Добірка наукової літератури з теми "Membrane proteins"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Membrane proteins".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Membrane proteins":

1

Jin, Wenzhen, and Syoji T. akada. "1P103 Asymmetry in membrane protein sequence and structure : Glycine outside rule(Membrane proteins,Oral Presentations)." Seibutsu Butsuri 47, supplement (2007): S49. http://dx.doi.org/10.2142/biophys.47.s49_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kühlbrandt, Werner. "Membrane proteins." Current Opinion in Structural Biology 1, no. 4 (August 1991): 531–33. http://dx.doi.org/10.1016/s0959-440x(05)80073-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

KUHLBRANDT, W., and E. GOUAUX. "Membrane proteins." Current Opinion in Structural Biology 9, no. 4 (August 1999): 445–47. http://dx.doi.org/10.1016/s0959-440x(99)80062-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hurley, James H. "Membrane Proteins." Chemistry & Biology 10, no. 1 (January 2003): 2–3. http://dx.doi.org/10.1016/s1074-5521(03)00006-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gennis, Robert B., and Werner Kühlbrandt. "Membrane proteins." Current Opinion in Structural Biology 3, no. 4 (August 1993): 499–500. http://dx.doi.org/10.1016/0959-440x(93)90074-u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Garavito, RMichael, and Arthur Karlin. "Membrane proteins." Current Opinion in Structural Biology 5, no. 4 (August 1995): 489–90. http://dx.doi.org/10.1016/0959-440x(95)80033-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Picard, Martin. "Membrane proteins." Biochimie 205 (February 2023): 1–2. http://dx.doi.org/10.1016/j.biochi.2023.01.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Walker, J. "Membrane proteins Membrane protein structure." Current Opinion in Structural Biology 6, no. 4 (August 1996): 457–59. http://dx.doi.org/10.1016/s0959-440x(96)80109-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tan, Sandra, Hwee Tong Tan, and Maxey C. M. Chung. "Membrane proteins and membrane proteomics." PROTEOMICS 8, no. 19 (October 2008): 3924–32. http://dx.doi.org/10.1002/pmic.200800597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brown, D., and G. L. Waneck. "Glycosyl-phosphatidylinositol-anchored membrane proteins." Journal of the American Society of Nephrology 3, no. 4 (October 1992): 895–906. http://dx.doi.org/10.1681/asn.v34895.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Many proteins of eukaryotic cells are anchored to membranes by covalent linkage to glycosyl-phosphatidylinositol (GPI). These proteins lack a transmembrane domain, have no cytoplasmic tail, and are, therefore, located exclusively on the extracellular side of the plasma membrane. GPI-anchored proteins form a diverse family of molecules that includes membrane-associated enzymes, adhesion molecules, activation antigens, differentiation markers, protozoan coat components, and other miscellaneous glycoproteins. In the kidney, several GPI-anchored proteins have been identified, including uromodulin (Tamm-Horsfall glycoprotein), carbonic anhydrase type IV, alkaline phosphatase, Thy-1, BP-3, aminopeptidase P, and dipeptidylpeptidase. GPI-anchored proteins can be released from membranes with specific phospholipases and can be recovered from the detergent-insoluble pellet after Triton X-114 treatment of membranes. All GPI-anchored proteins are initially synthesized with a transmembrane anchor, but after translocation across the membrane of the endoplasmic reticulum, the ecto-domain of the protein is cleaved and covalently linked to a preformed GPI anchor by a specific transamidase enzyme. Although it remains obscure why so many proteins are endowed with a GPI anchor, the presence of a GPI anchor does confer some functional characteristics to proteins: (1) it is a strong apical targeting signal in polarized epithelial cells; (2) GPI-anchored proteins do not cluster into clathrin-coated pits but instead are concentrated into specialized lipid domains in the membrane, including so-called smooth pinocytotic vesicles, or caveoli; (3) GPI-anchored proteins can act as activation antigens in the immune system; (4) when the GPI anchor is cleaved by PI-phospholipase C or PI-phospholipase D, second messengers for signal transduction may be generated; (5) the GPI anchor can modulate antigen presentation by major histocompatibility complex molecules. Finally, at least one human disease, paroxysmal nocturnal hemoglobinuria, is a result of defective GPI anchor addition to plasma membrane proteins.

Дисертації з теми "Membrane proteins":

1

Gill, Katrina Louise. "Protein-protein interactions in membrane proteins." Thesis, University of Newcastle Upon Tyne, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hedin, Linnea E., Kristoffer Illergård, and Arne Elofsson. "An Introduction to Membrane Proteins." Stockholms universitet, Institutionen för biokemi och biofysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-69241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
alpha-Helical membrane proteins are important for many biological functions. Due to physicochemical constraints, the structures of membrane proteins differ from the structure of soluble proteins. Historically, membrane protein structures were assumed to be more or less two-dimensional, consisting of long, straight, membrane-spanning parallel helices packed against each other. However, during the past decade, a number of the new membrane protein structures cast doubt on this notion. Today, it is evident that the structures of many membrane proteins are equally complex as for many soluble proteins. Here, we review this development and discuss the consequences for our understanding of membrane protein biogenesis, folding, evolution, and bioinformatics.

authorCount :3

3

Kota, Jhansi. "Membrane chaperones : protein folding in the ER membrane /." Stockholm : Karolinska institutet, 2007. http://diss.kib.ki.se/2007/978-91-7357-102-9/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Whitehead, L. "Computer simulation of biological membranes and membrane bound proteins." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Armstrong, James P. "Artificial membrane-binding proteins." Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686615.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Membrane functionalization is a promising strategy for augmenting cell performance in regenerative medicine. To this end, the design, construction, characterisation and cell affinity of protein-polymer surfactant nanoconstructs are presented. Nanoconstructs of eGFP were synthesised that exhibited near-native structure and function, as well as effective and persistent membrane affinity. Human mesenchymal stem cells were labelled for up to ten days in culture, without affecting cell viability or differentiation capacity. This "cell priming" technology has been used to address the issue of hypoxia-related central necrosis during in-vitro tissue engineering. Specifically, nanoconstructs of myoglobin, with enhanced oxygen-binding affinity, were synthesised and used to prime mesenchymal stem cells prior to hyaline cartilage engineering. The myoglobin-primed cells produced tissue constructs with a 62 % increase in type II : type I collagen ratio and, significantly, a reduction in cell necrosis from 42 ± 24 % to 7 ± 6 %.
6

Zhang, Xiao Xiao. "Identification of membrane-interacting proteins and membrane protein interactomes using Nanodiscs and proteomics." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The insoluble nature of membrane proteins has complicated the identification of their interactomes. The Nanodisc has allowed the membrane and membrane proteins to exist in a soluble state. In this thesis, we combined Nanodisc and proteomics and applied the technique to discover the interactome of membrane proteins. Using the SecYEG and MalFGK membrane complex incorporated into Nanodisc, we identified, Syd, SecA, and MalE. These interactions were identified with high specificity and confidence from total soluble protein extracts. The protein YidC was also tested but no interactors were detected. Overall, these results showed that the technique can identify periplasmic and cytosolic interacting partners with high degree of specificity. In a second approach, the method was applied to detect proteins with high affinity for lipid using S. cerevisiae as a model organism. Using Nanodiscs containing different types of phospholipids, many known lipid interactors were identified, including: Ypt1, Sec4, Vps21, Osh6, and Faa1. Interestingly, Caj1 was identified as a PA specific interactor and this interaction was found to be pH dependent. Liposome sedimentation assay showed that Caj1 has affinity for acidic phospholipids. In vivo analysis confirmed the plasma membrane localization of N’-GFP-Caj1 and specifically to the yeast buds. However, pH dependent localization was not observed. Together, with the in vivo and in vitro results suggests that Caj1 is an acidic phospholipid interacting protein.
7

Josyula, Ratnakar. "Structural studies of yeast mitochondrial peripheral membrane protein TIM44." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009p/josyula.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rapp, Mikaela. "The Ins and Outs of Membrane Proteins : Topology Studies of Bacterial Membrane Proteins." Doctoral thesis, Stockholm : Department of Biochemistry and Biophysics, Stockholm University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Berger, Bryan William. "Protein-surfactant solution thermodynamics applications to integral membrane proteins /." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 15.42 Mb., 304 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3200533.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Keegan, Neil. "From engineered membrane proteins to self-assembling protein monolayers." Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Membrane proteins":

