Добірка наукової літератури з теми "Mechanics of rigid bodies"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mechanics of rigid bodies".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Mechanics of rigid bodies"

1

Sławianowski, Jan Jerzy, Vasyl Kovalchuk, Barbara Gołubowska, Agnieszka Martens, and Ewa Eliza Rożko. "Quantized mechanics of affinely rigid bodies." Mathematical Methods in the Applied Sciences 40, no. 18 (July 19, 2017): 6900–6918. http://dx.doi.org/10.1002/mma.4501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Steigmann, David J. "On pseudo-rigid bodies." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2066 (December 13, 2005): 559–65. http://dx.doi.org/10.1098/rspa.2005.1573.

Повний текст джерела
Анотація:
The concept of the pseudo-rigid body , a model of hypothetical bodies constrained to deform homogeneously, is discussed critically. An analysis is given of a recent attempt, published in this journal, to establish this model on the basis of continuum mechanics.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Grekova, E. "Moment Interactions of Rigid Bodies." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 80, S2 (2000): 347–48. http://dx.doi.org/10.1002/zamm.20000801445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Marquina, J. E., M. L. Marquina, V. Marquina, and J. J. Hernández-Gómez. "Leonhard Euler and the mechanics of rigid bodies." European Journal of Physics 38, no. 1 (October 21, 2016): 015001. http://dx.doi.org/10.1088/0143-0807/38/1/015001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sideris, Petros, and Andre Filiatrault. "Seismic Response of Squat Rigid Bodies on Inclined Planes with Rigid Boundaries." Journal of Engineering Mechanics 140, no. 1 (January 2014): 149–58. http://dx.doi.org/10.1061/(asce)em.1943-7889.0000658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Iwai, Toshihiro. "The geometry and mechanics of generalized pseudo-rigid bodies." Journal of Physics A: Mathematical and Theoretical 43, no. 9 (February 15, 2010): 095206. http://dx.doi.org/10.1088/1751-8113/43/9/095206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maggiorini, Dario, Laura Anna Ripamonti, and Federico Sauro. "Unifying Rigid and Soft Bodies Representation: The Sulfur Physics Engine." International Journal of Computer Games Technology 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/485019.

Повний текст джерела
Анотація:
Video games are (also) real-time interactive graphic simulations: hence, providing a convincing physics simulation for each specific game environment is of paramount importance in the process of achieving a satisfying player experience. While the existing game engines appropriately address many aspects of physics simulation, some others are still in need of improvements. In particular, several specific physics properties of bodies not usually involved in the main game mechanics (e.g., properties useful to represent systems composed by soft bodies), are often poorly rendered by general-purpose engines. This issue may limit game designers when imagining innovative and compelling video games and game mechanics. For this reason, we dug into the problem of appropriately representing soft bodies. Subsequently, we have extended the approach developed for soft bodies to rigid ones, proposing and developing a unified approach in a game engine: Sulfur. To test the engine, we have also designed and developed “Escape from Quaoar,” a prototypal video game whose main game mechanic exploits an elastic rope, and a level editor for the game.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Federico, Salvatore, and Mawafag Alhasadi. "Inverse dynamics in rigid body mechanics." Theoretical and Applied Mechanics, no. 00 (2022): 11. http://dx.doi.org/10.2298/tam221109011f.

Повний текст джерела
Анотація:
Inverse Dynamics is used to calculate the forces and moments in the joints of multibody systems investigated in fields such as Biomechanics or Robotics. In a didactic spirit, this paper begins with an overview of the derivations of the kinematical and dynamical equations of rigid bodies from the point of view of modern Continuum Mechanics. Then, it introduces a matrix formulation for the solution of Inverse Dynamics problems and, finally, reports a simple two-dimensional example of application to a problem in Biomechanics.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

White, M. W. D., and G. R. Heppler. "Vibration Modes and Frequencies of Timoshenko Beams With Attached Rigid Bodies." Journal of Applied Mechanics 62, no. 1 (March 1, 1995): 193–99. http://dx.doi.org/10.1115/1.2895902.

