Добірка наукової літератури з теми "Medical physics – mathematics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Medical physics – mathematics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Medical physics – mathematics"

1

Agarwal, Arav Sri. "Applications of Mathematics and Nuclear Physics in Medicine." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 1820–26. http://dx.doi.org/10.22214/ijraset.2021.38235.

Повний текст джерела
Анотація:
Abstract: This research paper examines the applications of mathematics and physics in medicine. Mathematical equations governing the physics behind nuclear medicine are deconstructed; the equations include the radioactive decay equation, nuclide uptake formula, formula for the total electric field, quaternions and their role in the geometry of CT and x-ray scans, the use of complex numbers and quaternions in CAT scans, and the utilization of partial differential equations in image processing. On the other hand, physics supports medicines in different areas, including medical imaging through popular MRI and ultrasound techniques. It contributes to therapy through radiation, ultrasonic technologies, laser physics, and vibrational medicine. Nuclear medicine relies on radioactive tracers, while non-ionizing radiation technologies support laser surgery; ultrasound imaging, and UV light treatments are used for diagnosing and treating chronic illnesses. Radiation oncology medical physicists apply medical physics for the assessment and monitoring of the safety of staff and patients involved in radiation therapy, with electromagnetism offering support in neural engineering, signal analysis, quantum electronics, and in studying the nervous system
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hose, B. H. Brown, R. H. Smallwood, D. C. Barbe. "Medical Physics and Biomedical Engineering." Measurement Science and Technology 12, no. 10 (September 12, 2001): 1744. http://dx.doi.org/10.1088/0957-0233/12/10/703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ratini, A., and G. Gabdulsadikova. "Innovative approach to physics and mathematics studying in medical school." Актуальные направления научных исследований XXI века: теория и практика 2, no. 4 (October 6, 2014): 180–83. http://dx.doi.org/10.12737/5143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kalybekova, Zhanar, Sholpan Zhussipbekova, Kuralay Madiyarova, Aigul Yelshibayeva, and Ulzhan Meirmanova. "Methodological characteristics of professional-oriented teaching of mathematics and physics to higher education students." Scientific Herald of Uzhhorod University Series Physics, no. 55 (January 26, 2024): 2487–98. http://dx.doi.org/10.54919/physics/55.2024.248si7.

Повний текст джерела
Анотація:
Relevance. The modern stage of socio-economic changes in the society of the Republic of Kazakhstan and the need for transition of higher education to a new level, the issue of updating the system of methodological training of future specialists capable of developing new and optimising existing solutions in the field of mathematics and physics determine the research relevance.Purpose. The study aims to develop pedagogical conditions for the implementation of the methodological system of teaching mathematics and physics students based on professional orientation in higher education as a guarantee of competitive specialists in the labour market.Methodology. The following methods were used in the process of experimentation: analysis, synthesis, comparison, systematisation, classification, generalisation, and experimentation: establishing, forming, and controlling, as well as methods of mathematical statistics.Results. Development and introduction, based on Narxoz University and Asfendiyarov Kazakh National Medical University, of the methodology of organisation of professionally directed teaching of mathematics and physics in the context of professional training of future specialists of the technical direction of higher educational institutions of the Republic of Kazakhstan is carried out. The results of the obtained data in the process of experimental research conclude that the proposed methodology is effective because it allowed to increase in the level of learning physics and mathematics in the process of professionally directed training of students of higher educational institutions. The study presents pedagogical conditions for the implementation of the proposed methodology: the development of motivation to study mathematics and physics, the development and implementation of the methodology of professionally oriented teaching of mathematics and physics, and the use of effective computer technologies.Conclusions. The practical value of the study consists of the developed methodical system and computer programs, which are recommended to be used in the organisation of independent work of students, preparation of educational programs, syllabuses, and educational-methodical complexes for various technical specialities.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shaeva, T., and E. Dmitriev. "Organization of educational process at the department of physics, mathematics and medical informatics in medical school." Актуальные направления научных исследований XXI века: теория и практика 2, no. 5 (December 2, 2014): 268–71. http://dx.doi.org/10.12737/6805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Caudill, Lester, April Hill, Kathy Hoke, and Ovidiu Lipan. "Impact of Interdisciplinary Undergraduate Research in Mathematics and Biology on the Development of a New Course Integrating Five STEM Disciplines." CBE—Life Sciences Education 9, no. 3 (September 2010): 212–16. http://dx.doi.org/10.1187/cbe.10-03-0020.

Повний текст джерела
Анотація:
Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research projects involving students and faculty in biology, physics, mathematics, and computer science and how each contributed in significant ways to the conception and implementation of our new Integrated Quantitative Science course, a course for first-year students that integrates the material in the first course of the major in each of biology, chemistry, mathematics, computer science, and physics.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Senders, J. W. "On the complexity of medical devices and systems." Quality in Health Care 15, suppl 1 (December 2006): i41—i43. http://dx.doi.org/10.1136/qshc.2005.015990.