1

Ghirlanda, Giovanna, and Alessandro Senes, eds. Membrane Proteins. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-583-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Azzi, Angelo, Lanfranco Masotti, and Arnaldo Vecli, eds. Membrane Proteins. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Membrane Protein Symposium (1986 San Diego, Calif.). Membrane proteins: Proceedings of the Membrane Protein Symposium. [United States]: Bio-Rad Laboratories, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

H, White Stephen, ed. Membrane protein structure: Experimental approaches. New York: Oxford University Press, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Graham, J. M. Membrane analysis. Oxford, UK: BIOS Scientific Publishers, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ghirlanda, Giovanna, and Alessandro Senes. Membrane proteins: Folding, association, and design. New York: Humana Press, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Anderluh, Gregor. Proteins: Membrane binding and pore formation. New York: Springer Science+Business Media, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

1940-, Hille Bertil, Fambrough Douglas M, and Society of General Physiologists, eds. Proteins of excitable membranes. New York: Society of General Physiologists and Wiley-Interscience, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

DeLucas, Larry. Membrane protein crystallization. Burlington, Mass: Academic Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Luckey, Mary. Membrane structural biology: With biochemical and biophysical foundations. Cambridge: Cambridge University Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Membrane proteins":

1

Broger, Clemens, Reinhard Bolli, and Angelo Azzi. "Spin Labeling of Membranes and Membrane Proteins." In Membrane Proteins, 136–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bolli, Reinhard, Clemens Broger, and Angelo Azzi. "Purification of Cytochrome c Reductase and Oxidase by Affinity Chromatography." In Membrane Proteins, 3–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Spisni, A., G. Farruggia, and L. Franzoni. "Polypeptide-Lipid Interactions as Studied by 13C NMR." In Membrane Proteins, 86–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Masotti, L., J. Von Berger, and N. Gesmundo. "Conformational Changes in Polypeptides and Proteins Brought About by Interactions with Lipids." In Membrane Proteins, 95–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Müller, Michele, and Angelo Azzi. "Two Examples of Selective Fluorescent Labeling of SH-Groups with Eosin-5-Maleimide: The ADP/ATP Translocator and the Cytochrome c Oxidase Subunit III of Bovine Heart Mitochondria." In Membrane Proteins, 109–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Montecucco, C. "Hydrophobic Photolabeling with 125I-TID of Red Blood Cell Membranes." In Membrane Proteins, 119–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Brandolin, Gérard, Marc R. Block, François Boulay, and Pierre V. Vignais. "Use of Fluorescent Probes of the Adenine Nucleotide Carrier for Binding Studies and Analysis of Conformational Changes." In Membrane Proteins, 124–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nałȩcz, M. J., and A. Azzi. "Functional Reconstitution of the Mitochondrial Cytochrome b-c1 Complex: Effect of Cholesterol." In Membrane Proteins, 151–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nałȩcz, M. J., A. Szewczyk, and L. Wojtczak. "Changes of the Membrane Surface Potential Measured by Amphiphilic Fluorescent and ESR Probes." In Membrane Proteins, 160–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Capitanio, N., and S. Papa. "Reconstitution of Cytochrome c Oxidase." In Membrane Proteins, 168–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Membrane proteins":

1

Lapetina, Eduardo G., Bryan R. Reep, and Luis Molina Y. Vedia. "NOVEL GTP-BINDING PROTEINS OF CYTOSOLIC AND MEMBRANE FRACTIONS OF HUMAN PLATELETS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We have assessed the binding of (α-32P)GTP to platelet proteins from cytosolic and membrane fractions. Proteins were separated by SDS-PAGE and electrophoretically transferred to nitrocellulose. Incubation of the nitrocellulose blots with (α-32p)GTP indicated the presence of specific and distinct GTP-binding proteins in cytosol and membranes. Binding was prevented by 10-100 nM GTP or GTPyS and by 100 nM GDP; binding was unaffected by 1 nM-1 μM ATP. One main GTP-binding protein (29.5 KDa) was detected in the membrane fraction while three others (29, 27, and 21 KDa) were detected in the soluble fraction. Two cytosolic GTP-binding proteins (29 and 27 KDa) were degraded by trypsin; another cytosolic protein (21 KDa) and the membrane-bound protein (29.5 KDa) were resistant to the action of trypsin. Treatment of intact platelets with trypsin or thrombin, followed by lysis and fractionation, did not affect the binding of (α-32P)GTP to the membrane-bound protein. GTPyS still stimulates phospholipase C in permeabilized platelets already preincubated with trypsin. This suggests that trypsin-resistant GTP-binding proteins might regulate phospholipase C stimulated by GTPyS. We have started to purify the membrane-bound, trypsin-resistant, GTP-binding protein. Purification includes 1 M NaCl extraction and the use of an FPLC system with successive phenyl superose and superose 12 columns.
2

Maiti, Sudipta. "Plasmonics for Membrane Proteins?" In International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/photonics.2014.s3d.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Park, Jeong-Man. "Interactions between membrane proteins." In Third tohwa university international conference on statistical physics. AIP, 2000. http://dx.doi.org/10.1063/1.1291595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ghazikhani, Hamed, and Gregory Butler. "TooT-BERT-M: Discriminating Membrane Proteins from Non-Membrane Proteins using a BERT Representation of Protein Primary Sequences." In 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2022. http://dx.doi.org/10.1109/cibcb55180.2022.9863026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Soares, T. A., T. P. Straatsma, Theodore E. Simos, and George Maroulis. "Towards Simulations of Outer Membrane Proteins in Lipopolysaccharide Membranes." In COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING: Theory and Computation: Old Problems and New Challenges. Lectures Presented at the International Conference on Computational Methods in Science and Engineering 2007 (ICCMSE 2007): VOLUME 1. AIP, 2007. http://dx.doi.org/10.1063/1.2836008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Golmohammadi, Seyed Koosha, Lukasz Kurgan, Brendan Crowley, and Marek Reformat. "Classification of Cell Membrane Proteins." In 2007 Frontiers in the Convergence of Bioscience and Information Technologies. IEEE, 2007. http://dx.doi.org/10.1109/fbit.2007.21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Faiz, Mehwish, Areej Ahmed, and Sumaya Abid. "Discriminating plasma membrane, internal membrane, and organelle membrane proteins by SVM." In 2021 4th International Conference on Computing & Information Sciences (ICCIS). IEEE, 2021. http://dx.doi.org/10.1109/iccis54243.2021.9676407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Creasy, M. Austin, and Donald J. Leo. "Modeling Bilayer Systems as Electrical Networks." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bilayers are synthetically made cell membranes that are used to study cell membrane properties or make functional devices that use the properties of the cell membrane components. Lipids and proteins are two of the main components of a cell membrane. Lipids are amphiphilic molecules that can self assemble into organized structures in the presences of water and this self assembly property can be used to form bilayers. Because of the amphiphilic nature of the lipids, a bilayer is impermeable to ion flow. Proteins are the active structures of a cell membrane that opens pores through the membrane for ions and other molecules to pass. Proteins are made from amino acids and have varying properties that depend on its configuration. Some proteins are activated by reactions (chemical, thermal, etc) or gradients induced across the bilayer. One way of testing bilayers to find bilayer properties is to induce a potential gradient across a membrane that induces ion flow and this flow can be measured as an electrical current. But, these pores may be voltage gated or activated by some other stimuli and therefore cannot be modeled as a linear conductor. Usually the conductance of the protein is a nonlinear function of the input that activates the protein. A small system that consists of a single bilayer and protein with few changing components can be easily modeled, but as systems become larger with multiple bilayers, multiple variables, and multiple proteins, the models will become more complex. This paper looks at how to model a system of multiple bilayers and the peptide alamethicin. An analytical expression for this peptide is used to match experimental data and a short study on the sensitivity of the variables is performed.
9

Cuppoletti, John. "Composite Synthetic Membranes Containing Native and Engineered Transport Proteins." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-449.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Our membrane transport protein laboratory has worked with material scientists, computational chemists and electrical and mechanical engineers to design bioactuators and sensing devices. The group has demonstrated that it is possible to produce materials composed native and engineered biological transport proteins in a variety of synthetic porous and solid materials. Biological transport proteins found in nature include pumps, which use energy to produce gradients of solutes, ion channels, which dissipate ion gradients, and a variety of carriers which can either transport substances down gradients or couple the uphill movement of substances to the dissipation of gradients. More than one type of protein can be reconstituted into the membranes to allow coupling of processes such as forming concentration gradients with ion pumps and dissipating them with an ion channel. Similarly, ion pumps can provide ion gradients to allow the co-transport of another substance. These systems are relevant to bioactuation. An example of a bioactuator that has recently been developed in the laboratory was based on a sucrose-proton exchanger coupled to a proton pump driven by ATP. When coupled together, the net reaction across the synthetic membrane was ATP driven sucrose transport across a flexible membrane across a closed space. As sucrose was transported, net flow of water occurred, causing pressure and deformation of the membrane. Transporters are regulated in nature. These proteins are sensitive to voltage, pH, sensitivity to a large variety of ligands and they can be modified to gain or lose these responses. Examples of sensors include ligand gated ion channels reconstituted on solid and permeable supports. Such sensors have value as high throughput screening devices for drug screening. Other sensors that have been developed in the laboratory include sensors for membrane active bacterial products such as the anthrax pore protein. These materials can be self assembled or manufactured by simple techniques, allowing the components to be stored in a stable form for years before (self) assembly on demand. The components can be modified at the atomic level, and are composed of nanostructures. Ranges of sizes of structures using these components range from the microscopic to macroscopic scale. The transport proteins can be obtained from natural sources or can be produced by recombinant methods from the genomes of all kingdoms including archea, bacteria and eukaryotes. For example, the laboratory is currently studying an ion channel from a thermophile from deep sea vents which has a growth optimum of 90 degrees centigrade, and has membrane transport proteins with very high temperature stability. The transport proteins can also be genetically modified to produce new properties such as activation by different ligands or transport of new substances such as therapeutic agents. The structures of many of these proteins are known, allowing computational chemists to help understand and predict the transport processes and to guide the engineering of new properties for the transport proteins and the composite membranes. Supported by DARPA and USARMY MURI Award and AFOSR.
10

Caffrey, Martin. "Lipid Phase Behavior: Databases, Rational Design and Membrane Protein Crystallization." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The relationship that exists between structure and function is a unifying theme in my varied biomembrane-based research activities. It applies equally well to the lipid as to the protein component of membranes. With a view to exploiting information that has been and that is currently being generated in my laboratory, as well as that which exists in the literature, a number of web-accessible, relational databases have been established over the years. These include databases dealing with lipids, detergents and membrane proteins. Those catering to lipids include i) LIPIDAT, a database of thermodynamic information on lipid phases and phase transitions, ii) LIPIDAG, a database of phase diagrams concerning lipid miscibility, and iii) LMSD, a lipid molecular structures database. CMCD is the detergent-based database. It houses critical micelle concentration information on a wide assortment of surfactants under different conditions. The membrane protein data bank (MPDB) was established to provide convenient access to the 3-D structure and related properties of membrane proteins and peptides. The utility and current status of these assorted databases will be described and recommendations will be made for extending their range and usefulness.

Звіти організацій з теми "Membrane proteins":

1

Woolf, Thomas B., Paul Stewart Crozier, and Mark Jackson Stevens. Molecular dynamics of membrane proteins. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/919637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shirley, David Noyes, Thomas W. Hunt, W. Michael Brown, Joseph S. Schoeniger, Alexander Slepoy, Kenneth L. Sale, Malin M. Young, Jean-Loup Michel Faulon, and Genetha Anne Gray. Model-building codes for membrane proteins. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/920776.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Smith, H. G. Surface-Bound Membrane-Mimetic Assemblies: Electrostatic Attributes of Integral Membrane Proteins. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada204381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Smith, H. G. Surface-Bound Membrane-Mimetic Assemblies: Electrostatic Attributes of Integral Membrane Proteins. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada237229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Williams, Timothy J., Ramesh Balakrishnan, Brian K. Radak, James C. Phillips, Wei Jiang, Sunhwan Jo, Laxmikant V. Kale, Klaus Schulten, and Benoit Roux. Free Energy Landscapes of Membrane Transport Proteins. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1483996.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Creutz, Carl E. Repair of Nerve Cell Membrance Damage by Calcium-Dependent, Membrane-Binding Proteins. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada596750.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Creutz, Carl E. Repair of Nerve Cell Membrane Damage by Calcium-Dependent, Membrane-Binding Proteins. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada560549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Moczydlowski, Edward G. Intra-membrane molecular interactions of K+ channel proteins :. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1092995.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schiffer, M., C. H. Chang, and F. J. Stevens. The functions of tryptophan residues in membrane proteins. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10172497.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Theg, Steven. Targeting Maturation and Quality Control of Photosynthetic Membrane Proteins. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1457570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії