are high. Nevertheless, the operation of these plants and in particular the fouling of the membrane are still difficult to manage for the operators. Modelling is an efficient tool, which has already been successfully used on conventional activated sludge processes, for the operation and the understanding of the process using Activated Sludge Models (ASM). Biological treatment and membranes filtration capacity (fouling) are two aspects that can be modeled on MBRs. In this work, three full-scale plants were investigated and one of them was chosen for the ASM1 calibration. The usual methodology was adapted to the MBR specificities and to the modeled wastewater treatment plant in particular (wastewater fractionation, oxygen calibration) and a new set of ASM1 parameters was estimated. The influence of the sludge properties and the operating conditions on the membrane filtration capacity is still the subject of numerous studies, generally on pilot-scale MBRs, and modelling is in its early stages. The objective of this work regarding membrane filtration was to characterize the “membrane/sludge” system by studying the interactions between the sludge properties, the operating conditions and the filtration parameters (membrane permeability and fouling rate) and to compare them with the results from the literature. The two studied MBRs showed quite different behaviors and correlations between parameters, validating the statement that the interactions between membranes, sludge and operating conditions are very complex
Mion, Delphine. "Membranes remodeling by proteins in intracellular trafficking : a bottom up approach of the roles of golgins for Golgi structuration and of SNAREs for synaptic fusion." Electronic Thesis or Diss., Université Paris sciences et lettres, 2025. http://www.theses.fr/2025UPSLE001.
Повний текст джерелаBiological membranes play a crucial role in cells. Over the past few decades, they have been recognized not only as barriers that define cellular compartments, but also as transducers, reactors, and sensors. These membranes are highly complex two-dimensional structures. Their composition, with lipids, proteins, and sugars, is variable and depends on their specific functions. They are also very dynamic, which is particularly evident during intracellular trafficking. This tightly regulated process ensures the transport of proteins, lipids, and other molecules between organelles, notably through membrane-enveloped cargos called vesicles. The formation and fusion of these sacs constantly cause deformation of organelles membrane, as well as import and export of membrane material. Surprisingly enough, the system remains globally stable despite these constant fluxes. Although many components of the molecular machineries involved in this lively yet stable ballet have been identified, precise operational molecular mechanisms remain unclear. Traditional approaches in cellulo to studying protein players in intracellular trafficking are limited by the interdependence of multiple pathways, making it hard to untangle complex interactions. A complementary approach, used in our lab, is bottom-up reconstruction. By using minimal and controlled systems, we aim ta model these phenomena from scratch and understand the contributions of individual molecular effectors. This thesis focuses on two distinct intracellular trafficking processes. First, we studied the organization of the Golgi apparatus, a key site for sorting and modifying proteins alter synthesis. The unique structure of the Golgi, resembling a stack of pancakes, is remarkably resilient. lt disassembles and reforms during cell division and remains stable during interphase, despite continuous material exchange. We hypothesized that certain proteins, such as GM130, actas scaffolds to maintain this structure. Using giant unilamellar vesicles (GUVs) as a model, we studied GM130 and showed that its phase separation on membrane is driven by a 200-aminoacid segment near its N-terminus. This segment is predicted to form a coiled-coil structure. This is surprising because liquid-liquid phase separation generally involves intrinsically disordered domains. We also explored the mechanical properties that the presence of the protein could give to the membrane. Although experimental challenges limited our ability ta fully characterize these properties, we observed that protein crowding, for densities similar to what can be found on Golgi membranes and regardless of protein type, can lead ta membrane plasticity in our model system. The second process studied is synaptic fusion. SNARE proteins are the main drivers of vesicle fusion with target membranes. Using simplified models and rule-of-thumb calculations, we identified bottlenecks in SNARE-mediated fusion and highlighted the role of the additional protein effectors known to catalyze the process in vivo. Furthermore, we used a suspended membrane set up and a bulk assay to characterize mutant SNAREs. Our goal was to test a more complex theoretical model of fusion. We found that some results of the model needed to be revisited due to a misinterpretation of the experimental data it was based on. Hence the experiments were discontinued. However, this work provided valuable insights into the model, thereby highlighting the importance of close collaboration between theoretical and experimental approaches. Overall, this thesis deepens our understanding of Iwo proteins involved in different intracellular trafficking pathways. It also highlights the value of in vitro assays, which we improved during the course of this work, and paves the way for future research. On a personal note, it was also a humble harvest of a few epistemological take-aways
Книги з теми "Membranes modèle"
Derek, Marsh, ed. Phospholipid bilayers: Physical principles and models. New York: Wiley, 1987.
Знайти повний текст джерелаH, Templer Richard, Leatherbarrow Robin, and Royal Society of Chemistry (Great Britain). Biophysical Chemistry Group., eds. Biophysical chemistry: Membranes and proteins. Cambridge, UK: Royal Society of Chemistry, 2002.
Знайти повний текст джерелаvon, Heijne Gunnar, ed. Membrane protein assembly. Austin: R.G. Landes, 1997.
Знайти повний текст джерелаXu, Weihua. Design and development of a pervaporation membrane separation module. Ottawa: National Library of Canada, 2001.
Знайти повний текст джерела1932-, Osa Tetsuo, and Atwood J. L, eds. Inclusion aspects of membrane chemistry. Dordrecht: Kluwer Academic Publishers, 1991.
Знайти повний текст джерелаFrishman, Dmitrij. Structural bioinformatics of membrane proteins. Wien: Springer, 2010.
Знайти повний текст джерелаNorbert, Latruffe, Federation of European Biochemical Societies., and Centre national de la recherche scientifique (France), eds. Dynamics of membrane proteins and cellular energetics. Berlin: Springer-Verlag, 1988.
Знайти повний текст джерелаNATO Advanced Study Institute on Physical Methods on Biological Membranes and Their Model Systems (1982 Altavilla Milicia, Italy). Physical methods on biological membranes and their model systems. New York: Plenum Press, 1985.
Знайти повний текст джерелаElena, Eizenberg, ed. Membranes and other extendons (p-branes). Singapore: World Scientific, 1995.
Знайти повний текст джерелаGao, Fei. Proton exchange membrane fuel cells modeling. London: ISTE, 2011.
Знайти повний текст джерелаЧастини книг з теми "Membranes modèle"
Boicelli, C. A., M. Giomini, and A. M. Giuliani. "The Water Structure in Membrane Models Studied by Nuclear Magnetic Resonance and Infrared Spectroscopies." In Membranes and Membrane Processes, 361–70. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-2019-5_37.
Повний текст джерелаRazin, Shmuel. "Mycoplasma Membranes as Models in Membrane Research." In Subcellular Biochemistry, 1–28. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2924-8_1.
Повний текст джерелаBalster, Joerg. "Capillary Membrane Module." In Encyclopedia of Membranes, 293. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1581.
Повний текст джерелаBalster, Joerg. "Tubular Membrane Module." In Encyclopedia of Membranes, 1939–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1588.
Повний текст джерелаBalster, Joerg. "Capillary Membrane Module." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40872-4_1581-1.
Повний текст джерелаBalster, Joerg. "Tubular Membrane Module." In Encyclopedia of Membranes, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40872-4_1588-1.
Повний текст джерелаBalster, Joerg. "Cross-Flow Membrane Module." In Encyclopedia of Membranes, 478–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1582.
Повний текст джерелаBalster, Joerg. "Hollow Fiber Membrane Module." In Encyclopedia of Membranes, 955–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1583.
Повний текст джерелаBalster, Joerg. "Spiral Wound Membrane Module." In Encyclopedia of Membranes, 1812–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1586.
Повний текст джерелаBalster, Joerg. "Cross-Flow Membrane Module." In Encyclopedia of Membranes, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40872-4_1582-1.
Повний текст джерелаТези доповідей конференцій з теми "Membranes modèle"
Russo, Michael J., Simon H. Friedman, Jens O. M. Karlsson, and Mehmet Toner. "A Two-Compartment Membrane Limited Model of Molecular Transport Through Nano-Scale Pores With a Metal-Actuated Switch." In ASME 1997 International Mechanical Engineering Congress and Exposition, 9–14. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1306.
Повний текст джерелаPedrozo, Hector A., Cheick Dosso, Lingxiang Zhu, Victor Kusuma, David Hopkinson, Lorenz T. Biegler, and Grigorios Panagakos. "Membrane-based carbon capture process optimization using CFD modeling." In Foundations of Computer-Aided Process Design, 860–67. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.134891.
Повний текст джерелаIkeda, Noriaki. "Lectures on AKSZ Sigma Models for Physicists." In Workshop on Strings, Membranes and Topological Field Theory. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813144613_0003.
Повний текст джерелаUsta, Mustafa, Ali E. Anqi, Michael Morabito, Alaa Hakim, Mohammed Alrehili, and Alparslan Oztekin. "Computational Study of Reverse Osmosis Desalination Process: Hollow Fiber Module." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70884.
Повний текст джерелаSchling, E., and Z. Wan. "Digital and physical prototype of an asymptotic facade module." In 10th edition of the conference on Textile Composites and Inflatable Structures. CIMNE, 2021. http://dx.doi.org/10.23967/membranes.2021.063.
Повний текст джерелаGarrote, R., R. Hepp, J. Banham, and X. Huang. "Experiences from the Use of Thinner SRU Membranes on Existing Offshore Platforms." In Offshore Technology Conference. OTC, 2024. http://dx.doi.org/10.4043/35170-ms.
Повний текст джерелаYang, Shu, and Cornel Sultan. "Free Vibration and Modal Analysis of a Tensegrity-Membrane System." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59292.
Повний текст джерелаWu, Jingping, Xi Yi, Zaojian Zou, Peng Zhan, and Changzhe Chen. "Experimental Study on the Hydrodynamic Performance of a U-Shaped Flexible Membrane Breakwater." In ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-102079.
Повний текст джерелаHamza, Karim, Mohammed Shalaby, Ashraf O. Nassef, Mohamed F. Aly, and Kazuhiro Saitou. "Design Optimization of Reverse Osmosis Water Desalination Systems via Genetic Algorithms." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28489.
Повний текст джерелаKumar, Karthik, Ali Besharatian, Luis P. Bernal, Rebecca L. Peterson, and Khalil Najafi. "A Multiphysics Reduced Order Model of Valve Pumping in a 4-Stage Vacuum Micropump." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87681.
Повний текст джерелаЗвіти організацій з теми "Membranes modèle"
Husson, Scott M., Viatcheslav Freger, and Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598151.bard.
Повний текст джерелаMarquart, Grant. Biomimetic Model Membranes to Study Protein-membrane Interactions and their Role in Alzheimer?s Disease. Portland State University Library, January 2015. http://dx.doi.org/10.15760/honors.154.
Повний текст джерелаElbaum, Michael, and Peter J. Christie. Type IV Secretion System of Agrobacterium tumefaciens: Components and Structures. United States Department of Agriculture, March 2013. http://dx.doi.org/10.32747/2013.7699848.bard.
Повний текст джерелаEpel, Bernard, and Roger Beachy. Mechanisms of intra- and intercellular targeting and movement of tobacco mosaic virus. United States Department of Agriculture, November 2005. http://dx.doi.org/10.32747/2005.7695874.bard.
Повний текст джерелаWood, R. L. Single, stretched membrane, structural module experiments. Office of Scientific and Technical Information (OSTI), February 1986. http://dx.doi.org/10.2172/5695126.
Повний текст джерелаWang, X. F., and M. Schuldiner. Systems biology approaches to dissect virus-host interactions to develop crops with broad-spectrum virus resistance. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134163.bard.
Повний текст джерелаGiannelis, Emmanuel P. Nanobiohybrids: New Model Systems for Membranes and Sensors. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada427213.
Повний текст джерелаGiannelis, Emmanuel P. Nanobiohybrids: New Model Systems for Membranes and Sensors. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada434611.
Повний текст джерелаVilla, Daniel, Charles Morrow, Johan Vanneste, Emily Gustafson, NREL Sertac Akar, Craig Turchi, and Tzahi Cath. Multi-configuration Membrane Distillation Model (MCMD). Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1489619.
Повний текст джерелаShirley, David Noyes, Thomas W. Hunt, W. Michael Brown, Joseph S. Schoeniger, Alexander Slepoy, Kenneth L. Sale, Malin M. Young, Jean-Loup Michel Faulon, and Genetha Anne Gray. Model-building codes for membrane proteins. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/920776.
Повний текст джерела