Добірка наукової літератури з теми "Mathematical conjectures"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mathematical conjectures".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Mathematical conjectures"

1

Davies, Alex, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev, Richard Tanburn, et al. "Advancing mathematics by guiding human intuition with AI." Nature 600, no. 7887 (December 1, 2021): 70–74. http://dx.doi.org/10.1038/s41586-021-04086-x.

Повний текст джерела
Анотація:
AbstractThe practice of mathematics involves discovering patterns and using these to formulate and prove conjectures, resulting in theorems. Since the 1960s, mathematicians have used computers to assist in the discovery of patterns and formulation of conjectures1, most famously in the Birch and Swinnerton-Dyer conjecture2, a Millennium Prize Problem3. Here we provide examples of new fundamental results in pure mathematics that have been discovered with the assistance of machine learning—demonstrating a method by which machine learning can aid mathematicians in discovering new conjectures and theorems. We propose a process of using machine learning to discover potential patterns and relations between mathematical objects, understanding them with attribution techniques and using these observations to guide intuition and propose conjectures. We outline this machine-learning-guided framework and demonstrate its successful application to current research questions in distinct areas of pure mathematics, in each case showing how it led to meaningful mathematical contributions on important open problems: a new connection between the algebraic and geometric structure of knots, and a candidate algorithm predicted by the combinatorial invariance conjecture for symmetric groups4. Our work may serve as a model for collaboration between the fields of mathematics and artificial intelligence (AI) that can achieve surprising results by leveraging the respective strengths of mathematicians and machine learning.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zeybek Simsek, Zulfiye. "Constructing-Evaluating-Refining Mathematical Conjectures and Proofs." International Journal for Mathematics Teaching and Learning 21, no. 2 (December 12, 2020): 197–215. http://dx.doi.org/10.4256/ijmtl.v21i2.263.

Повний текст джерела
Анотація:
This study focused on investigating the ability of 58 pre-service mathematics teachers' (PSMTs) to construct-evaluate-refine mathematical conjectures and proofs. The PSMTs enrolled in a three-credit mathematics course that offered various opportunities for them to engage with mathematical activities including constructing-evaluating-refining proofs in various topics. The PSMTs' proof constructions were coded in three categories as: Type P1, Type P2 and Type P3 in decreasing levels of sophistication (from a mathematical stand point) and the constructions of conjectures were coded in two categories as: Type C1: correct conjectures and Type C2: incorrect conjectures. In addition to classifying the PSMTs' proof and conjecture constructions, how they reacted when they needed to refine conjectures and proofs were also classified. Samples of classroom episodes were provided to exemplify these different proof-conjecture constructions-evaluations-refining processes. The results of the study demonstrated that the combined construction-evaluation-refining activities of conjectures and proofs were not only helpful to better illuminate the PSMTs' understanding of mathematical proofs, but they were also an essential instructional tool to help PSMTs comprehend mathematical ideas and relations.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Astawa, I. Wayan Puja. "The Differences in Students’ Cognitive Processes in Constructing Mathematical Conjecture." JPI (Jurnal Pendidikan Indonesia) 9, no. 1 (March 31, 2020): 49. http://dx.doi.org/10.23887/jpi-undiksha.v9i1.20846.

Повний текст джерела
Анотація:
Constructing mathematical conjectures involves individuals’ unique and complex cognitive processes in which have not yet fully understood. The cognitive processes refer to any of the mental functions assumed to be involved in the acquisition, storage, interpretation, manipulation, transformation, and the use of knowledge. Understanding of these cognitive processes may assist individuals in constructing mathematical conjectures. This study aimed to describe the differences in students’ cognitive processes in constructing mathematical conjecture which is based on their mathematical ability and gender through a qualitative exploratory research study. The research subjects consisted of six mathematics students of Universitas Pendidikan Ganesha, the representative of high, medium, and low mathematical ability and either genders, male and female, respectively. The data of cognitive processes were collected by task-based interviews and were analyzed qualitatively. The differences in students’ cognitive processes in constructing mathematical conjectures were grouped into five distinct stages, namely understanding the problem, exploring the problem, formulating the conjecture, justifying the conjecture, and proving the conjecture. The results show that there were several differences in the students’ cognitive processes in constructing mathematical conjectures in the previously mentioned stages.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Amir, Firana, and Mohammad Faizal Amir. "Action Proof: Analyzing Elementary School Students Informal Proving Stages through Counter-examples." International Journal of Elementary Education 5, no. 2 (August 23, 2021): 401. http://dx.doi.org/10.23887/ijee.v5i3.35089.

Повний текст джерела
Анотація:
Both female and male elementary school students have difficulty doing action proof by using manipulative objects to provide conjectures and proof of the truth of a mathematical statement. Counter-examples can help elementary school students build informal proof stages to propose conjectures and proof of the truth of a mathematical statement more precisely. This study analyzes the action proof stages through counter-examples stimulation for male and female students in elementary schools. The action proof stage in this study focuses on three stages: proved their primitive conjecture, confronted counter-examples, and re-examined the conjecture and proof. The type of research used is qualitative with a case study approach. The research subjects were two of the 40 fifth-grade students selected purposively. The research instrument used is the task of proof and interview guidelines. Data collection techniques consist of Tasks, documentation, and interviews. The data analysis technique consists of three stages: data reduction, data presentation, and concluding. The analysis results show that at the stage of proving their primitive conjecture, the conjectures made by female and male students through action proofs using manipulative objects are still wrong. At the stage of confronted counter-examples, conjectures and proof made by female and male students showed an improvement. At the stage of re-examining the conjecture and proof, the conjectures and proof by female and male students were comprehensive. It can be concluded that the stages of proof of the actions of female and male students using manipulative objects through stimulation counter-examples indicate an improvement in conjectures and more comprehensive proof.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

BARTH, PETER. "IWASAWA THEORY FOR ONE-PARAMETER FAMILIES OF MOTIVES." International Journal of Number Theory 09, no. 02 (December 5, 2012): 257–319. http://dx.doi.org/10.1142/s1793042112501357.

Повний текст джерела
Анотація:
In [A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory, in Proc. St. Petersburg Mathematical Society, Vol. 12, American Mathematical Society Translations, Series 2, Vol. 219 (American Mathematical Society, Providence, RI, 2006), pp. 1–85] Fukaya and Kato presented equivariant Tamagawa number conjectures that implied a very general (non-commutative) Iwasawa main conjecture for rather general motives. In this article we apply their methods to the case of one-parameter families of motives to derive a main conjecture for such families. On our way there we get some unconditional results on the variation of the (algebraic) λ- and μ-invariant. We focus on the results dealing with Selmer complexes instead of the more classical notion of Selmer groups. However, where possible we give the connection to the classical notions.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mollin, R. A., and H. C. Williams. "Proof, Disproof and Advances Concerning Certain Conjectures on Real Quadratic Fields." Canadian Journal of Mathematics 47, no. 5 (October 1, 1995): 1023–36. http://dx.doi.org/10.4153/cjm-1995-054-7.

Повний текст джерела
Анотація:
AbstractThe purpose of this paper is to address conjectures raised in [2]. We show that one of the conjectures is false and we advance the proof of another by proving it for an infinite set of cases. Furthermore, we give hard evidence as to why the conjecture is true and show what remains to be done to complete the proof. Finally, we prove a conjecture given by S. Louboutin, for Mathematical Reviews, in his discussion of the aforementioned paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barahmand, Ali. "On Mathematical Conjectures and Counterexamples." Journal of Humanistic Mathematics 9, no. 1 (January 2019): 295–303. http://dx.doi.org/10.5642/jhummath.201901.17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Barbosa, Lucas De Souza, Cinthya Maria Schneider Meneghetti, and Cristiana Andrade Poffal. "O uso de geometria dinâmica e da investigação matemática na validação de propriedades geométricas." Ciência e Natura 41 (July 16, 2019): 12. http://dx.doi.org/10.5902/2179460x33752.

Повний текст джерела
Анотація:
This paper presents an activity on Geometry of position using GeoGebra software, based on Mathematical Investigation. The Dynamic Geometry, through software, becomes a tool for the formation of a mental image of abstract objects and motivation to introduce the idea of justifying its properties through arguments external to software. Allied to Dynamic Geometry, Mathematical Investigation guides the possible ways to construct conjectures and justifications and emphasizes that conjecture and looking for properties are as important as demonstrating them, since it shows the Mathematics as a knowledge in construction and favors the cognitive evolution of the relation between perception and abstraction. The activity was applied and it was observed that, from it, the student can formulate conjectures and develop logical and formal argumentation skills that are essential to construct geometric objects from their properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rizos, Ioannis, and Nikolaos Gkrekas. "Is there room for conjectures in mathematics? The role of dynamic geometry environments." European Journal of Science and Mathematics Education 11, no. 4 (October 1, 2023): 589–98. http://dx.doi.org/10.30935/scimath/13204.

Повний текст джерела
Анотація:
Proof, as a central and integral part of mathematics, is an essential component of mathematical education and is considered as the basic procedure for revealing the truth of mathematical propositions and for teaching productive reasoning as part of human civilization. Is there therefore room for conjectures in mathematics? In this paper after discussing at a theoretical level the concepts of proof and conjecture, both in a paper-and-pencil environment and in a dynamic geometry environment (DGE) as well as how school practice affects them, we fully explain a task involving various mathematical disciplines, which we tackle using elementary mathematics, in a mathematics education context. On the occasion of the Greek educational system we refer to some parameters of the teaching of geometry in school and we propose an activity, within a DGE, that could enable students to be guided in the formulation and exploration of conjectures. Finally, we discuss the teaching implications of this activity and make some suggestions.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Formanowicz, Piotr, and Krzysztof Tanaś. "The Fan–Raspaud conjecture: A randomized algorithmic approach and application to the pair assignment problem in cubic networks." International Journal of Applied Mathematics and Computer Science 22, no. 3 (October 1, 2012): 765–78. http://dx.doi.org/10.2478/v10006-012-0057-y.

Повний текст джерела
Анотація:
Abstract It was conjectured by Fan and Raspaud (1994) that every bridgeless cubic graph contains three perfect matchings such that every edge belongs to at most two of them. We show a randomized algorithmic way of finding Fan–Raspaud colorings of a given cubic graph and, analyzing the computer results, we try to find and describe the Fan–Raspaud colorings for some selected classes of cubic graphs. The presented algorithms can then be applied to the pair assignment problem in cubic computer networks. Another possible application of the algorithms is that of being a tool for mathematicians working in the field of cubic graph theory, for discovering edge colorings with certain mathematical properties and formulating new conjectures related to the Fan–Raspaud conjecture.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Mathematical conjectures"

1

Chilstrom, Peter. "Singular Value Inequalities: New Approaches to Conjectures." UNF Digital Commons, 2013. http://digitalcommons.unf.edu/etd/443.

Повний текст джерела
Анотація:
Singular values have been found to be useful in the theory of unitarily invariant norms, as well as many modern computational algorithms. In examining singular value inequalities, it can be seen how these can be related to eigenvalues and how several algebraic inequalities can be preserved and written in an analogous singular value form. We examine the fundamental building blocks to the modern theory of singular value inequalities, such as positive matrices, matrix norms, block matrices, and singular value decomposition, then use these to examine new techniques being used to prove singular value inequalities, and also look at existing conjectures.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bergqvist, Tomas. "To explore and verify in mathematics." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-9345.

Повний текст джерела
Анотація:
This dissertation consists of four articles and a summary. The main focus of the studies is students' explorations in upper secondary school mathematics. In the first study the central research question was to find out if the students could learn something difficult by using the graphing calculator. The students were working with questions connected to factorisation of quadratic polynomials, and the factor theorem. The results indicate that the students got a better understanding for the factor theorem, and for the connection between graphical and algebraical representations. The second study focused on a the last part of an investigation, the verification of an idea or a conjecture. Students were given three conjectures and asked to decide if they were true or false, and also to explain why the conjectures were true or false. In this study I found that the students wanted to use rather abstract mathematics in order to verify the conjectures. Since the results from the second study disagreed with other research in similar situations, I wanted to see what Swedish teachers had to say of the students' ways to verify the conjectures. The third study is an interview study where some teachers were asked what expectations they had on students who were supposed to verify the three conjectures from the second study. The teachers were also confronted with examples from my second study, and asked to comment on how the students performed. The results indicate that teachers tend to underestimate students' mathematical reasoning. A central focus to all my three studies is explorations in mathematics. My fourth study, a revised version of a pilot study performed 1998, concerns exactly that: how students in upper secondary school explore a mathematical concept. The results indicate that the students are able to perform explorations in mathematics, and that the graphing calculator has a potential as a pedagogical aid, it can be a support for the students' mathematical reasoning.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Keliher, Liam. "Results and conjectures related to the sharp form of the Littlewood conjecture." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23402.

Повний текст джерела
Анотація:
Let $0
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tran, Anh Tuan. "The volume conjecture, the aj conjectures and skein modules." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44811.

Повний текст джерела
Анотація:
This dissertation studies quantum invariants of knots and links, particularly the colored Jones polynomials, and their relationships with classical invariants like the hyperbolic volume and the A-polynomial. We consider the volume conjecture that relates the Kashaev invariant, a specialization of the colored Jones polynomial at a specific root of unity, and the hyperbolic volume of a link; and the AJ conjecture that relates the colored Jones polynomial and the A-polynomial of a knot. We establish the AJ conjecture for some big classes of two-bridge knots and pretzel knots, and confirm the volume conjecture for some cables of knots.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cheukam, Ngouonou Jovial. "Apprentissage automatique de cartes d’invariants d’objets combinatoires avec une application pour la synthèse d’algorithmes de filtrage." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0418.

Повний текст джерела
Анотація:
Pour améliorer l’efficacité des méthodes de résolution de nombreux problèmes d’optimisation combinatoires de notre vie quotidienne, nous utilisons la programmation par contraintes pour générer automatiquement des conjectures. Ces conjectures caractérisent des objets combinatoires utilisés pour modéliser ces problèmes d’optimisation. Ce sont notamment les graphes, les arbres, les forêts, les partitions et les séquences. Contrairement à l’état de l’art, le système, dénommé Bound Seeker, que nous avons élaboré ne génère pas seulement de manière indépendante les conjectures, mais il explicite aussi des liens existant entre les conjectures. Ainsi, il regroupe les conjectures sous forme de bornes précises sur une même variable associée à un même objet combinatoire. Ce regroupement est appelé carte de bornes de l’objet combinatoire considéré. Enfin, une étude consistant à établir des liens entre les cartes générées est faite. Le but de cette étude est d’approfondir les connaissances sur les objets combinatoires et de développer des prémices de preuves automatiques des conjectures. Pour montrer la cohérence des cartes générées par le Bound Seeker, nous élaborons quelques preuves manuelles des conjectures découvertes parle Bound Seeker, ce qui permet de démontrer la pertinence de quelques nouveaux théorèmes de bornes. Pour illustrer l’une des utilités pratiques de ces bornes, nous introduisons une méthode de génération semi-automatique d’algorithmes de filtrage qui réduisent l’espace de recherche des solutions d’un problème d’optimisation combinatoire. Cette réduction est faite grâce aux nouveaux théorèmes de bornes que nous avons établis après les avoir sélectionnés automatiquement parmi les conjectures générées par le Bound Seeker. Pour montrer l’efficacité de cette technique, nous l’appliquons avec succès au problème d’élaboration des cursus académiques équilibrés d’étudiants
To improve the efficiency of solution methods for many combinatorial optimisation problems in our daily lives, we use constraints programming to automatically generate conjectures. These conjectures characterise combinatorial objects used to model these optimisation problems. These include graphs, trees, forests, partitions and Boolean sequences. Unlike the state of the art, the system, called Bound Seeker, that we have developed not only generates conjectures independently, but it also points to links between conjectures. Thus, it groups the conjectures in the form of bounds of the same variable characterising the same combinatorial object. This grouping is called a bounds map of the combinatorial object considered. Then, a study consisting of establishing links between generated maps is carried out. The goal of this study is to deepen knowledge on combinatorial objects and to develop the beginnings of automatic proofs of conjectures. Then, to show the consistency of the maps and the Bound Seeker, we develop some manual proofs of the conjectures discovered by the Bound Seeker. This allows us to demonstrate the usefulness of some new bound theorems that we have established. To illustrate one of its concrete applications, we introduce a method for semi-automatic generation of filtering algorithms that reduce the search space for solutions to a combinatorial optimisation problem. This reduction is made thanks to the new bound theorems that we established after having automatically selected them from the conjectures generated by the Bound Seeker. To show the effectiveness of this technique, we successfully apply it to the problem of developing balanced academic courses for students
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mostert, Pieter. "Stark's conjectures." Master's thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/18998.

Повний текст джерела
Анотація:
Includes bibliographical references.
We give a slightly more general version of the Rubin-Stark conjecture, but show that in most cases it follows from the standard version. After covering the necessary background, we state the principal Stark conjecture and show that although the conjecture depends on a choice of a set of places and a certain isomorphism of Q[GJ-modules, it is independent of these choices. The conjecture is shown to satisfy certain 'functoriality' properties, and we give proofs of the conjecture in some simple cases. The main body of this dissertation concerns a slightly more general version of the Rubin-Stark conjecture. A number of Galois modules. Connected with the conjecture are defined in chapter 4, and some results on exterior powers and Fitting ideals are stated. In chapter 5 the Rubin-Stark conjecture is stated and we show how its truth is unaffected by lowering the top field, changing a set S of places appropriately, and enlarging moduli. We end by giving proofs of the conjecture in several cases. A number of proofs, which would otherwise have interrupted the flow of the exposition, have been relegated to the appendix, resulting in this dissertation suffering from a bad case of appendicitis.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Puente, Philip C. "Crystallographic Complex Reflection Groups and the Braid Conjecture." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011877/.

Повний текст джерела
Анотація:
Crystallographic complex reflection groups are generated by reflections about affine hyperplanes in complex space and stabilize a full rank lattice. These analogs of affine Weyl groups have infinite order and were classified by V.L. Popov in 1982. The classical Braid theorem (first established by E. Artin and E. Brieskorn) asserts that the Artin group of a reflection group (finite or affine Weyl) gives the fundamental group of regular orbits. In other words, the fundamental group of the space with reflecting hyperplanes removed has a presentation mimicking that of the Coxeter presentation; one need only remove relations giving generators finite order. N.V Dung used a semi-cell construction to prove the Braid theorem for affine Weyl groups. Malle conjectured that the Braid theorem holds for all crystallographic complex reflection groups after constructing Coxeter-like reflection presentations. We show how to extend Dung's ideas to crystallographic complex reflection groups and then extend the Braid theorem to some groups in the infinite family [G(r,p,n)]. The proof requires a new classification of crystallographic groups in the infinite family that fail the Steinberg theorem.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Narayanan, Sridhar. "Selberg's conjectures on Dirichlet series." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55517.

Повний текст джерела
Анотація:
In this thesis we introduce the Rankin-Selberg hypothesis in the Selberg Class to obtain a non-vanishing theorem on line $ Re(s)=1$ for a certain sub-class of functions in this class. We also prove that the Selberg's Conjectures imply the $S sb{K}$-primitivity of $ zeta sb{K}.$
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jost, Thomas. "On Donovan's conjecture." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Khoury, Joseph. "La conjecture de Serre." Thesis, University of Ottawa (Canada), 1996. http://hdl.handle.net/10393/9554.

Повний текст джерела
Анотація:
Une des grandes reussites de l'algebre commutatif des annees soixante-dix etait la preuve de la "conjecture de Serre". Dans ces papiers, j'expose deux solutions differentes de cette conjecture. Les deux solutions sont exposees avec beaucoup de details de facon qu'un lecteur qui n'a pas une connaissance profonde en algebre commutatif puisse les comprendre sans beaucoup de difficultes.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Mathematical conjectures"

1

Nickerson, Raymond S. Mathematical reasoning: Patterns, problems, conjectures, and proofs. New York: Psychology Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nickerson, Raymond S. Mathematical reasoning: Patterns, problems, conjectures, and proofs. New York: Psychology Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

E, Ladas G., ed. Dynamics of second order rational difference equations: With open problems and conjectures. Boca Raton, FL: Chapman & Hall/CRC, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Graczyk, Jacek. The real Fatou conjecture. Princeton, N.J: Princeton University Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schwartz, Diane Driscoll. Conjecture & proof: An introduction to mathematical thinking. Fort Worth: Saunders College Pub., 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Charles, Figuieres, ed. Theory of conjectural variations. River Edge, NJ: World Scientific, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Salamon, Peter. Facts, conjectures, and improvements for simulated annealing. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gessen, Masha. Perfect Rigour: A Genius and the Mathematical Breakthrough of a Lifetime. New York: Icon Books, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ecalle, Jean. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Paris: Hermann, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gul, Faruk. Foundation of dynamic monopoly and the Coase conjecture. Stanford, Calif: Institute for Mathematical Studies in the Social Sciences, Stanford University, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Mathematical conjectures"

1

Tenenbaum, Gérald, and Michel Mendès France. "The major conjectures." In The Student Mathematical Library, 105–12. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/stml/006/05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Leuschke, Graham, and Roger Wiegand. "The Brauer-Thrall conjectures." In Mathematical Surveys and Monographs, 267–85. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/surv/181/15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dutta, S. P. "Syzygies and Homological Conjectures." In Mathematical Sciences Research Institute Publications, 139–56. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3660-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rabe, Markus N., and Christian Szegedy. "Towards the Automatic Mathematician." In Automated Deduction – CADE 28, 25–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79876-5_2.

Повний текст джерела
Анотація:
AbstractOver the recent years deep learning has found successful applications in mathematical reasoning. Today, we can predict fine-grained proof steps, relevant premises, and even useful conjectures using neural networks. This extended abstract summarizes recent developments of machine learning in mathematical reasoning and the vision of the N2Formal group at Google Research to create an automatic mathematician. The second part discusses the key challenges on the road ahead.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Baldwin, John T. "Vaught and Morley Conjectures for ω-Stable Countable Theories." In Perspectives in Mathematical Logic, 365–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-07330-8_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jahnel, Jörg. "Conjectures on the asymptotics of points of bounded height." In Mathematical Surveys and Monographs, 35–80. Providence, Rhode Island: American Mathematical Society, 2014. http://dx.doi.org/10.1090/surv/198/03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shekhar, Sudhanshu, and R. Sujatha. "Introduction to the Conjectures of Birch and Swinnerton-Dyer." In Mathematical Lectures from Peking University, 1–17. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6664-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carmona, Rene, and Frederic Cerou. "Transport by Incompressible random velocity fields: Simula- tions & Mathematical Conjectures." In Mathematical Surveys and Monographs, 153–81. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/surv/064/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mitchell, Stephen A. "On the Lichtenbaum-Quillen Conjectures from a Stable Homotopy-Theoretic Viewpoint." In Mathematical Sciences Research Institute Publications, 163–240. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4613-9526-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dinneen, Michael J. "A Program-Size Complexity Measure for Mathematical Problems and Conjectures." In Computation, Physics and Beyond, 81–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27654-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Mathematical conjectures"

1

Herlina, Dina, Ely Susanti, Elika Kurniadi, and Novita Sari. "Ability to prove mathematical conjectures through ICT-assisted creative problem solving learning for class VIII students." In THE 2ND NATIONAL CONFERENCE ON MATHEMATICS EDUCATION (NACOME) 2021: Mathematical Proof as a Tool for Learning Mathematics. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0142729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Castle, Sarah D. "Embracing Mathematical Conjecture Through Coding and Computational Thinking." In SIGCSE 2024: The 55th ACM Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3626253.3635561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gurevich, Shagmar. "Proof of the Kurlberg-Rudnick Rate Conjecture." In p-ADIC MATHEMATICAL PHYSICS: 2nd International Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2193112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Burqan, Aliaa. "New algebraic insights to the Goldbach conjecture." In 5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (ICMS5), 020007. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0228106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Yu. "The Mathematical Modeling and Proof of the Goldbach Conjecture." In 2018 3rd International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/msam-18.2018.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Gen-Fang. "Generalization of Steinhaus conjecture." In International Conference on Pure, Applied, and Computational Mathematics (PACM 2023), edited by Zhen Wang and Dunhui Xiao. SPIE, 2023. http://dx.doi.org/10.1117/12.2678950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cruz-Uribe, David, José María Martell, and Carlos Pérez. "A note on the off-diagonal Muckenhoupt-Wheeden conjecture." In V International Course of Mathematical Analysis in Andalusia. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814699693_0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

CHIA, G. L., and SIEW-HUI ONG. "ON BARNETTE'S CONJECTURE AND CBP GRAPHS WITH GIVEN NUMBER OF HAMILTON CYCLES." In Third Asian Mathematical Conference 2000. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777461_0012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Huang, Junjie, Ying Xiao, and Chenglian Liu. "A study of android calculator based on Lemoine’s conjecture." In MATHEMATICAL METHODS AND COMPUTATIONAL TECHNIQUES IN SCIENCE AND ENGINEERING II. Author(s), 2018. http://dx.doi.org/10.1063/1.5045419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jansirani, N., R. Rama, and V. R. Dare. "A counter example to Steinberg conjecture." In INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN MATHEMATICS AND COMPUTATIONAL ENGINEERING: ICRAMCE 2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0156823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!