Добірка наукової літератури з теми "Mécaniques de fluides"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mécaniques de fluides".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Mécaniques de fluides"
Follain, Gautier, Valentin Gensbittel, Benjamin Mary, Olivier Lefebvre, Sébastien Harlepp, Vincent Hyenne, and Jacky G. Goetz. "Influence de la mécanique des fluides sur la formation des métastases." médecine/sciences 36, no. 10 (October 2020): 872–78. http://dx.doi.org/10.1051/medsci/2020158.
Повний текст джерелаTshibangu, J. P., J. P. Sarda, and A. Audibert-Hayet. "Étude des interactions mécaniques et physico-chimiques entre les argiles et les fluides de forage. Application à l'argile de Boom (Belgique)." Revue de l'Institut Français du Pétrole 51, no. 4 (July 1996): 497–526. http://dx.doi.org/10.2516/ogst:1996035.
Повний текст джерелаGuinot, de Vincent. "Ondes en mécanique des fluides." European Journal of Computational Mechanics 16, no. 1 (January 2007): 127–29. http://dx.doi.org/10.1080/17797179.2007.9737277.
Повний текст джерелаGarin, Arnaud Martin, and Pierre Crancon. "Mécanique des fluides et applications." La Houille Blanche, no. 2 (April 2001): 23. http://dx.doi.org/10.1051/lhb/2001016.
Повний текст джерелаJaumotte, André, and Patrick Rambaud. "Les modèles en mécanique des fluides." Bulletin de la Classe des sciences 17, no. 7 (2006): 267–70. http://dx.doi.org/10.3406/barb.2006.28560.
Повний текст джерелаColin, Thierry. "Modèles stratifiés en mécanique des fluides géophysiques." Annales mathématiques Blaise Pascal 9, no. 2 (2002): 229–43. http://dx.doi.org/10.5802/ambp.158.
Повний текст джерелаHauguel, A. "Méthodes et outils numériques en mécanique des fluides." La Houille Blanche, no. 3 (March 1986): 193–200. http://dx.doi.org/10.1051/lhb/1986018.
Повний текст джерелаVadot, Louis. "Réflexions sur l'histoire de la mécanique des fluides." La Houille Blanche, no. 5-6 (August 1994): 89–94. http://dx.doi.org/10.1051/lhb/1994062.
Повний текст джерелаCanavelis, R. "Mécanique des fluides et applications industrielles Rapport Général." La Houille Blanche, no. 1 (February 1999): 48–54. http://dx.doi.org/10.1051/lhb/1999005.
Повний текст джерелаSulem, Jean. "Thermodynamique des grands glissements souterrains." Revue Française de Géotechnique, no. 169 (2021): 6. http://dx.doi.org/10.1051/geotech/2021020.
Повний текст джерелаДисертації з теми "Mécaniques de fluides"
Benmbarek, Mustapha. "Écoulement laminaire permanent dans un modèle de veine." Paris 12, 1997. http://www.theses.fr/1997PA120049.
Повний текст джерелаLe, gal Marine. "Étude théorique et numérique de la dynamique des tsunamis sismiques." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1008/document.
Повний текст джерелаThe impact of tsunamis on mankind is well known. During recent years, several events showed us the disasters they can trigger which reiterate the importance of understanding their dynamics. Due to the lack of in-situ data, the generation is the least known aspect of tsunamis. As a result, simplified models of the source are used for numerical tsunami modeling, as for seismic generation for which the traditional approach neglects several phenomena, among which is the kinematic deformation of the sea floor. This motion canbe characterized by two temporal parameters: the rupture velocity vp and a hydraulic rise time tr. The novelty here, is to investigate both parameters simultaneously and to extend the linear theoretical development to a non-linear numerical study. From these works, a resonance zone is identified for small tr and vp close to the long wave celerity. For these particular values, the waves are amplified beside the sea floor deformation and dispersive effects develop. To illustrate this theory, the 1947 New Zealand tsunami is simulatedwith the Non-Linear Shallow Water and Boussinesq models of Telemac2D. This seismic event corresponds to a tsunami earthquake with slow kinematics of deformation. Four generation models, with different values of vp and tr are compared. The impact of vp on the generated wave amplitudes is strong whereas the influence due to tr is significantly smaller. Additionally, it was found that the expected dispersive effects did not develop during the numerical modeling. Meanwhile, in the scope of the TANDEM project, the validation of the Telemac system is performed through test cases, covering: generation, propagation and run-up of tsunamis. Globally, the models from the Telemac system match the validation data, however we note a reliance on numerical parameters for sensitive cases as the propagation of a solitary wave. Finally, the Non-Linear Shallow Water model of Telemac2D is used to simulate the Tohoku-Oki tsunami that hit Japan in 2011. Thenumerical model succeeds in representing this real event incorporating all the stages of tsunami life, from generation to flooded areas. Some limitations in using the method were found, which one discussed in detail within the present manuscript
Boussaa, Redouane. "Étude de l’influence de la convection naturelle lors de la solidification de métaux purs et d’alliages métalliques binaires : expériences et simulations." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10077.
Повний текст джерелаPavanello, Renato. "Contribution à l’étude hydroelastique des structures a symétrie cyclique." Lyon, INSA, 1991. http://www.theses.fr/1991ISAL0047.
Повний текст джерелаThe large number of possible vibration and noise sources from mechanical or hydraulic origin requires to take into account the whole system in which the hydraulic component is included. In this work a numerical method for modal analysis of rotationally periodic structures (e. G. Hydraulic pump and turbine disks) is presented. Linear vibrations are studied in the low frequency domain, with special attention to added mass effects. A Lagrangian formulation for the structure and an Eulerian formulation for the fluid are chosen. The finite element formulation in terms of fluid pressure and structural displacement results in a large system of equations , which must be efficiently reduced. Three fluid-structure modal reduction methods are checked. To solve rotationally periodic fluid-structure problems, a modal synthesis approach with fixed boundaries in connection with the wave propagation theory is proposed. The computational costs are much lower without loss of accuracy. The method is applied to typical immersed structures and the agreement between theoretical and experimental results is quite satisfactory
Sausse, Judith. "Caractérisation et modélisation des écoulements fluides en milieu fissuré : relation avec les altérations hydrothermales et quantification des paléocontraintes." Nancy 1, 1998. http://www.theses.fr/1998NAN10306.
Повний текст джерелаCharles, Sylvain. "Mise en place d’un dispositif expérimental de caractérisation du comportement des lames fluides, identification des coefficients dynamiques." Poitiers, 2004. http://www.theses.fr/2004POIT2342.
Повний текст джерелаIn many industrials applications, mechanisms such as turbines or pumps function under sever operating conditions: high speed of rotation, high pressures and high Reynolds number. The dynamic behavior of the shaft strongly depends on shaft surroundings elements like journal bearing or annular seals. Many studies use numerical simulations to recreate real operating conditions, but it is necessary to compare theses results with those coming from an experimental test facility. That is why the LMS and its industrial partnerrs (ALSTOM, EDF, CNES, SNECMA) decided ten years ago to design a specific test apparatus for studying annular seals. The functioning of the machine is completely described in this document. In parallel with the project, the behavior law of a thin-walled orifice is studied; the both numerical and numerical studies give the same result for the discharge coefficient. It does not, in this case, correspond to the value from literature. Finally, the last part of the research deals with the development of a specific method to identify the dynamic force coefficients characterizing the behavior of a seal. Many methods use Fourier transformations to work in frequency domain, whereas this methods stay in time domain. Numerical simulations were carried out, but even if the noise is high, results are good. The algorithm is robust, and the main parameters are identified
Yammine, Joumana. "Rhéologie des bétons fluides à hautes performances : relations entre formulations, propriétés rhéologiques, physico-chimie et propriétés mécaniques." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2007. http://tel.archives-ouvertes.fr/tel-00482782.
Повний текст джерелаKornelik, Serguei Eugenievitch. "Analyse paramétrique de modèles mécaniques de composants du système cardiovasculaire : ventricule gauche, anévrisme vasculaire et dynamique d'un globule soumis à champ magnétique." Paris 12, 2001. http://www.theses.fr/2001PA120058.
Повний текст джерелаWe proceed to the modeling and the analysis of fluid-wall interactions phenomena in deformable cavities and tubes. The model is used to study the dynamical behaviour of non linear oscillatory coupled systems such as those encountered in the cardiovascular physiology. Our analysis describes the behaviour of the system according to its characteristic parameters. A dimensional analysis involving the set of coupled equations describing the dynamics of both the incompressible fluid and the wall material is performed. We show that such a behaviour can be characterjzed by a set of dirnensionless dynamical and geornetrical parameters. The equations are then solved by using a time-staggered scheme which aliows to separately integrate the equations describing the structure mechanics and the fluid dynan1ics during each time step. . The fluid part is discretized by a finite difference method with an Arbitrary Lagrangian Eulerian formulation whereas the structure part including motion of the envelope by a Runge-Kutta method. For an harmonic excitation in pressure, it is shown that after a transient period oftime, the response n flow rate of the system is both anharmonic and periodic, with a fundamental frequency equal to that of the excitation. Using an approximation ofthe damping force associated with the viscous effects, we complete this study by showing how the systen1 of equation can be decoupled. A generalization of the model to the case of the aneurysrn, from one part, and to the convection of charged particle in the hydrodynamical field associated with a magnetic field, on the other, has been also undertaken
Fras, Isabelle. "Etude de l'influence de charges sur les phénomènes de glissement en filière et sur les propriétés mécaniques d'une gaine de câble électrique à base de polychlorure de vinyle plastifié." Lyon 1, 1996. http://www.theses.fr/1996LYO10112.
Повний текст джерелаAl, Isber Aziz. "Modélisation de l'écoulement instationnaire décollé à la traversée d'un diaphragme par la méthode des vortex aléatoires." Toulouse, ENSAE, 1991. http://www.theses.fr/1991ESAE0002.
Повний текст джерелаКниги з теми "Mécaniques de fluides"
Coussot, Philippe. Rhéophysique des pâtes et des suspensions. Les Ulis [Essonne]: EDP Sciences, 1999.
Знайти повний текст джерела1908-, Landau Lev Davidovich. Mécanique des fluides. 2nd ed. Moscou: Editions Mir, 1989.
Знайти повний текст джерелаComolet, Raymond. Mécanique expérimentale des fluides. 5th ed. Paris: Masson, 1990.
Знайти повний текст джерелаGuillaume-Jean, Milan, ed. La mécanique des fluides: Roman. [Paris]: Denoël, 2014.
Знайти повний текст джерелаFluid mechanics. New York: Dover Publications, 1995.
Знайти повний текст джерелаGranger, Robert Alan. Fluid mechanics. New York: Holt, Rinehart, and Winston, 1985.
Знайти повний текст джерелаNoël, Jean. Jean Noël: La mécanique des fluides. Montbéliard, France: 19, Centre régional d'art contemporain, 2001.
Знайти повний текст джерелаIntermediate fluid mechanics. New York: Hemisphere Pub. Corp., 1989.
Знайти повний текст джерелаWard-Smith, A. J. (Alfred John), ed. Mechanics of fluids. 9th ed. London: Spon Press, 2011.
Знайти повний текст джерелаJ, Ward-Smith A., ed. Mechanics of fluids. 8th ed. London: Taylor & Francis, 2005.
Знайти повний текст джерелаЧастини книг з теми "Mécaniques de fluides"
Charru, François. "La mécanique des fluides avant 1930." In Science Networks. Historical Studies, 51–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70236-6_3.
Повний текст джерелаCharru, François. "Création des instituts de mécanique des fluides." In Science Networks. Historical Studies, 85–104. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70236-6_4.
Повний текст джерелаFortin, Michel. "Problèmes de surfaces libres en mécanique des fluides." In Shape Optimization and Free Boundaries, 143–71. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2710-3_4.
Повний текст джерелаChemin, Jean-Yves. "Analyse microlocale et mécanique des fluides en dimension deux." In Proceedings of the International Congress of Mathematicians, 1077–85. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9078-6_100.
Повний текст джерелаCorradi, Massimo. "De la statique des demi-fluides à la théorie de la poussée des terres." In Entre Mécanique et Architecture / Between Mechanics and Architecture, 221–56. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9072-4_13.
Повний текст джерела"Bibliographie." In Mécanique des fluides, 359–60. Dunod, 2022. http://dx.doi.org/10.3917/dunod.amiro.2022.01.0359.
Повний текст джерела"Bibliographie." In Mécanique des fluides, 357–58. Dunod, 2017. http://dx.doi.org/10.3917/dunod.amiro.2017.01.0357.
Повний текст джерела"Chapitre 9 Mécanique des fluides." In Mécanique classique - Cours et exercices corrigés - Tome 2, 413–82. EDP Sciences, 2022. http://dx.doi.org/10.1051/978-2-7598-2672-8.c002.
Повний текст джерелаBOVIS, Alain. "Brève histoire de l’hydrodynamique navale." In Interactions fluide-structure, 11–37. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9078.ch1.
Повний текст джерела"Equations de la mécanique des fluides." In Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, 1–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-29819-3_1.
Повний текст джерелаТези доповідей конференцій з теми "Mécaniques de fluides"
Molina García, Erika Natalia. "Déversement du regard fluide. Esquisse d'une méthodologie pour approcher théoriquement le cinéma." In XXV Coloquio AFUE. Palabras e imaginarios del agua. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/xxvcoloquioafue.2016.3090.
Повний текст джерелаPineda, Saira F., Arjan M. Kamp, D. Legendre, and Armando J. Blanco. "Axisymmetric Low-Reynolds Motion of Drops Through Circular Microchannels." In ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icnmm2012-73198.
Повний текст джерела