Повний текст джерела
Анотація:
The equations of motion and boundary conditions for a free-free Timoshenko beam with rigid bodies attached at the endpoints are derived. The natural boundary conditions, for an end that has an attached rigid body, that include the effects of the body mass, first moment of mass, and moment of inertia are included. The frequency equation for a free-free Timoshenko beam with rigid bodies attached at its ends which includes all the effects mentioned above is presented and given in terms of the fundamental frequency equations for Timoshenko beams that have no attached rigid bodies. It is shown how any support / rigid-body condition may be easily obtained by inspection from the reported frequency equation. The mode shapes and the orthogonality condition, which include the contribution of the rigid-body masses, first moments, and moments of inertia, are also developed. Finally, the effect of the first moment of the attached rigid bodies is considered in an illustrative example.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zabuga, A. G. "Modeling the Collision with Friction of Rigid Bodies." International Applied Mechanics 52, no. 5 (September 2016): 557–62. http://dx.doi.org/10.1007/s10778-016-0776-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Mechanics of rigid bodies"

1

Fandrich, Martin Edward. "Impact mechanics of rigid and compliant bodies." Thesis, University of Cambridge, 1997. https://www.repository.cam.ac.uk/handle/1810/275244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tarama, Daisuke. "Classical and Quantum Mechanics, and Complex Algebraic Geometry of Free Rigid Bodies." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Daily, David J. "Fluid-Structure Interactions with Flexible and Rigid Bodies." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3791.

Повний текст джерела
Анотація:
Fluid structure interactions occur to some extent in nearly every type of fluid flow. Understanding how structures interact with fluids and visa-versa is of vital importance in many engineering applications. The purpose of this research is to explore how fluids interact with flexible and rigid structures. A computational model was used to model the fluid structure interactions of vibrating synthetic vocal folds. The model simulated the coupling of the fluid and solid domains using a fluid-structure interface boundary condition. The fluid domain used a slightly compressible flow solver to allow for the possibility of acoustic coupling with the subglottal geometry and vibration of the vocal fold model. As the subglottis lengthened, the frequency of vibration decreased until a new acoustic mode could form in the subglottis. Synthetic aperture particle image velocimetry (SAPIV) is a three-dimensional particle tracking technique. SAPIV was used to image the jet of air that emerges from vibrating human vocal folds (glottal jet) during phonation. The three-dimensional reconstruction of the glottal jet found faint evidence of flow characteristics seen in previous research, such as axis-switching, but did not have sufficient resolution to detect small features. SAPIV was further applied to reconstruct the smaller flow characteristics of the glottal jet of vibrating synthetic vocal folds. Two- and four-layer synthetic vocal fold models were used to determine how the glottal jet from the synthetic models compared to the glottal jet from excised human vocal folds. The two- and four-layer models clearly exhibited axis-switching which has been seen in other 3D analyses of the glottal jet. Cavitation in a quiescent fluid can break a rigid structure such as a glass bottle. A new cavitation number was derived to include acceleration and pressure head at cavitation onset. A cavitation stick was used to validate the cavitation number by filling it with different depths and hitting the stick to cause fluid cavitation. Acceleration was measured using an accelerometer and cavitation bubbles were detected using a high-speed camera. Cavitation in an accelerating fluid occurred at a cavitation number of 1.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tian, Xijin. "Modeling of planar elastically coupled rigid bodies: Geometric algebra methods and applications." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280214.

