Добірка наукової літератури з теми "Mathematics applied to the medical field"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mathematics applied to the medical field".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Mathematics applied to the medical field"
Peksen, Ali, and Chat GPT. "Using ChatGPT in the Medical Field: A Narrative." Infectious Diseases and Clinical Microbiology 5, no. 1 (March 11, 2023): 66–68. http://dx.doi.org/10.36519/idcm.2023.227.
Повний текст джерелаBellomo, Nicola, Elena De Angelis, and Luigi Preziosi. "Multiscale Modeling and Mathematical Problems Related to Tumor Evolution and Medical Therapy." Journal of Theoretical Medicine 5, no. 2 (2003): 111–36. http://dx.doi.org/10.1080/1027336042000288633.
Повний текст джерелаYang, Zhuo, Yaohui Hou, and Lijun Wang. "P‐2.17: The Research Status And Prospect of Augmented Reality in Medical Field." SID Symposium Digest of Technical Papers 54, S1 (April 2023): 541–45. http://dx.doi.org/10.1002/sdtp.16351.
Повний текст джерелаGolovko, Liudmyla, Olena Yara, Olena Uliutina, Tetiana Kondratiuk, and Halaidiuk Lidiia. "Responsibility in the Field of Providing Medical Services: The Experience of Slovakia." Revista de la Universidad del Zulia 14, no. 40 (May 4, 2023): 351–60. http://dx.doi.org/10.46925//rdluz.40.20.
Повний текст джерелаYakobovskiy, M. V., and M. A. Kornilina. "Development of Supercomputer Technologies at the Institute of Mathematical Modelling and Keldysh Institute of Applied Mathematics of Russian Academy of Sciences." Computational Mathematics and Information Technologies 8, no. 1 (April 2, 2024): 12–28. http://dx.doi.org/10.23947/2587-8999-2024-8-1-12-28.
Повний текст джерелаWang, Hao, Jianwen Song, and Lijun Wang. "P‐2.18: Overview and Prospect of the Application of Digital Human in Medical Field." SID Symposium Digest of Technical Papers 54, S1 (April 2023): 546–49. http://dx.doi.org/10.1002/sdtp.16352.
Повний текст джерелаBregman, Alvan. "Alligation Alternate and the Composition of Medicines: Arithmetic and Medicine in Early Modern England." Medical History 49, no. 3 (July 1, 2005): 299–320. http://dx.doi.org/10.1017/s0025727300008899.
Повний текст джерелаKALTENBACHER, MANFRED. "COMPUTATIONAL ACOUSTICS IN MULTI-FIELD PROBLEMS." Journal of Computational Acoustics 19, no. 01 (March 2011): 27–62. http://dx.doi.org/10.1142/s0218396x11004286.
Повний текст джерелаCárceles, Salvador Barranco, Andreas Kyritsakis, Veronika Zadin, Aquila Mavalankar, and Ian Underwood. "27‐2: Field Emission Beyond Information Displays." SID Symposium Digest of Technical Papers 54, no. 1 (June 2023): 366–69. http://dx.doi.org/10.1002/sdtp.16568.
Повний текст джерелаSitaula, Sanjeeta, Hira Nath Dahal, Manisha Dahal, Rajeev Ojha, and Ananda Kumar Sharma. "Visual field defects in neuro-ophthalmological diseases at a tertiary hospital in Nepal." Nepal Journal of Neuroscience 20, no. 2 (July 21, 2023): 49–56. http://dx.doi.org/10.3126/njn.v20i2.53901.
Повний текст джерелаДисертації з теми "Mathematics applied to the medical field"
Ambrose, Joseph Paul. "Dynamic field theory applied to fMRI signal analysis." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2035.
Повний текст джерелаWhalen, Patrick. "Full Field Propagation Models And Methods For Extreme Nonlinear Optics." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/347238.
Повний текст джерелаKahle, A. "Cosmic microwave background anisotropies in the presence of a weak magnetic field." Master's thesis, University of Cape Town, 2003. http://hdl.handle.net/11427/4894.
Повний текст джерелаOne of the questions cosmology still has not satisfactorily resolved is the origin of magnetic fields in the universe. These have been observed at all scales where man has c:evised means to observe them, from stellar scales, to intergalactic and intercluster scales. Indeed, there is no reason to believe that they are not present, at some level, at even larger scales. However, a satisfactory explanation for their origin is yet to be found. The two most popular theories for the creation of these magnetic fields, namely the Galactic dynamo, and primordial field amplification, both rely on the presence of a seed field, which they then amplify. However, the galactic dynamo requires a far weaker seed field compared to primordial field amplification. It would thus be helpful, in trying to understand magnetogenesis, if one could discover some means to detect such a seed field. One way to do so would be to search for a signature that such a magnetic field might leave on the CMB, and then look for the presence of this signature in CMB observations. This is the principal aim of this thesis.
Murugan, Jeffrey. "Geometrical and nonperturbative aspects of low dimensional field theories." Master's thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/7681.
Повний текст джерелаWe present a collection of results on solitons in low-dimensional classical field theory. We begin by reviewing the geometrical setting of he nonlinear ơ-model and demonstrate the integrability of the theory in two-dimensions on a symmetric target manifold. After reviewing the construction of soliton solutions in the 0(3) ơ-model we consider a class of gauged nonlinear ơ-models on two-dimensional axially-symmetric target spaces. We show that, for a certain choice of self-interaction, these models are all self-dual and analyze the resulting Bogomol'nyi equations in the BPS limit using techniques from dynamical systems theory. Our analysis is then extended to topologically massive gauge fields. We conclude with a deviation into exploring links between four-dimensional self-dual Yang-Mills equations and various lower-dimensional field theories. In particular, we show that at the level of equations of motion, the Euclidean Yang-Mills equations in light-cone coordinates reduce to the two-dimensional nonlinear ơ-model.
Kuehn, T. "Approximation of anisotropic and advected mean curvature flows by phase field models." Thesis, University of Sussex, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318501.
Повний текст джерелаWebber, Matthew. "Stochastic neural field models of binocular rivalry waves." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:c444a73e-20e3-454d-85ae-bbc8831fdf1f.
Повний текст джерелаMichlin, Tracie L. "Using wavelet bases to separate scales in quantum field theory." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5572.
Повний текст джерелаLoubaton, Rodolphe. "Modélisation des effets d’une intervention dans un programme génique temporel." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0322.
Повний текст джерелаCancer cells can exhibit abnormalities in the expression of certain genes that alter the normal functioning of cellular programs, causing them to proliferate uncontrollably. These cellular programs are made up of the expression of thousands of genes that activate and interact in a concerted fashion. These interactions can be represented as a gene regulatory network. The general objective of this thesis, which follows on from the work of Vallat et al (2021), is to model a cellular program using temporal gene expression data. The model constructed will make it possible to identify target genes whose reduced expression could reduce cell proliferation for therapeutic purposes. In the first chapter, we review existing gene network models in order to justify the choice of our model, which is detailed in the second chapter. This model (called the LiRE model) is a Gaussian parametric statistical model that allows us to take into account gene expression dynamics using parameters describing, among other things, the interactions between genes. The various theoretical properties of our model have enabled us to develop an iterative algorithm for inferring parameters, combining steps of penalized linear regressions lasso and regressions with positivity constraints and constraints on the sum of coefficients. In this chapter, we also carry out a numerical study of this model to investigate its performance on simulated data. In the third chapter, we describe methods for modeling and predicting the results of biological intervention experiments modifying the expression of certain genes, in order to predict the best target genes whose expression should be decreased in the cellular program to reduce cancer cell proliferation. We give theoretical results on different models including our LiRE model. In the final chapter, we detail our R package MultiRNAflow, which enabled us to perform statistical analyses of dynamic and complex gene expression data in order to characterize the genes selected for inference in our model LiRE
Verma, Vishash. "Improved Slope Estimation in Organic Field-Effect Transistor Mobility Estimation." Kent State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=kent1618703169092189.
Повний текст джерелаCairns, Melissa Ann. "Weak Anchoring Effects on Magnetic Field Induced Transitions of a Cholesteric Liquid Crystal Filmwith Negative Magnetic Anisotropy." Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1563550315014445.
Повний текст джерелаКниги з теми "Mathematics applied to the medical field"
Dennis, Cynthia A. Applied radiographic calculations. Philadelphia: W.B. Saunders, 1993.
Знайти повний текст джерелаTai, Chen-to. Generalized vector and dyadic analysis: Applied mathematics in field theory. 2nd ed. New York: IEEE Press, 1997.
Знайти повний текст джерелаTai, Chen-to. Generalized vector and dyadic analysis: Applied mathematics in field theory. New York: Institute of Electrical and Electronics Engineers, 1992.
Знайти повний текст джерелаTextbank systems: Computer science applied in the field of psychoanalysis. Berlin: Springer-Verlag, 1985.
Знайти повний текст джерелаT, Robinson Elizabeth, and Tolley Elizabeth E, eds. Qualitative methods in public health: A field guide for applied research. San Francisco, CA: Jossey-Bass, 2005.
Знайти повний текст джерелаH, Zwinderman Aeilko, and Cleophas Toine F, eds. Statistics applied to clinical trials. Dordrecht: Kluwer Academic Publishers, 2000.
Знайти повний текст джерелаH, Zwinderman Aeilko, and Cleophas Toine F, eds. Statistics applied to clinical trials. 2nd ed. Dordrecht: Kluwer Academic Publishers, 2002.
Знайти повний текст джерелаPeace, Karl E., 1941- author, ed. Applied meta-analysis with R. Boca Raton: CRC Press, 2013.
Знайти повний текст джерелаJones, M. N. Spherical Harmonics and Tensors for Classical Field Theory: (Electronic & Electrical Engineering Research Studies: Applied & Engineering Mathematics). Letchworth, Hertfordshire, England: Research Studies Press Letchword., 1985.
Знайти повний текст джерелаIUTAM Symposium on Field Analyses for Determination of Material Parameters-- Experimental and Numerical Aspects (2000 Kiruna, Sweden). IUTAM Symposium on Field Analyses for Determination of Material Parameters-- Experimental and Numerical Aspects. Boston: Kluwer Academic Publishers, 2003.
Знайти повний текст джерелаЧастини книг з теми "Mathematics applied to the medical field"
Abraham, Ralph, and Michael Nivala. "Emergent Periodicity in a Field of Chaos." In Applied Mathematics, 1–8. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2547-8_1.
Повний текст джерелаChattopadhyay, Surajit, and Sudipto Roy. "Dependence of Brans–Dicke Parameter on Scalar Field." In Applied Mathematics, 177–82. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2547-8_16.
Повний текст джерелаTorquato, Salvatore. "Cell and Random-Field Models." In Interdisciplinary Applied Mathematics, 188–209. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-6355-3_8.
Повний текст джерелаKiss, István Z., Joel C. Miller, and Péter L. Simon. "Mean-field approximations for homogeneous networks." In Interdisciplinary Applied Mathematics, 117–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50806-1_4.
Повний текст джерелаKiss, István Z., Joel C. Miller, and Péter L. Simon. "Mean-field approximations for heterogeneous networks." In Interdisciplinary Applied Mathematics, 165–205. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50806-1_5.
Повний текст джерелаVán, Peter. "Entropy Production in Phase Field Theories." In Applied Wave Mathematics II, 365–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29951-4_16.
Повний текст джерелаEpstein, Charles L. "Medical Imaging." In Encyclopedia of Applied and Computational Mathematics, 881–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_66.
Повний текст джерелаKrejčí, P., J. Sprekels, and S. Zheng. "Existence and Asymptotic Behaviour in Phase-Field Models with Hysteresis." In Lectures on Applied Mathematics, 77–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59709-1_6.
Повний текст джерелаCancès, Eric. "Self-Consistent Field (SCF) Algorithms." In Encyclopedia of Applied and Computational Mathematics, 1310–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_256.
Повний текст джерелаDunn, W. L., A. M. Yacout, and F. O’Foghludha. "The Use of Single-Scatter Models in Medical Radiation Applications." In Applied and Industrial Mathematics, 335–42. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-009-1908-2_28.
Повний текст джерелаТези доповідей конференцій з теми "Mathematics applied to the medical field"
Xu, Tongzhou. "Review of NIR spectroscopy applications in medical field." In 7TH INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION: Mathematics of Quantum Computing. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0112957.
Повний текст джерелаKhalil, Shuker Mahmood, and Nadia M. Ali Abbas. "On nano with their applications in medical field." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0027374.
Повний текст джерелаMoloney, J. V. "Applied Mathematics Perspectives of Nonlinear Guided Wave Optics: Stability, Propagation and Soliton Aspects." In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/nlgwp.1989.fc1.
Повний текст джерелаKotov, Yurij Borisovich, Vera Maratovna Guryeva, and Tatiana Alekseevna Semenova. "Cognitive investigation of the complex systems behavior using medical objects as an example." In 5th International Conference “Futurity designing. Digital reality problems”. Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/future-2022-11.
Повний текст джерелаCavoretto, Roberto, and Alessandra De Rossi. "A Local IDW Transformation Algorithm for Medical Image Registration." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991098.
Повний текст джерелаBender, Carl M., Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "PT-Symmetric Quantum Field Theory." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636813.
Повний текст джерелаChara, Zdenek, Bohus Kysela, and Pavel Vlasak. "Velocity field around a falling particle." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756080.
Повний текст джерелаGocheva-Ilieva, Snezhana G., Iliycho P. Iliev, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Mathematical Modeling Of The Electric Field In Copper Bromide Laser." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790197.
Повний текст джерелаKozma, Robert, Marko Puljic, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Neural Population Dynamics Modeled by Mean-Field Graphs." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637870.
Повний текст джерелаColli, Pierluigi. "Modelling and Analysis of a Class of Phase Field Systems." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990877.
Повний текст джерелаЗвіти організацій з теми "Mathematics applied to the medical field"
Olsen and Willson. L51916 Pressure Based Parametric Emission Monitoring Systems (PEMS). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2002. http://dx.doi.org/10.55274/r0010181.
Повний текст джерела