Повний текст джерела
Анотація:
How does one design something that is complex? Or something that is simple? Why should one try to reduce or increase complexity? What is complexity? There are a large number of different uses of the word, including many in mathematics and physics. Most of these are not useful in attempting to fit the word to the problems of the design of systems and devices for medicine. In this paper the concept has been defined to apply to health care, which has led to some conclusions about the future development of medical systems and devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Simsek, Buket, and Ahmet Yardimci. "Using Bezier curves in medical applications." Filomat 30, no. 4 (2016): 937–43. http://dx.doi.org/10.2298/fil1604937s.

Повний текст джерела
Анотація:
In this paper we survey the 3D reconstruction of an object from its 2D cross-sections has many applications in different fields of sciences such as medical physics and biomedical applications. The aim of this paper is to give not only the Bezier curves in medical applications, but also by using generating functions for the Bernstein basis functions and their identities, some combinatorial sums involving binomial coefficients are deriven. Finally, we give some comments related to the above areas.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bohner, Martin. "Updated Aims and Scope of Foundations." Foundations 4, no. 1 (December 19, 2023): 1–2. http://dx.doi.org/10.3390/foundations4010001.

Повний текст джерела
Анотація:
Foundations published its inaugural issue in 2021, establishing itself as a new international open access, peer-reviewed, multidisciplinary journal of science and techonology, covering mathematics, physics, chemistry, biology, engineering, earth sciences, materials, information sciences, and medical sciences [...]
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Morokhovets, H. Yu, M. S. Saienko, Yu V. Lysanets, and O. V. Silkova. "THE USE OF MAPLE MATHEMATICAL SOFTWARE IN TEACHING MEDICAL AND BIOLOGICAL PHYSICS." Medical and Ecological Problems 22, no. 1-2 (March 20, 2018): 63–65. http://dx.doi.org/10.31718/mep.2018.22.1-2.14.

Повний текст джерела
Анотація:
Computerization of training becomes an integral part of the educational process. The development of technologies, mobile devices necessitates the improvement and updating of training courses. The use of software in the learning process is widespread, which requires from a modern student to master the mathematical apparatus, to have knowledge of the basics of programming and the ability to work at the level of a confident user with a variety of software tools and applications. Particularly relevant is the need for the use of computer technologies during the study of topics for self-directed study. The introduction of information technologies will enrich the content and diversify the ways of mastering new topics, stimulating students for self-education and self-development. The article is devoted to application of the software package of applied mathematics Maple during the educational process of students of higher medical establishments.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Medical physics – mathematics"

1

Barker, Jolene. "APPLICATIONS OF THE BIVARIATE GAMMA DISTRIBUTION IN NUTRITIONAL EPIDEMIOLOGY AND MEDICAL PHYSICS." VCU Scholars Compass, 2008. http://scholarscompass.vcu.edu/etd/1623.

Повний текст джерела
Анотація:
In this thesis the utility of a bivariate gamma distribution is explored. In the field of nutritional epidemiology a nutrition density transformation is used to reduce collinearity. This phenomenon will be shown to result due to the independent variables following a bivariate gamma model. In the field of radiation oncology paired comparison of variances is often performed. The bivariate gamma model is also appropriate for fitting correlated variances. A method for simulating bivariate gamma random variables is presented. This method is used to generate data from several bivariate gamma models and the asymptotic properties of a test statistic, suggested for the radiation oncology application, is studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Caruyer, Emmanuel. "IRM de diffusion du Q-space : Acquisition et pré-traitements." Phd thesis, Université de Nice Sophia-Antipolis, 2012. http://tel.archives-ouvertes.fr/tel-00750144.

Повний текст джерела
Анотація:
Le but général de cette thèse est de proposer de nouvelles méthodes d'acquisition et de traitement du signal en imagerie par résonance magnétique (IRM) de diffusion, dans le but d'ouvrir de nouvelles perspectives dans la reconstruction de la structure de la matière blanche \emph{in vivo}. L'IRM de diffusion est une technique d'imagerie non invasive qui mesure localement, en chaque voxel, la diffusion des molécules d'eau. Le déplacement de ces dernières étant contraint par la présence de tissus, le fait de pouvoir caractériser la diffusion des molécules d'eau apporte des informations sur la nature, l'orientation, la microstructure des tissus biologiques sous-jacents. La forte anisotropie observée dans la matière blanche fait de l'IRM de diffusion un outil privilégié pour l'étude de la connectivité cérébrale. Une des premières techniques d'acquisition et de reconstruction, appelée IRM du tenseur de diffusion, est maintenant utilisée de manière routinière en clinique, pour le diagnostique de certaines maladies neurologiques, ou encore en planification préopératoire. L'IRM du tenseur de diffusion repose sur un modèle de diffusion gaussien cependant, qui est limité quand il s'agit de décrire des configurations de tissus complexes à l'intérieur d'un voxel, par exemple quand plusieurs faisceaux de fibres se croisent. Dès lors, on a cherché ces dernières années à développer des techniques qui ne reposent pas sur un modèle a priori, afin de décrire de manière plus précise le déplacement des molécules d'eau, et dépasser les limitations du modèle tensoriel. La plupart de ces techniques, dites à haute résolution angulaire, sollicitent un temps d'acquisition généralement long, et mettent en jeu des problèmes de reconstruction non triviaux. Dans la première partie de cette thèse, nous décrivons la structure microscopique des tissus de la matière blanche du cerveau, et présentons la physique de formation des images en IRM de diffusion. Nous faisons un état de l'art des méthodes de reconstruction, et des techniques d'acquisition proposées à ce jour. En ce qui concerne les méthodes de reconstruction, nous faisons la distinction suivant qu'elles soient basées sur un modèle ou non. La première contribution de cette thèse est liée à la reconstruction paramétrique du signal de diffusion dans une base de fonctions continues. Cette contribution fait suite à une méthode proposée récemment, appelée transformée de Fourier sphérique, et y apporte une modification pour une reconstruction continue. Nous réduisons de façon significative la dimension de la base, tout en décrivant aussi bien le signal de diffusion. Nous donnons également l'expression de l'opérateur de régularisation de Laplace en fonction des coefficients dans cette base, afin de limiter l'impact du bruit sur la reconstruction. La seconde contribution est également liée à la reconstruction du signal de diffusion, et à la fonction de distribution d'orientation, dans un contexte d'application clinique. Nous proposons une méthode de reconstruction en temps réel basée sur le filtre de Kalman pour la probabilité marginale de diffusion angulaire. Nous développons un algorithme pour détecter les mouvements du patient, de façon précise et avec une grande sensibilité, et ce sans surcoût, comparé aux systèmes utilisant une camera et des algorithmes de vision robotique. Les deux dernières contributions présentées dans cette thèse sont liées aux techniques d'acquisition en IRM de diffusion, en particulier pour l'élaboration de schémas d'acquisition sur une ou plusieurs sphères dans l'espace de Fourier. Nous présentons d'abord une méthode géométrique pour placer des points dans l'espace de Fourier sur plusieurs sphères, en optimisant la couverture angulaire sur chacune des sphères, mais également de façon globale. Puis nous cherchons à établir un lien entre le schéma d'acquisition et la base de fonctions utilisée pour la reconstruction, et nous proposons en particulier une méthode pour élaborer un protocole d'acquisition qui permette de minimiser le nombre de conditionnement, pour la reconstruction dans la base des harmoniques sphériques, et dans la base de Fourier sphérique modifiée, proposée dans cette thèse. En conclusion de cette étude sur l'acquisition, nous pensons que l'élaboration du schéma d'échantillonnage doit être motivée à la fois pour répondre aux contraintes physiques du scanner, et par le choix de la base dans laquelle le signal sera reconstruit. Ces nouveaux schémas d'échantillonnage sont disponibles au téléchargement sur mon site internet.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Valor, Sabatier Josep. "Mathematical tools and budgetary mechanisms for hospital cost control." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/29513.

Повний текст джерела
Анотація:
Thesis (Sc. D.)--Harvard--Massachusetts Institute of Technology Division of Health Sciences and Technology Program in Medical Engineering and Medical Physics, 1985.
MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE
Bibliography: leaves 140-146.
by Josep Valor Sabatier.
Sc.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hayward, Robert M. "A Coarse Mesh Transport Method with general source treatment for medical physics." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31696.

Повний текст джерела
Анотація:
Thesis (M. S.)--Nuclear and Radiological Engineering and Medical Physics, Georgia Institute of Technology, 2010.
Committee Chair: Rahnema, Farzad; Committee Member: Wang, Chris; Committee Member: Zhang, Dingkang. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Carley, David William. "The stability of respiratory control in man : mathematical and experimental analyses." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/17192.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--M.I.T., Harvard-MIT Division of Health Sciences and Technology Program in Medical Engineering and Medical Physics, 1985.
MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIECNE.
Vita.
Includes bibliographical references.
by David William Carley.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cuerpo, Joanna Valencia. "Studies on yeasts of medical importance from Stockton, California." Scholarly Commons, 1992. https://scholarlycommons.pacific.edu/uop_etds/2235.

Повний текст джерела
Анотація:
This study deals with the identification of 114 yeast isolates from clinical material collected at Dameron Hospital, Stockton, California between August 15, 1990 and September 16, 1991 . The isolates were identified biochemically using the MicroScan Yeast Identification Panel. All isolates were also tested by four conventional cultural methods: germ tube formation, cycloheximide resistance, chlamydospore production, and spidery colony formation. Biochemically, the yeast isolates were identified to nine species of Candida: C. albicans (ll) , C. tropicalis (8), c. stellatoidea (3), c. guilliermondii (2), C. parapsilosis (2), and one of each species of c. catenulata, C. krusei, C. lusitaniae, and C. pseudotropicalis; one species of Torulopsis: T. glabrata (11) and one species of Kluyveromyces, K. lactis (2). Other than those identified as C. albicans, all the other yeasts identified to the species level were negative for all the four conventional tests except for one of two strains of C. guilliermondii which was positive for germ tube, cycloheximide resistance and chlamydospore production. Based on these three tests this isolate of C. guilliermondii would be identified as C. albicans. Five isolates could not be biochemically identified to species. One of the five was positive for the germ tube, resistance to cycloheximide and chlamydospores. Based solely on these three conventional cultural methods this isolate would be considered c. albicans. This isolate and one of the two strains of C. guilliermondii referred to above raise the question as to a possible shortcoming in the Microscan YIP . An interesting observation was the finding that all nine strains of C. albicans recovered from stools of different patients belong to the same biotype.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

LI, QI. "ENERGY EFFICIENT EMBEDDED SYSTEM DESIGN FOR MEDICAL CARE SYSTEM USING WIRELESS SENSOR NETWORK." VCU Scholars Compass, 2008. http://scholarscompass.vcu.edu/etd/1624.

Повний текст джерела
Анотація:
Recent surveys on medical service systems show that the cost of patient monitoring has grown significantly. The widespread use of portable digital medical device makes it possible to provide a more comprehensive tracking of patient conditions. However, the development of a full scale, distributed health monitoring system is much delayed due to the lack of efficient wireless communication in a large distributed network. This becomes a challenging research topic which is to find a way to provide accurate and real time patient information to medical experts in a fast, efficient and cost effective fashion. This paper proposes a novel solution on building a system which links patients and doctors together using embedded system technology and wireless sensor network. The content presented in this thesis introduces the design and implement of such a system.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Altaf, Fouzia. "Deep learning augmentation for medical image analysis." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2022. https://ro.ecu.edu.au/theses/2603.

Повний текст джерела
Анотація:
Deep learning is at the center of the current rise of computer aided diagnosis in medical imaging. This technology has the ability to mimic extremely complex mathematical functions for predictive tasks. These functions are encoded as computational models that are learned directly from data. Deep learning models are known to achieve human-level accuracy for predictive tasks. However, such a performance requires that the model is trained on a huge amount of training data. For computer aided diagnosis tasks, the relevant training data needs to be carefully annotated by medical experts. This process is laborious and expensive, which generally results in limited amount of training data for deep learning. Moreover, the data often suffers from the practical constraint of class-imbalance. These issues severely degrade the performance of deep learning in medical image analysis. The common strategy to sidestep the limited training data problem in medical imaging is to ‘transfer’ a model from the natural image domain to the medical image domain with the available limited data, and use that model to make predictions. Though useful, the transferred models still lack acceptable performance levels for medical tasks. This thesis develops a range of novel techniques to enhance deep learning based computer aided diagnosis performance, especially within the context of transfer learning paradigm. The research for this thesis was mainly conducted during the COVID-19 pandemic. Hence, COVID-19 detection and classification has received the main attention as evaluation tasks for the proposed techniques, among other thoracic diseases. Opening the research with an extensive literature review of deep learning in medical image analysis (Chapter 2), the thesis identifies lack of large-scale annotated data as the central challenge of effectively employing deep learning for the medical imaging tasks. Hence, it first develops a method to augment deep learning for a better transfer of natural image models to the medical image domain (Chapter 3). This technique also enhances the transferred models performance by reinforcing the model predictions with a sparse representation method. Our analysis revealed that the large domain gap between the natural images and the medical image data is a major source of transfer learning performance degradation. We hypothesize that first transferring a natural image model to the medical image domain with a large-scale data of possibly an irrelevant task, and subsequently transferring that model for the target task, can help. We verify this hypothesis with a novel hierarchical transfer learning method that used large-scale chest X-ray images to finally detect COVID-19 with computed tomography (CT) images (Chapter 4). In parallel, we made an important discovery that due to deep learning hype and urgency of developments in COVID-19 research, the performance of transfer learning for CT-based COVID-19 detection is severely over-estimated in the existing literature. We provide an extensive transparent study to reset the baseline of transfer learning performance for CT-based COVID-19 detection (Chapter 5). The thesis also introduces a novel concept of pre-text representation transfer that enables harnessing large amount of unlabelled data to improve transfer learning performance on balanced and imbalanced limited training data (Chapter 6). With this method, we are able to use un-annotated CT scan images from public domains and transfer the representation of natural image models to the CT data with these plentiful images. We use the resulting transferred representation for subsequent transfer learning with limited annotated COVID-19 CT images, achieving considerable performance gain over the conventional transfer learning.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smith, Rebecca. "Analysis of Medical Images by Colonies of Prehending Entities." VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2095.

Повний текст джерела
Анотація:
The concept of emergent behavior is difficult to define, but can be considered as higher-level activity created by the individual actions of a population of simple agents. A potential means to model such behavior has been previously developed using Alfred North Whitehead's concept of Actual Entities. In computational form, actual entities are agents which evolve over time in response to interactions with their environment via the process of prehension. This occurs within the context of a Colony of Prehending Entities, a framework for implementation of AE concepts. This thesis explores the practical application of this framework in analysis of medical images, with specific focus on Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans. Specialized Slice COPEs are developed for analysis of individual image slices from these scans, focusing on the detection and segmentation of structures of interest (such as bone matter, ventricular tissue, and tumors). These structures exist in 3D and can be extracted across multiple consecutive scan slices. Therefore, a specialized Scan COPE is also proposed which aims to render the structure's volume via interpolation between previously analyzed slice images. The software developed for the specified application also provides visualization of a COPE's evolution toward its goal. This has additional value in general study of the COPE framework and the emergent behavior it generates.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Freitas, Juliana Campos de. "O Uso de Mateheurísticas Para o Problema de Escolha dos Feixes de um Modelo de Otimização Aplicado ao Problema de Planejamento de Radioterapia." Botucatu, 2019. http://hdl.handle.net/11449/181650.

Повний текст джерела
Анотація:
Orientador: Daniela Renata Cantane
Resumo: A escolha do conjunto de feixes e a intensidade de dose a ser depositada nos tecidos são problemas de suma importância para se obter um eficiente planejamento da radioterapia, uma vez que o melhor conjunto de feixes é escolhido de maneira que haja uma melhor distribuição de dose no tumor e proteção das células sadias. Para um melhor planejamento, diversos modelos de otimização estão sendo propostos utilizando metaheurísticas e/ou métodos exatos para a resolução dos mesmos. Este trabalho consiste em propor um modelo de programação não linear inteiro misto para escolha de feixes e intensidade de dose de irradiação baseado em um modelo de programação linear da literatura. Para a escolha do conjunto de feixes, foram propostas duas metaheurísticas (Busca Tabu e Busca em Vizinhança Variável), já para o problema de intensidade de dose, foram utilizados métodos exatos (Método de Pontos Interiores Barreira Logarítmica, Primal Simplex e Dual Simplex). Os métodos exatos foram integrados a ambas metaheurísticas e foram aplicados em $4$ casos reais de tumor de próstata utilizando imagens de tomografia computadorizada. Os resultados obtidos através dessas mateheurísticas foram analisados e comparados quanto ao tempo computacional, quantidade de iterações e função objetivo. Conclui-se que o modelo proposto foi eficiente para o planejamento da radioterapia.
Abstract: The beam set choice and dose intensity to be deposited in all tissues are essential problems to obtain an efficient radiotherapy planning, since the best beam set is chosen in a way to achieve the best dose distribution in tumor, protecting the surrounding cells to absorb high dose amount. To a better treatment plan, some optimization models have been proposed using metaheuristic algorithms and/or exact methods to solve them. This thesis consists on proposing a mixed integer non linear programming model to beam choice and dose intensity based on a linear programming model from the literature. To beam set choice problem, two metaheuristic algorithms were proposed (Tabu Search and Variable Neighbourhood Search), and to intensity dose absorption problem, were used three exact methods (Log Barrier Interior Point Method, Primal Simplex and Dual Simplex). The exact methods were integrated with both metaheuristic algorithm and applied in $4$ real prostate cases using computerized tomography image. The results from the applied matheuristic were analysed and compared in terms of computational time, number of interactions and objective function. Concluding that the proposed model was efficient to radiotherapy planning.
Mestre
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Medical physics – mathematics"

1

Lancaster, Jack, and Bruce Hasegawa. Fundamental Mathematics and Physics of Medical Imaging. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2016] |: CRC Press, 2016. http://dx.doi.org/10.1201/9781315368214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

J, Durkee David, and Steinmeyer Paul R, eds. Mathematics review for health physics technicians. Hebron, CT: RSA Publications, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