Повний текст джерела
Анотація:
This study presents two new, generic methods to modeling planar elastically coupled rigid body systems using Geometric Algebra. The two methods are twist-based potential energy function method and twistor-based potential energy function method. In this research, the rigid body motion in the plane is modeled as a twist or twistor motion in which the rotational motion and translational motion happen simultaneously. The twist is denoted as a bivector using Geometric Algebra which facilitates the notation and computation. A twistor is defined in an intermediate frame half way between two displacement frames. The twistor parameters intuitively represent the relative displacement between two frames. Both twist-based and twistor-based potential energy functions are shown to be frame-independent and body-independent. The kinematics is studied using twist and twistor parameters. The constitutive equations are derived in which the wrench exerted by a pair of elastic bodies is computable given twist or twistor displacements. To analyze large displacements, this study also provides two higher order polynomial potential energy functions of twist parameters and twistor parameters. The polynomial potential energy functions are also shown to be frame-independent and body-independent. They are generally applicable to analyze large displacements of elastically coupled rigid body systems. Several case studies are provided in this research to demonstrate the utility of the presented modeling methods. A micropositioning stage device is modeled as a flexural mechanism with 6 rigid bodies and 7 flexural joints. Simulation is performed using Scilab software. The simulation results show good agreement with actual experimental data. The methods are also applied to simulate the displacement of flexural four-bar linkages with various geometry and various flexural hinges. This case study shows that the presented methods in this research are generic and case-independent. In another case study, the higher order polynomial function method is applied to fit some randomly generated data which demonstrates the generality of the method and the applicability of the method in cases when only experimental data is available without knowing the geometry parameters of a mechanism. The case study of modeling electrostatic potential energy between liquid water molecules using polynomial function of twistor shows the potential utility of the method in the analysis of large displacement. The methods presented in this research have been shown to be generic, easily applicable, and easily computable.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Reis, António Manuel Malvas. "Estudo piloto da variabilidade do padrão de execução técnica no decurso da prova de 400 metros livres em natação." Master's thesis, Instituições portuguesas -- UP-Universidade do Porto -- -Faculdade de Ciências do Desporto e de Educação Física, 2002. http://dited.bn.pt:80/29580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Couceiro, Maria Teresa Fernandes. "Análise biomecânica do flick-flick na trave olímpica." Master's thesis, Instituições portuguesas -- UP-Universidade do Porto -- -Faculdade de Ciências do Desporto e de Educação Física, 2000. http://dited.bn.pt:80/29214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Moreira, Pelágio. "Análise das interacções de uma técnica base em trampolis com quatro técnicas complexas." Master's thesis, Instituições portuguesas -- UTL-Universidade Técnica de Lisboa -- -Faculdade de Motricidade Humana, 2000. http://dited.bn.pt:80/29332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Graziano, Alberto da Conceição Liberto. "Caracterização biomecânica do remate em suspensão com corrida no andebol-uma abordagem cinemática, dinâmica e electromiográfica." Phd thesis, Instituições portuguesas -- UP-Universidade do Porto -- -Faculdade de Ciências do Desporto e de Educação Física, 2002. http://dited.bn.pt:80/29621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cruz, Maria João Bezerra. "Estudo biomecânico de três técnicas de partida para provas ventrais de natação-abordagem cinemática e dinâmica." Master's thesis, Instituições portuguesas -- UP-Universidade do Porto -- -Faculdade de Ciências do Desporto e de Educação Física, 2000. http://dited.bn.pt:80/29180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vaillant, Timothée. "Rotation à long terme des corps célestes et application à Cérès et Vesta." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEO005/document.

Повний текст джерела
Анотація:
Le sujet de cette thèse est l'étude de la rotation à long terme des corps célestes.La première partie est consacrée à l’étude de la rotation à long terme de Cérès et Vesta, les deux corps les plus massifs de la ceinture principale d’astéroïdes. Ils sont l’objet d’étude de la sonde spatiale Dawn, qui a permis de déterminer précisément les caractéristiques physiques et de rotation nécessaires au calcul de leurs rotations. La distribution de glace sous et à la surface de Cérès dépend du mouvement de son axe de rotation par le biais de l’obliquité, inclinaison de l’équateur sur l’orbite. Les rotations de Cérès et Vesta étant rapides, l’évolution à long terme des axes de rotation de Cérès et Vesta a été obtenue à l'aide d'une intégration symplectique des équations de la rotation, où une moyenne a été réalisée sur la rotation propre rapide. La stabilité des axes de rotation de Cérès et Vesta a été étudiée en fonction des paramètres de la rotation avec un modèle séculaire semi-analytique, qui a permis de montrer que les axes de rotation ne présentaient pas de caractère chaotique.La seconde partie concerne le développement d'intégrateurs symplectiques dédiés au corps solide. L'intégration de la rotation propre d'un corps solide nécessite d’intégrer les équations issues du hamiltonien du corps solide libre. Ce hamiltonien est certes intégrable et présente une solution explicite nécessitant l’usage des fonctions elliptiques de Jacobi, cependant le coût numérique de ces fonctions est élevé. Lorsque le hamiltonien du corps solide libre est couplé avec une énergie potentielle, l’orientation du corps doit être calculée à chaque pas d’intégration, ce qui augmente le temps de calcul. Des intégrateurs symplectiques ont ainsi été précédemment proposés pour le corps solide libre. Dans ce travail, des intégrateurs spécifiques au corps solide ont été développés en utilisant les propriétés de l’algèbre de Lie du moment cinétique
This thesis concerns the long-term rotation of celestial bodies.The first part is a study of the long-term rotation of Ceres and Vesta, the two heaviest bodies of the main asteroid belt. The spacescraft Dawn studied these two objects and determined the physical and rotational characteristics, which are necessary for the computation of their rotations. The ice distribution under and on the surface of Ceres depends on the evolution of the obliquity, which is the inclination of the equatorial plane on the orbital plane. As the rotations of Ceres and Vesta are fast, the long-term evolution of the spin axes of Ceres and Vesta was obtained by realizing a symplectic integration of the equations of the rotation averaged on the fast proper rotation. The stability of the spin axes of Ceres and Vesta was studied with respect to the parameters of the rotation with a secular and semi-analytical model, which allowed to show that the spin axes are not chaotic.The second part concerns the development of symplectic integrators dedicated to the rigid body. The integration of the proper rotation of a rigid body needs to integrate the equations given by the Hamiltonian of the free rigid body. This Hamiltonian is integrable and presents an explicit solution using the Jacobi elliptic functions. However, the numerical cost of these functions is high. When the Hamiltonian of the free rigid body is coupled to a potential energy, the orientation of the body is needed at each step, which increases the computation time. Symplectic integrators were then previously proposed for the free rigid body. In this work, symplectic integrators dedicated to the rigid body were developed using the properties of the Lie algebra of the angular momentum
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Mechanics of rigid bodies"

1

Classical mechanics of particles and rigid bodies. 2nd ed. New Delhi: New Age International, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gupta, Kiran C. Classical mechanics of particles and rigid bodies. New York: Wiley, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cohen, Harley. The theory of pseudo-rigid bodies. New York: Springer-Verlag, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Huang, L. A Concise Introduction to Mechanics of Rigid Bodies. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45041-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang, L. A Concise Introduction to Mechanics of Rigid Bodies. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0472-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Olguín Díaz, Ernesto. 3D Motion of Rigid Bodies. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04275-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cohen, Harley, and Robert G. Muncaster. The Theory of Pseudo-rigid Bodies. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4613-9589-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Daqaq, Mohammed F., ed. Dynamics of Particles and Rigid Bodies. Chichester, UK: John Wiley & Sons Ltd, 2018. http://dx.doi.org/10.1002/9781119463207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nielsen, Paul. The qualitative statics of rigid bodies. Urbana, Il (1304 W. Springfield Ave., Urbana 61801): Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Heard, William B. Rigid Body Mechanics: Mathematics, Physics and Applications. Weinheim: Wiley-VCH, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Mechanics of rigid bodies"

1

Dyke, Phil. "Rigid Bodies." In Mechanics, 127–49. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13074-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cooper, Richard K., and Claudio Pellegrini. "Rigid Bodies." In Modern Analytic Mechanics, 147–73. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-5867-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Arnold, V. I. "Rigid bodies." In Mathematical Methods of Classical Mechanics, 123–59. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4757-2063-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Torres del Castillo, Gerardo F. "Rigid Bodies." In An Introduction to Hamiltonian Mechanics, 81–101. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95225-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Morino, Luigi. "Rigid Bodies." In Mathematics and Mechanics - The Interplay, 951–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-63207-9_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bettini, Alessandro. "Rigid Bodies." In A Course in Classical Physics 1—Mechanics, 317–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29257-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Frémond, Michel. "Collisions of Rigid Bodies." In Contact Mechanics, 397–404. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1983-6_54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Scheck, Florian A. "The Mechanics of Rigid Bodies." In Mechanics, 165–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02630-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Scheck, Florian. "The Mechanics of Rigid Bodies." In Mechanics, 187–240. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05370-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Scheck, Florian A. "The Mechanics of Rigid Bodies." In Mechanics, 167–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03748-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Mechanics of rigid bodies"

1

GRIOLI, G. "DYNAMICS OF THE RIGID BODIES AND CELESTIAL MECHANICS." In Proceedings of the 12th Conference on WASCOM 2003. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702937_0031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ketchel, John S., and Pierre M. Larochelle. "Line Based Collision Detection of Cylindrical Rigid Bodies." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57473.

Повний текст джерела
Анотація:
This paper presents a novel methodology for detecting collisions of cylindrically shaped rigid bodies moving in three dimensions. This algorithm uses line geometry and dual number algebra to exploit the geometry of cylindrical objects to facilitate the detection of collisions. First, the rigid bodies are modelled with infinite cylinders and a necessary condition for collision is evaluated. If the necessary condition is not satisfied then the two bodies do not collide. If the necessary condition is satisfied then a collision between the bodies may occur and we proceed to the next stage of the algorithm. In the second stage the bodies are modelled with finite cylinders and a definitive necessary and sufficient collision detection algorithm is employed. The result is a straight-forward and efficient means of detecting collisions of cylindrically shaped bodies moving in three dimensions. This methodology has applications in spatial mechanism design, robot motion planning, and workspace analyses of parallel kinematic machines such as Stewart-Gough platforms. A case study examining a spatial 4C mechanism for self collisions is included.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nohmi, Masahiro, Yoshiaki Terumichi, and Kiyoshi Sogabe. "Attitude Control of a String and Rigid Bodies System." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/dsc-24627.

Повний текст джерела
Анотація:
Abstract Applications of mechanical systems of a string with a rigid bodies subsystem have various possibilities for the engineering in extreme environment conditions, for example, in space or in ocean. This rigid bodies subsystem can be used as a robot subsystem. This paper discusses about attitude control of the rigid bodies subsystem, especially around an equilibrium point of the whole system. The control technique is consists of attitude control with reaction wheels and angular momentum control with manipulation of the rigid bodies subsystem. In order to confirm the effectiveness of the control approach, numerical simulations have been done, under condition that the shape of the string is described by the finite-element formulation, selecting a linear interpolation Also, from the view point of natural frequency analysis of the controlled system, characteristics of the control approach have been examined.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sedlmayr, Martin, and Friedrich Pfeiffer. "Spatial Contact Mechanics of CVT Chain Drives." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21511.

Повний текст джерела
Анотація:
Abstract A method for the simulation of spatial dynamics of CVT chain drives is proposed in this paper. Dealing with an elastic multibody system, special care has been taken to describe the contact mechanics of interconnected rigid and/or elastic bodies. Simulation results show the influence of the geometry and the kinematics on the vibrational behavior of the transmission. Furthermore effects on the efficiency and working forces are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ketchel, John S., and Pierre M. Larochelle. "Collision Detection of Cylindrical Rigid Bodies Using Line Geometry." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84699.

Повний текст джерела
Анотація:
This paper presents a novel methodology for detecting collisions of cylindrically shaped rigid bodies moving in three dimensions. This algorithm uses line geometry and dual number algebra to exploit the geometry of right circular cylindrical objects to facilitate the detection of collisions. First, the rigid bodies are modelled with infinite length cylinders and a necessary condition for collision is evaluated. If the necessary condition is not satisfied then the two bodies are not capable of collision. If the necessary condition is satisfied then a collision between the bodies may occur and we proceed to the next stage of the algorithm. In the second stage the bodies are modelled with finite length cylinders and a definitive necessary and sufficient collision detection algorithm is employed. The result is a straight-forward and efficient means of detecting collisions of cylindrically shaped bodies moving in three dimensions. This methodology has applications in spatial mechanism design, robot motion planning, workspace analysis of parallel kinematic machines such as Stewart-Gough platforms, nuclear physics, medical research, computer graphics and well drilling. A case study examining a spatial 4C robotic mechanism for self collisions is included.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pochylý, František, and Simona Fialová. "Use of the Gauss-Ostrogradsky theorem in the mechanics of rigid and flexible bodies and environments." In THE PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON MARITIME EDUCATION AND TRAINING (The 5th ICMET) 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0133903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fasse, Ernest D. "Lumped-Parameter Modeling of Visco-Elastically Coupled Rigid Bodies Using Clifford’s Biquaternions." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2391.

Повний текст джерела
Анотація:
Abstract This work considers the problem of modeling visco-elastically coupled rigid bodies, with application to modeling and computer simulation of spatial, flexural mechanisms. A method of modeling visco-elastic coupling based on Clifford’s biquaternions (dual quaternions) is presented. The potential utility of the method is demonstrated by simulating the behavior of a complex spatial, flexural mechanism.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hong, Geun Young, and Youngjin Choi. "Tensegrity Wrist Mechanism using Three Layers of Rigid Bodies and Strings." In 2019 16th International Conference on Ubiquitous Robots (UR). IEEE, 2019. http://dx.doi.org/10.1109/urai.2019.8768647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Auslander, David M. "An Object-Oriented Approach to Basic Mechanics." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2374.

Повний текст джерела
Анотація:
Abstract An approach is suggested for a methodology associated with basic mechanics that greatly enlarges the scope of problems accessible to students and professionals. A numerical approach based on Newtonian point-mass mechanics and pseudo-rigid bodies brings problems such as three-dimensional dynamics and constrained motions into the arena of basic mechanics. Because solutions of almost any problems of interest require computation, integrated study of physics, math, and computation is essential. An object-oriented computational approach is extremely useful since all models can be expressed with the same set of basic elements.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chatterjee, Anindya, and Andy L. Ruina. "Two Interpretations of Rigidity in Rigid Body Collisions." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0522.

Повний текст джерела
Анотація:
Abstract We distinguish between, and discuss the applicability of, two levels of rigidity in rigid-body collision modeling. For rigidity in the strong, force-response, sense collisional contact deformations must be highly localized. The bodies then move according to 2nd order rigid-body mechanics during the collision. Incremental collision laws and most collision models using continuum mechanics for the contact region depend on force-response rigidity. For rigidity in the weaker, impulse-response, sense the deformations need not be localized but displacements during the collision need to be small everywhere. Only the time-integrated rigid-body equations, involving before-collision and after-collision velocities, then need apply. Although a force-response rigid body is also impulse-response rigid the converse is not true. Algebraic collision laws depend only on impulse-response rigidity. Elastic vibration models of collisions are also generally consistent with impulse-response rigidity.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Mechanics of rigid bodies"

1

KOTERAS, JAMES R., and CHARLES M. STONE. Presto Theory Documentation: Rigid Bodies. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/809988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Grossman, R., P. S. Krishnaprasad, and Jerrold E. Marsden. The Dynamics of Two Coupled Rigid Bodies,. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada187592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Loncaric, J. On Statics of Elastic Systems and Networks of Rigid Bodies. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada452381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kovalchuk, Vasyl. Classical Models of Affinely-rigid Bodies with "Thickness" in Degenerate Dimention. GIQ, 2012. http://dx.doi.org/10.7546/giq-10-2009-197-210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kovalchuk, Vasyl. Classical Models of Affinely-Rigid Bodies with "Thickness" in Degenerate Dimension. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-14-2009-51-65.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Li-Shang, and P. S. Krishnaprasad. Relative Equilibria for Two Rigid Bodies Connected by a Ball-in-Socket Joint. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada454738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sreenath, N., Y. G. Oh, P. S. Krishnaprasad, and J. E. Marsden. The Dynamics of Coupled Planar Rigid Bodies. Part 1. Reduction, Equilibria and Stability,. Fort Belvoir, VA: Defense Technical Information Center, July 1987. http://dx.doi.org/10.21236/ada187467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oh, Y. G., N. Sreenath, P. S. Krishnaprasad, and J. E. Marsden. The Dynamics of Coupled Planar Rigid Bodies. Part 2. Bifurcations, Periodic Solutions, and Chaos. Fort Belvoir, VA: Defense Technical Information Center, January 1988. http://dx.doi.org/10.21236/ada452393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pai, Dinesh K., and Bruce R. Donald. On the Motion of Compliantly-Connected Rigid Bodies in Contact, Part 2: A System for Analyzing Designs for Assembly. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada214136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tezaur, Irina Kalashnikova. ML Enhancements via the Calculation of Rigid Body Modes (RBMs) for Mechanics Problems Implemented within the Albany Code Base. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1494325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії