Добірка наукової літератури з теми "MATLAB MATHEMATICAL MODELS"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MATLAB MATHEMATICAL MODELS".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "MATLAB MATHEMATICAL MODELS"
Dandwate, Ms Ankita, and Dr Prof K. B. Khanchandani. "Mathematical Models Development for Various Power Quality Disturbances in MATLAB." International Journal of Engineering Trends and Technology 11, no. 1 (May 25, 2014): 5–9. http://dx.doi.org/10.14445/22315381/ijett-v11p202.
Повний текст джерелаMirsaitov, M., B. Abdurakhmanov, and I. Vikulov. "MODELING THE WEAR OF CONTACT STRIPS OF PANTOGRAPH USING THE MATLAB - SIMULINK TOOLS." Journal of Science and Innovative Development 4, no. 2 (April 28, 2021): 77–84. http://dx.doi.org/10.36522/2181-9637-2021-2-9.
Повний текст джерелаFigoń, Piotr. "Mathematical models of single-phase long lines." Bulletin of the Military University of Technology 68, no. 4 (February 28, 2020): 119–37. http://dx.doi.org/10.5604/01.3001.0013.9735.
Повний текст джерелаRodríguez, J., G. C. Premier, R. Dinsdale, and A. J. Guwy. "An implementation framework for wastewater treatment models requiring a minimum programming expertise." Water Science and Technology 59, no. 2 (January 1, 2009): 367–80. http://dx.doi.org/10.2166/wst.2009.870.
Повний текст джерелаZaitri, Mohamed A., Cristiana J. Silva, and Delfim F. M. Torres. "Stability Analysis of Delayed COVID-19 Models." Axioms 11, no. 8 (August 13, 2022): 400. http://dx.doi.org/10.3390/axioms11080400.
Повний текст джерелаZatonskiy, Andrey, and Larisa Tugashova. "MODELLING THE QUALITY AND PRODUCTION OF PETROLEUM PRODUCTS WITH MATLAB." Applied Mathematics and Control Sciences, no. 4 (December 30, 2019): 26–42. http://dx.doi.org/10.15593/2499-9873/2019.4.02.
Повний текст джерелаRahmatullah, Rohullah, Necibe Fusun Oyman Serteller, and Vedat Topuz. "Modeling and Simulation of Faulty Induction Motor in DQ Reference Frame Using MATLAB/SIMULINK with MATLAB/GUIDE for Educational Purpose." International Journal of Education and Information Technologies 17 (March 13, 2023): 7–20. http://dx.doi.org/10.46300/9109.2023.17.2.
Повний текст джерелаQian, Yu, Yi Cao, Yuan Wei Liu, and Hui Zhou. "Forward Kinematics Simulation Analysis of Slider-Crank Mechanism." Advanced Materials Research 308-310 (August 2011): 1855–59. http://dx.doi.org/10.4028/www.scientific.net/amr.308-310.1855.
Повний текст джерелаChoez Franco, Katherine Elizabeth, Miguel Angel Lema Carrera, and Veronica Cristina Andrade Yucailla. "Mathematical models and digital image processing for the determination of goat milk production." Universidad Ciencia y Tecnología 27, no. 119 (May 27, 2023): 99–107. http://dx.doi.org/10.47460/uct.v27i119.711.
Повний текст джерелаRadu, Petru Valentin. "Modeling of the energy storage devices for the evaluation of the energy efficiency in the electric transport." AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe 19, no. 6 (June 30, 2018): 22–28. http://dx.doi.org/10.24136/atest.2018.031.
Повний текст джерелаДисертації з теми "MATLAB MATHEMATICAL MODELS"
Wikström, Gunilla. "Computation of Parameters in some Mathematical Models." Doctoral thesis, Umeå University, Computing Science, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-565.
Повний текст джерелаIn computational science it is common to describe dynamic systems by mathematical models in forms of differential or integral equations. These models may contain parameters that have to be computed for the model to be complete. For the special type of ordinary differential equations studied in this thesis, the resulting parameter estimation problem is a separable nonlinear least squares problem with equality constraints. This problem can be solved by iteration, but due to complicated computations of derivatives and the existence of several local minima, so called short-cut methods may be an alternative. These methods are based on simplified versions of the original problem. An algorithm, called the modified Kaufman algorithm, is proposed and it takes the separability into account. Moreover, different kinds of discretizations and formulations of the optimization problem are discussed as well as the effect of ill-conditioning.
Computation of parameters often includes as a part solution of linear system of equations Ax = b. The corresponding pseudoinverse solution depends on the properties of the matrix A and vector b. The singular value decomposition of A can then be used to construct error propagation matrices and by use of these it is possible to investigate how changes in the input data affect the solution x. Theoretical error bounds based on condition numbers indicate the worst case but the use of experimental error analysis makes it possible to also have information about the effect of a more limited amount of perturbations and in that sense be more realistic. It is shown how the effect of perturbations can be analyzed by a semi-experimental analysis. The analysis combines the theory of the error propagation matrices with an experimental error analysis based on randomly generated perturbations that takes the structure of A into account
Dube, Ntuthuko Marcus. "Development of methods for modelling, parameter and state estimation for nonlinear processes." Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2619.
Повний текст джерелаIndustrial processes tend to have very complex mathematical models that in most instances result in very model specific optimal estimation and designs of control strategies. Such models have many composition components, energy compartments and energy inventories that result in many process variables that are intertwined and too complex to separate from one another. Most of the derived mathematical process models, based on the application of first principles, are nonlinear and incorporate unknown parameters and unmeasurable states. This fact results in difficulties in design and implementation of controllers for a majority of industrial processes. There is a need for the existing parameter and state estimation methods to be further developed and for new methods to be developed in order to simplify the process of parameters or states calculation and be applicable for real-time implementation of various controllers for nonlinear systems. The thesis describes the research work done on developing new parameter and state estimation methods and algorithms for bilinear and nonlinear processes. Continuous countercurrent ion exchange (CCIX) process for desalination of water is considered as a case study of a process that can be modelled as a bilinear system with affine parameters or as purely nonlinear system. Many models of industrial processes can be presented in such a way. The ion exchange process model is developed based on the mass balance principle as a state space bilinear model according to the state and control variables. The developed model is restructured according to its parameters in order to formulate two types of parameter estimation problem – with process models linear and nonlinear according to the parameters. The two models developed are a bilinear model with affine and a nonlinear according to the parameters model. Four different methods are proposed for the first case: gradient-based optimization method that uses the process output measurements, optimization gradient based method that uses the full state vector measurements, direct solution using the state vector measurements, and Lagrange’s optimization technique. Two methods are proposed for the second case: direct solution of the model equation using MATLAB software and Lagrange’s optimisation techniques.
National Research Foundation (NRF)
Kujane, Koketso Portia. "Investigation and development of methods for optimal control of the activated sludge process." Thesis, Cape Peninsula University of Technology, 2009. http://hdl.handle.net/20.500.11838/1099.
Повний текст джерелаThis project was started as a result of strict environmental and health regulations together with a demand tor cost effective operation of wastewater treatment plants (VVWTPs). The main aim of this project is how to keep effluent concentration below a prescribed limit at the lowest possible cost. Due to large fluctuations in the quality and quantity of the influent concentrations, traditional control methods are not adequate to achieve this aim The major drawback with these methods is that the disturbances affect the process before the controller has time to correct the error (Olsson and Newell, 1999: 454). This problem is addressed through the use of modern control systems. Modern control systems are model based predictive algorithms arranged as feed-forward controllers (Olsson and Newell. 1999: 454). Normally a controller is equipped with a constant set point; the goal In this project is to calculate an optimal DO trajectory that may be sampled to provide a varying optimal set-point for the Activated Sludge Process, In this project an optimal control problem Is formulated using DO concentration as a control variable. This requires a model of the process to be controlled a mathematical expressions of the limitations on the process input and output variables and finally the objective functional. which consists of the objectives of the control. The structures of the Benchmark plant (developed within the COST 682 working group) and the Athlone WWTPs are used to implement this opt.mat control strategy in MATLAB. The plant's full models are developed based on the mass balance principle incorporating the activated sludge biological models: ,ASM1, ASM2, ASM2d and ASM3 (developed by the IWA working groups). To be able to develop a method that may later on be used for online control, the full models are reduced based on the technique In Lukasse (1996). To ensure that the reduced models keep the same prediction capabilities as the full models, parameters of the reduced models are calculated based on the Least Squares principle, The formulated optimal control problem is solved based on the decompostion-coorcdination method that involves time decomposition in a two layer structure. MATLAB software [5 developed to solve the problems for parameter estimation. fun and reduced mode! simulation. and optimal control calculation for the considered different cases of plant structures and biological models. The obtained optimal 00 trajectories produced the effluent state trajectories within prescribed requirements. These DO trajectories may be implemented in different SCADA systems to be tracked as set points or desired trajectories by different types of controllers.
Střípek, Martin. "Simulace zapojení solárních článků v programu MATLAB." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219490.
Повний текст джерелаRiechel, Andrew T. "Force-Feasible Workspace Analysis and Motor Mount Disturbance Compensation for Point-Mass Cable Robots." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5243.
Повний текст джерелаLi, Xiang. "Mathematical Model for Current Transformer Based On Jiles-Atherton Theory and Saturation Detection Method." UKnowledge, 2016. http://uknowledge.uky.edu/ece_etds/89.
Повний текст джерелаDušek, Jiří. "Řízení stroje s PM v d-q osách při použití Matlab/Simulink." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218789.
Повний текст джерелаRobison, Pamula J. "Mathematical Modelling of Biofilm Growth and Decay Through Various Deliveries of Antimicrobial." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1258769688.
Повний текст джерелаMarek, Petr. "Matematický model hnacího ústrojí motorového vozidla." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229338.
Повний текст джерелаServitja, Robert Maria. "A First Study on Hidden Markov Models and one Application in Speech Recognition." Thesis, Linköpings universitet, Matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-123912.
Повний текст джерелаКниги з теми "MATLAB MATHEMATICAL MODELS"
Shahin, Mazen. Explorations of mathematical models in biology with MATLAB. Hoboken, New Jersey: Wiley, 2014.
Знайти повний текст джерелаHolzbecher, Ekkehard O. Environmental modeling: Using MATLAB. 2nd ed. Heidelberg: Springer, 2012.
Знайти повний текст джерелаMenke, William. Environmental data analysis with MatLab. Burlington: Elsevier, 2012.
Знайти повний текст джерелаClaycomb, James R. Applied electromagnetics using QuickField & MATLAB. Hingham, Mass: Infinity Science Press, 2008.
Знайти повний текст джерелаSchmidt, Jason Daniel. Numerical siumlation of optical wave propagation with examples in MATLAB. Bellingham, Wash: SPIE, 2010.
Знайти повний текст джерелаBarnes, Belinda. Mathematical modelling with case studies: Using Maple and Matlab. Boca Raton: CRC Press, Taylor & Francis Group, 2015.
Знайти повний текст джерелаSon, Lai Van, and Soumaré Issouf, eds. Stochastic simulation and applications in finance with MATLAB programs. Chichester, England: John Wiley & Sons, 2008.
Знайти повний текст джерелаKienitz, Joerg. Financial modelling: Theory, implementation and practice (with Matlab source). Hoboken, N.J: Wiley, 2012.
Знайти повний текст джерелаWartak, Marek S. Computational photonics: An introduction with MATLAB. Cambridge: Cambridge University Press, 2012.
Знайти повний текст джерелаGoergen, Alain. Dynamique économique: Solutions de problèmes avec Maple et Matlab. Paris: Economica, 2006.
Знайти повний текст джерелаЧастини книг з теми "MATLAB MATHEMATICAL MODELS"
Carracedo, Patricia, and Ana Debón. "Implementation in R and Matlab of Econometric Models Applied to Ages After Retirement in Europe." In Mathematical and Statistical Methods for Actuarial Sciences and Finance, 129–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78965-7_20.
Повний текст джерелаGopi, E. S. "Mathematical Model of Time Varying Wireless Channel Model." In Digital Signal Processing for Wireless Communication using Matlab, 55–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82036-7_2.
Повний текст джерелаGopi, E. S. "Mathematical Model of the Time-Varying Wireless Channel." In Digital Signal Processing for Wireless Communication using Matlab, 1–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20651-6_1.
Повний текст джерелаCorradini, Maria Letizia, Gianluca Ippoliti, Giuseppe Orlando, and Simone Terramani. "Study and Development of Robust Control Systems for Educational Drones." In Makers at School, Educational Robotics and Innovative Learning Environments, 301–8. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77040-2_40.
Повний текст джерелаReyes-Bustos, Cid. "Extended Divisibility Relations for Constraint Polynomials of the Asymmetric Quantum Rabi Model." In International Symposium on Mathematics, Quantum Theory, and Cryptography, 149–68. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_13.
Повний текст джерелаAli, Iftikhar, Nadeem A. Malik, and Bilal Chanane. "Solutions of Time-Fractional Diffusion Equation with Reflecting and Absorbing Boundary Conditions Using Matlab." In Mathematical and Computational Approaches in Advancing Modern Science and Engineering, 15–25. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30379-6_2.
Повний текст джерелаDe Ridder, Hilde, and Tim Raeymaekers. "Models for Some Irreducible Representations of $$\mathfrak{so}(m, \mathbb{C})$$ in Discrete Clifford Analysis." In Trends in Mathematics, 143–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42529-0_7.
Повний текст джерелаAmeri, R., and A. Kialashaki. "Counting the Number of Fuzzy Subgroups of Abelian Group $$G= {\mathbb {Z}}_{p^n}\times {\mathbb {Z}}_{p^m}$$." In Algorithms as a Basis of Modern Applied Mathematics, 499–509. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61334-1_26.
Повний текст джерелаBraak, Daniel. "What Kind of Insight Provide Analytical Solutions of Quantum Models?" In International Symposium on Mathematics, Quantum Theory, and Cryptography, 5–6. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_2.
Повний текст джерелаBennett, Michael A., and Andrew Rechnitzer. "Computing Elliptic Curves over $$\mathbb{Q}$$ : Bad Reduction at One Prime." In Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, 387–415. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6969-2_13.
Повний текст джерелаТези доповідей конференцій з теми "MATLAB MATHEMATICAL MODELS"
Turnea, Marius, Calin Corciova, Mihai Ilea, and Mariana Rotariu. "THE MATHEMATICAL MODELLING OF THE MICROBIAL GROWTH PROCESS." In eLSE 2019. Carol I National Defence University Publishing House, 2019. http://dx.doi.org/10.12753/2066-026x-19-184.
Повний текст джерелаGorman, Kevin J., and Kourosh J. Rahnamai. "Real-Time Data Acquisition and Controls Using Matlab." In ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium collocated with the ASME 1995 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/cie1995-0774.
Повний текст джерелаOnyejekwe, Ogugua, Amir Yousef Sajjadi, Ugur Abdulla, Kunal Mitra, and Michael Grace. "Mathematical Models for Analyzing Tissue Ablation Using Short Pulse Lasers." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11626.
Повний текст джерелаArotaritei, Dragos, George Constantin, and Calin Corciova. "MATHEMATICAL MODELS OF MEASLES BY DIFFERENTIAL EQUATIONS IN VIRTUAL EDUCATION." In eLSE 2018. Carol I National Defence University Publishing House, 2018. http://dx.doi.org/10.12753/2066-026x-18-197.
Повний текст джерелаPanova, Evgeniya A., and Artem T. Nasibullin. "Development of Mathematical Models of Microprocessor-based Relay Protection Devices for 220/110 kV Nodal Distribution Substation in Matlab/Simulink." In 2020 Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI). IEEE, 2020. http://dx.doi.org/10.1109/peami49900.2020.9234337.
Повний текст джерелаDuishenaliev, Turatbek B., and Daniil Dikarev. "Implementation of Some Non-Classical Mathematical Models of the Mechanics of a Deformable Body in the MathCad and MatLab System." In 2022 VI International Conference on Information Technologies in Engineering Education (Inforino). IEEE, 2022. http://dx.doi.org/10.1109/inforino53888.2022.9783001.
Повний текст джерелаA. Rendón, Manuel, André R. Novgorodcev, and Daniel De A. Fernandes. "Mathematical Model of a 106 MW Single Shaft Heavy-Duty Gas Turbine." In Simpósio Brasileiro de Sistemas Elétricos - SBSE2020. sbabra, 2020. http://dx.doi.org/10.48011/sbse.v1i1.2279.
Повний текст джерелаPiskur, Pawel, Bartosz Larzewski, Rafal Kot, and Piotr Szymak. "Design, Modelling, And Simulation Of Biomimetic Underwater Vehicle." In 37th ECMS International Conference on Modelling and Simulation. ECMS, 2023. http://dx.doi.org/10.7148/2023-0181.
Повний текст джерелаKidikian, John, Chelesty Badrieh, and Marcelo Reggio. "Mathematical Model to Describe Double Circular Arc and Multiple Circular Arc Compressor Blading Profiles." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59238.
Повний текст джерелаSovkov, Vladimir, and Jie Ma. "Matlab tool qOptimizerq: Construction and Optimization of Multi-Block Mathematical Models-Application to spectroscopy experiments with ultracold gases of alkali metals." In 2016 International Conference on Applied Mathematics, Simulation and Modelling. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/amsm-16.2016.83.
Повний текст джерела