National Research Council (U.S.). Committee on the Mathematics and Physics of Emerging Dynamic Biomedical Imaging. and Institute of Medicine (U.S.). Board on Biobehavioral Sciences and Mental Disorders., eds. Mathematics and physics of emerging biomedical imaging. Washington, D.C: National Academy Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hussein, Esam M. A. Computer Radiation Imaging: Physics and Mathematics of the Forward and Inverse Problems. San Diego: Elsevier Science & Technology Books, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

D, Davis P., and Parbrook E. O, eds. Basic physics and measurement in anaesthesia. 2nd ed. London: Heinemann Medical, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Parbrook, G. D. Basic physics and measurement in anaesthesia. 3rd ed. Oxford: Butterworth-Heinemann, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

D, Davis P., and Parbrook E. O, eds. Basic physics and measurement in anaesthesia. 2nd ed. Norwalk, Conn: Appleton-Century-Crofts, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Parbrook, G. D. Basic physics and measurement in anaesthesia. 3rd ed. Oxford: Heinemann Medical, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

L, Asachenkov A., ed. Disease dynamics. Boston: Birkhäuser, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

J, Colbert Bruce, ed. An integrated approach to health sciences: Anatomy and physiology, math, physics, and chemistry. Albany: Delmar, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Medical physics – mathematics"

1

Zamir, Mair. "Mathematical Description of Fluid Flow." In Biological and Medical Physics, Biomedical Engineering, 13–41. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24103-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Iwasa, Yoh, Kazunori Sato, and Yasuhiro Takeuchi. "Mathematical Studies of Dynamics and Evolution of Infectious Diseases." In Biological and Medical Physics, Biomedical Engineering, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-34426-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schiavi, Emanuele, Juan Francisco Garamendi, and Adrián Martín. "Medical Image Processing: Mathematical Modelling and Numerical Resolution." In Advances in Numerical Simulation in Physics and Engineering, 245–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02839-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Serrin, James. "Comparison and Averaging Methods in Mathematical Physics." In Proprietà di media e teoremi di confronto in fisica matematica, 43–131. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11018-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fiocca, Alessandra. "The contributions of mathematical, philosophical and technical cultures to 16th century hydraulics." In Medieval and Classical Traditions and the Renaissance of Physico-Mathematical Sciences in the 16th Century, 131–40. Turnhout: Brepols Publishers, 2001. http://dx.doi.org/10.1484/m.dda-eb.5.113580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ingram, David. "4. Models and Simulations." In Health Care in the Information Society, 259–324. Cambridge, UK: Open Book Publishers, 2023. http://dx.doi.org/10.11647/obp.0335.04.

Повний текст джерела
Анотація:
Modelling and simulation have arisen as a third branch of science alongside theory and experiment, enabling and supporting discovery, insight, prediction and action. The Information Age gave rise to an upsurge in the use of models to represent, rationalize and reason about measured and predicted appearances of the real world. This chapter describes different kinds of model—physical, mathematical, computational—and their use in different domains and for different purposes. Solutions of mathematical model equations that defied analytical method and required huge amounts of mental and manual effort for the calculations made, before the computer, became considerably more straightforward to deal with using computational methods and tools developed and refined in the Information Age. In the examples described, the focus is on pioneers I have been taught by, got to know or collaborated with: John Houghton (1931–2020) on weather and climate modelling, to give a perspective from a non-medical domain; Arthur Guyton (1919–2003) and John Dickinson (1927–2015) on modelling of body systems and clinical physiology; Louis Sheppard on model-based control systems for intensive care, and mathematical models applied to track and predict the course of epidemics and analyze clinical decisions. Other examples are from teams I have been privileged to see firsthand, as a reviewer and advisory board chair of largescale research projects across the European Union. With colleagues in the UK and Canada, I previously published the Mac Series models of clinical physiology with Oxford University Press. I have established a Cloud-based emulation environment to provide access to these working models—created in the first half of my career and thus now archaic in terms of software interface—to accompany their description in one of the chapter’s examples.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Camerotta, Michela, and M. O. Helbing. "The leaning tower experiment in context : Borro, Buonamici and Galileo on falling bodies." In Medieval and Classical Traditions and the Renaissance of Physico-Mathematical Sciences in the 16th Century, 141–49. Turnhout: Brepols Publishers, 2001. http://dx.doi.org/10.1484/m.dda-eb.4.00616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Napolitani, Pier Daniele. "A l'aube de la révolution scientifique : de Galilée à Maurolico." In Medieval and Classical Traditions and the Renaissance of Physico-Mathematical Sciences in the 16th Century, 9–13. Turnhout: Brepols Publishers, 2001. http://dx.doi.org/10.1484/m.dda-eb.5.113566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Moscheo, Rosario. "Greek heritage ant the scientific work of Francesco Maurolico." In Medieval and Classical Traditions and the Renaissance of Physico-Mathematical Sciences in the 16th Century, 15–22. Turnhout: Brepols Publishers, 2001. http://dx.doi.org/10.1484/m.dda-eb.5.113567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tassora, Roberta. "La formation du jeune Maurolico et les auteurs classiques." In Medieval and Classical Traditions and the Renaissance of Physico-Mathematical Sciences in the 16th Century, 23–32. Turnhout: Brepols Publishers, 2001. http://dx.doi.org/10.1484/m.dda-eb.5.113568.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Medical physics – mathematics"

1

Kalashnikova, S. A. "Teaching questions of mathematics in the course of the discipline "Physics, Mathematics" in medical school." In ТЕНДЕНЦИИ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ. НИЦ «Л-Журнал», 2018. http://dx.doi.org/10.18411/lj-11-2018-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hendryanna, Flasma Veronicha, Yan Watequlis Syaifudin, Muhammad Afif Hendrawan, Nobuo Funabiki, and Indrazno Siradjuddin. "Recognizing acne Vulgaris severity levels: An application of faster R-CNN and YOLO methods on medical images." In THE 3RD INTERNATIONAL CONFERENCE ON NATURAL SCIENCES, MATHEMATICS, APPLICATIONS, RESEARCH, AND TECHNOLOGY (ICON-SMART2022): Mathematical Physics and Biotechnology for Education, Energy Efficiency, and Marine Industries. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0201131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Terekhova, Elena S., and Olga B. Startseva. "Developing VAK Classificator – SRSTI coverter as exemplified by the discipline 1.5.3 Molecular Biology." In Twenty Seventh International Conference and Exhibition «LIBCOM- 2023». Russian National Public Library for Science and Technology, 2024. http://dx.doi.org/10.33186/978-5-85638-269-2-2024-101-109.

Повний текст джерела
Анотація:
The authors examine the problems of identifying semantic matches between scientific professions codes and SRSTI subject headings in the cases when several profiles of one profession exist, i.e. when the academic degree is awarded within several disciplines. The procedure is described by the example of the discipline 1.5.3 Molecular Biology within which four academic degrees can be awarded: physics and mathematics, engineering, biological and medical sciences.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pushkov, V., and S. Zavjalov. "The natives of Smolensk province – first-year students of Moscow university of 1917." In Historical research in the context of data science: Information resources, analytical methods and digital technologies. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1793.978-5-317-06529-4/89-95.

Повний текст джерела
Анотація:
In 1917 Smolensk province stood on the second place by the quantity of sophomores of the Moscow university next to Vladimir province (139 and 158 students correspondingly). 7 districts out from 11 were represented. Mainly graduators of gymnasia and the Seminary entered the university. For the first time 8 girls became students. Principally the social structure of students included petty bourgeoisie, clergy and peasantry. Most part of students entered physics and mathematics department, much smaller part entered medical department and ones of law and of linguistics and history.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pushkov, V., and S. Zavjalov. "The natives of Smolensk province – first-year students of Moscow university of 1917." In Historical research in the context of data science: Information resources, analytical methods and digital technologies. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1793.978-5-317-06529-4/89-95.

Повний текст джерела
Анотація:
In 1917 Smolensk province stood on the second place by the quantity of sophomores of the Moscow university next to Vladimir province (139 and 158 students correspondingly). 7 districts out from 11 were represented. Mainly graduators of gymnasia and the Seminary entered the university. For the first time 8 girls became students. Principally the social structure of students included petty bourgeoisie, clergy and peasantry. Most part of students entered physics and mathematics department, much smaller part entered medical department and ones of law and of linguistics and history.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schmid-Schönbein, Geert W. "Biomechanics as a Tool for Study of Cardiovascular Disease: Will We Predict Cardiovascular Disease With Engineering Precision?" In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2510.

Повний текст джерела
Анотація:
Abstract With the impending completion of the human genome sequence, biology will join the ranks of physics, mathematics, and chemistry as an exact basic science. This fact will be reflected in the choice of the curriculum for many academic disciplines, but especially for Bioengineering. Bioengineering, and specifically Biomechanics, will integrate these disciplines and serve as the platform for expanding analysis as well as creation and design of new approaches in Biology and Medicine. Not only is mechanics determined by biology but also biology is controlled by mechanics. Thus, biomechanics is becoming an integral part of medical research. One of the most interesting aspects of biomechanics is its application to problems related to disease (1).
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Morales-Peñaloza, A., C. D. Meza-López, and J. J. Godina-Nava. "Mathematical modeling of DNA's transcription process for the cancer study." In MEDICAL PHYSICS: Twelfth Mexican Symposium on Medical Physics. AIP, 2012. http://dx.doi.org/10.1063/1.4764631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Valle, Saúl H. "Monte Carlo MCNP-4B energy absorbed fractions in Head and Brain calculated in “The ORNL mathematical phantom series” and in “MIRD 15” mathematical phantoms." In MEDICAL PHYSICS: Sixth Mexican Symposium on Medical Physics. AIP, 2002. http://dx.doi.org/10.1063/1.1512050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Valle, Saúl H., Daniel M. Lorenzo, Maritza R. Gual, Luis Manuel Montaño Zentina, and Gerardo Herrera Corral. "Monte Carlo MCNP-4B energy absorbed fractions in Head and Brain calculated in “The ORNL mathematical phantom series” and in “MIRD 15” mathematical phantoms." In MEDICAL PHYSICS: Sixth Mexican Symposium on Medical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3682858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gual, Maritza Rodríguez. "Mathematical Phantom Modelled with MCNP-4B code for Individual Patient Dosimetry." In MEDICAL PHYSICS: Sixth Mexican Symposium on Medical Physics. AIP, 2002. http://dx.doi.org/10.1063/1.1512060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Medical physics – mathematics"

1

Bruno, Oscar P. Mathematical Prediction of the Physical Properties of Materials and Media. Fort Belvoir, VA: Defense Technical Information Center, March 1999. http://dx.doi.org/10.21236/ada368323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kiv, Arnold E., Vladyslav V. Bilous, Dmytro M. Bodnenko, Dmytro V. Horbatovskyi, Oksana S. Lytvyn, and Volodymyr V. Proshkin. The development and use of mobile app AR Physics in physics teaching at the university. [б. в.], July 2021. http://dx.doi.org/10.31812/123456789/4629.

Повний текст джерела
Анотація:
This paper outlines the importance of using Augmented Reality (AR) in physics education at the university as a valuable tool for visualization and increasing the attention and motivation of students to study, solving educational problems related to future professional activities, improving the interaction of teachers and students. Provided an analysis of the types of AR technology and software for developing AR apps. The sequences of actions for developing the mobile application AR Physics in the study of topics: “Direct electronic current”, “Fundamentals of the theory of electronic circuits”. The software tools for mobile application development (Android Studio, SDK, NDK, Google Sceneform, 3Ds MAX, Core Animation, Asset Media Recorder, Ashampoo Music Studio, Google Translate Plugin) are described. The bank of 3D models of elements of electrical circuits (sources of current, consumers, measuring devices, conductors) is created. Because of the students’ and teachers’ surveys, the advantages and disadvantages of using AR in the teaching process are discussed. Mann-Whitney U-test proved the effectiveness of the use of AR for laboratory works in physics by students majoring in “Mathematics”, “Computer Science”, and “Cybersecurity”.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Perdigão, Rui A. P. Beyond Quantum Security with Emerging Pathways in Information Physics and Complexity. Synergistic Manifolds, June 2022. http://dx.doi.org/10.46337/220602.

Повний текст джерела
Анотація:
Information security and associated vulnerabilities have long been a pressing challenge, from the fundamental scientific backstage to the frontline across the most diverse sectors of society. At the tip of the iceberg of this problem, the citizens immediately feel that the reservation of privacy and the degradation of the quality and security of the information and communication on which they depend for the day-to-day activities, already of crucial relevance, are at stake. Naturally though, the challenges do not end there. There is a whole infrastructure for storing information, processing and communication, whose security and reliability depend on key sectors gearing modern society – such as emergency communication systems (medical, civil and environmental protection, among others), transportation and geographic information, the financial communications systems at the backbone of day-to-day transactions, the information and telecommunications systems in general. And crucially the entire defence ecosystem that in essence is a stalwart in preventing our civilisation to self-annihilate in full fulfilment of the second principle of thermodynamics. The relevance of the problem further encompasses the preservation of crucial values such as the right to information, security and integrity of democratic processes, internal administration, justice, defence and sovereignty, ranging from the well-being of the citizen to the security of the nation and beyond. In the present communication, we take a look at how to scientifically and technically empower society to address these challenges, with the hope and pragmatism enabled by our emerging pathways in information physics and complexity. Edging beyond classical and quantum frontiers and their vulnerabilities to unveil new principles, methodologies and technologies at the core of the next generation system dynamic intelligence and security. To illustrate the concepts and tools, rather than going down the road of engineered systems that we can ultimately control, we take aim at the bewildering complexity of nature, deciphering new secrets in the mathematical codex underlying its complex coevolutionary phenomena that so heavily impact our lives, and ultimately bringing out novel insights, methods and technologies that propel information physics and security beyond quantum frontiers.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії