Добірка наукової літератури з теми "Matériaux de stockage d'énergie"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Matériaux de stockage d'énergie".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Matériaux de stockage d'énergie"
Madjoudj, Nadera, and Khaled Imessad. "Matériau à changement de phase au service de la bioclimatique." Journal of Renewable Energies 19, no. 4 (October 17, 2023): 647–62. http://dx.doi.org/10.54966/jreen.v19i4.601.
Повний текст джерела-BARCAGLIONI, Maurizio. "Stockage d'énergie pour installations ferroviaires souterraines." Revue de l'Electricité et de l'Electronique -, no. 01 (1996): 39. http://dx.doi.org/10.3845/ree.1996.007.
Повний текст джерелаBrighi, Bernard, and Michel Chipot. "Densités d'énergie et matériaux cristallins." Annales de la faculté des sciences de Toulouse Mathématiques 1, no. 1 (1992): 15–24. http://dx.doi.org/10.5802/afst.735.
Повний текст джерелаDe Franco, Michel, Jean-Marie Gras, and Jean-Pierre Moncouyoux. "Les matériaux et le stockage des déchets nucléaires." Revue Générale Nucléaire, no. 3 (May 1996): 27–33. http://dx.doi.org/10.1051/rgn/19963027.
Повний текст джерелаRochard, J., E. Marengo, D. Marengo, J. L. Mangiacotti та A. Joubert. "Ecoconception des caves : réduction de la consommation d'énergie et intégration paysagère du traitement des effuents de cave avec le dispositif de lit planté de roseaux sur support de zéolithe Zeofito®". BIO Web of Conferences 15 (2019): 02002. http://dx.doi.org/10.1051/bioconf/20191502002.
Повний текст джерелаSchumacher, Stéphan, Didier Crusset, and Nadège Caron. "Les matériaux du centre industriel de stockage géologique Cigéo." Revue Générale Nucléaire, no. 3 (May 2016): 23–27. http://dx.doi.org/10.1051/rgn/20163023.
Повний текст джерелаTakorabet, M., A. Mailfert, and A. Colteu. "Recherche d'une nouvelle configuration de bobines supraconductrices pour le stockage d'énergie." European Physical Journal Applied Physics 2, no. 1 (April 1998): 79–85. http://dx.doi.org/10.1051/epjap:1998168.
Повний текст джерела-GUYONVARCH, Gwenaël. "Stockage d'énergie et climatisation automobile en roulage urbain et mode stop-start." Revue de l'Electricité et de l'Electronique -, no. 01 (2005): 80. http://dx.doi.org/10.3845/ree.2005.009.
Повний текст джерелаBigaud, David. "Absorbeurs d'énergie multi-matériaux et en matériaux composites pour des applications dans le domaine des transports." Revue des composites et des matériaux avancés 14, no. 3 (December 23, 2004): 307–29. http://dx.doi.org/10.3166/rcma.14.307-329.
Повний текст джерелаRufer, Alfred, and Sylvain Lemofouet. "Stockage d'énergie par air comprimé. Un défi pour les circuits d'électronique de puissance." Revue internationale de génie électrique 10, no. 5 (October 1, 2007): 675–87. http://dx.doi.org/10.3166/rige.10.675-687.
Повний текст джерелаДисертації з теми "Matériaux de stockage d'énergie"
Ndiaye, Khadim. "Etude numérique et expérimentale du stockage d'énergie par les matériaux cimentaires." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30202/document.
Повний текст джерелаThe objective of this study is to develop an ettringite-based material with high energy storage density in low temperature conditions, allowing to charge and discharge heat by endothermic dehydration and exothermic rehydration, respectively; then to perform the numerical and experimental study of heat storage in a thermochemical reactor containing the produced material (prototype). To achieve these goals, the hydration of ettringite binders was followed by XRD, TGA and SEM. The thermodynamic simulation of the hydration was also performed using GEMS (Gibbs Energy Minimization Sofware). The porous network of the resulting material was improved by chemical foaming. Furthermore, the carbonation, thermal stability and reversibility tests were performed on the produced material. Physicochemical stability of the material over time was followed by XRD, TGA, SEM and IR. To predict the behavior of the storage system, a bidimensional model, taking account the specificities of the cementitious material, was developed. The heat and mass balance in the thermochemical reactor generates a system of non-linear and coupled differential equations. The numerical resolution was first made by spatial discretization using the finite difference method, then by temporal integration of variables (temperature and water vapor pressure) on MatLab (r). The model simulation, with material properties, was used as concept design to build the thermochemical reactor prototype in the laboratory (cylindrical adsorber). The result of heat storage tests with the prototype was used as proof of concept of the principle on the one hand, and a way to validate the numerical model
Kabalan, Ihab. "Synthèse des matériaux nanoporeux pour la décontamination moléculaire et le stockage d'énergie." Thesis, Mulhouse, 2016. http://www.theses.fr/2016MULH9073/document.
Повний текст джерелаVolatile organic compounds (VOCs) are the most abundant organic pollutants. Among the various solutions to fight against this pollution, the use of molecular adsorbents appears as a potential alternative for the control of contamination. The porous materials have many advantages due to their low cost, their physical characteristics and their useful properties related to their structure and their large surface area. However, conventional synthesis of zeolites generally lead to micrometer size crystals. The capacity and the kinetics of adsorption that are sensitive to the diffusion and the surface phenomena could be potentially improved by the use of zeolite nanocrystals or hierarchical products (micro / mesoporous). These nanomaterials have high potential due to their small size and their exalted outer surface that promote access of pollutants and improve the adsorption capacity. ln the thesis work, we synthesized zeolites with different structural types such as FAU, MFI and *BEA. Each structure type was synthesized in different morphologies such as nanosponges and /or nanosheets using a bifunctional structuring agent, as well as nanocrystals by the clear solution method. These materials were compared with conventional micrometer-sized zeolites. The purity and the porous texture have been characterized by using XRD, SEM, nitrogen adsorption/desorption techniques, TGA-DTA and solid state NMR. Finally, the adsorption capacity of a model molecule, the n-hexane, in these zeolites have been studied by thermogravimetry. In the case of *BEA and MFI-type zeol ites, the hierarchical zeolites showed an increase of the adsorption capacity of n-hexane compared to conventional zeolites. The adsorption capacity of n-hexane was multiplied by 7 in the case of *BEA-type nanosponges and by 6 in the case of the *BEA-type nanocrystals compared to *BEA_type microcrystals (693 mg / g vs 103 mg / g and 591 mg / g vs 103 mg / g, respectively)
Tabard, Lucie. "Elaboration de céramiques architecturées pour le stockage d'énergie thermique." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI007.
Повний текст джерелаThe aim of this thesis work is to develop a composite material with a high energy density for thermochemical heat storage. The main purpose is to produce heat through an exothermic hydration reaction of a hygroscopic salt, entirely reversible (storage as chemical potential), while avoiding the usual loss of performances reported in salt bed configurations. Such issues emerge over time, due to salt agglomeration during its hydration. Thus, the development of a composite made of salt attached onto a host material should prevent the salt agglomeration and enhance its reactivity. First, a protocol to characterize and investigate the salt (MgSO4,xH2O) cyclability behavior was developed to study its structural evolution (through XRD and FTIR). A first method of salt shaping was also proposed, that does not allow resolving the issues encountered in salt bed configurations. Secondly, the development of a host material (ceria zirconia) with a hierarchized porosity is proposed. Zirconia is shaped by additive manufacturing (robocasting) of a paste loaded with fugitive phases (starches) and consolidated by partial sintering. The resulting multi-scale porosity is thoroughly characterized by mean of complementary techniques, focusing on its volume, size and interconnection. Mechanical properties are characterized through compressive and bending tests. The relevance of the multi-scale porosity of the host material for the salt reactivity and stability is finally evaluated. Host material/salt composites are fabricated by liquid impregnation of a saturated saline solution. They are then characterized with the process developed for the characterization of the salt. The three-scale porosity enables the fabrication of composites with high energy density (417 kWh.m-3), that are stable over time, fulfilling the European target
Karakashov, Blagoj. "Études de carbones fibreux pour le stockage compact d'énergie à haute température." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0224.
Повний текст джерелаIn this thesis, fibrous carbons of renewable or synthetic origin in the form of flexible or rigid porous structures were investigated in-depth in order to evaluate their future use as hosts of phase change materials for thermal energy storage applications. Various commercial fibrous carbons were sorted, their morphological, physical and structural properties were thoroughly characterised, and their chemical stability was tested in molten lithium salts, before and after chemical vapour deposition of pyrocarbon. Either traditional or novel methodologies were proposed to characterise the fibrous carbons properties with respect to their effect on the preparation and performances of a hybrid material: carbon / phase change material. The use of different empirical and analytical models was also presented in order to determine characteristic quantities that are not directly measurable, such as elastic modulus of soft felts and tortuosity, and to validate the accuracy of the experimental results, all having an excellent predictive character. The materials’ attractiveness is due to the examined: (i) lightweight and highly porous structure with remarkable physical properties; (ii) resistance to oxidation; (iii) ability of being modified. Indeed, it appears that fibrous carbons with improved characteristics in terms of heat transfer, mechanical strength and chemical stability can be obtained and should produce, without significant loss of porosity and thus of stored thermal energy density, better hybrid materials. Finally, while the work presented here has a direct impact on the future implementation of fibrous carbons in thermal energy storage applications, the results obtained might also be used for many other end-uses
Wang, Wei. "Matériaux à base de carbone pour la conversion et le stockage d'énergie électrochimique et chimique." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAF059.
Повний текст джерелаEnergy conversion and storage have always been the two critical issues for human society. In this thesis, we focus on the development of sustainable carbon materials for effective electrochemical energy storage, especially for supercapacitors, and supported nickel catalysts for chemical energy conversion and storage, mainly on CO2 methanation. Two different biomass derived carbon structures, i.e. hierarchical carbon foam and graphene-like carbon nanosheets, have been synthesized and applied for supercapacitor. Exceptional electrochemical performances have been obtained. Meanwhile, nickel decorated macroscopic shape catalyst (Ni/OCF) has been developed for CO2 methanation with enhanced catalytic performance powered by electromagnetic induction heating (IH). The rapid energy regulation capability of IH system to jugulate the problem of temperature runaway has also been investigated in the last part using powdered alumina supported nickel catalyst for this exothermic reaction
Ekomy, Ango Blaise. "Contribution au stockage d'énergie thermique en bâtiment : déveveloppement d'un système actif à matériaux à changement de phase." Paris, ENSAM, 2011. http://www.theses.fr/2011ENAM0032.
Повний текст джерелаThe aim of our thesis work is to design size and manufacture an active system to phase change materials (PCM) for cooling and warming the house Napévomo located in Aquitaine, the latter participating in the Solar Decathlon competition (SDE2010). The approach proposed is intended to provide the reader with enough knowledge in thermal storage based on PCM to tockle the design of a cooling and heating system in passive building. The approach started by a state of the art of thermal storage systems based on PCM and determines the design requirements. These data leads us to developed a numerical model based on a static approach NUT-ε through the PCM characterization determine the main dimensioning elements of the system. The design is validated according to the energy loss of the system and it performance coefficient. The system has been manufactured in full size. It consists in four heat exchanger containing the PCM. Each heat exchanger is composed by exchanger a cluster of PCM. They are arranged in staggered rows on columns of tubes. A set of experimental devices has been made to observe the improvement of the heat exchange conductivity between the environment and the heat exchanger containing the PCM. The tests performed on one of the exchangers show encouraging results. Indeed, it enables to cool down in 7-8 hours and to regenerate the PCM during of 6 hours. At the Solar Decathlon (SDE2010), the developed system has proved to be efficient in cooling down the ambient air during the 6 days of the demonstration
Thoumyre, Lecomte Charles. "Optimisation de structures architecturées pour la captation, le stockage, et la restitution d'énergie thermique." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI094/document.
Повний текст джерелаThe problematic of heat storage is important in the present context. One of the solutions is to use phase change materials (PCM). Nevertheless their thermal properties are poors and a conductive substracte must absolutely be used in order to maximise the yield of theses systems.The purposes of this PhD are the physics phenomena implementation understanding and characterization, and the optimization of architectured structures for heat storage systems. A dual approach was adopted both experimental and numerical on simple PCM reception structures (fins) and on more complex ones (open foams). We analyzed influences of geometrical parameters (system lenght and porosity, thickness and space betweens fins, cellfoam size) from reception structure, its constituent material and its orientation. Experimental results support well with numerical simulations. This permits to pursue a more systematical study about analyzed parameters, and notably to identify in which cases natural convection has to be taken into account. Finally, from these results, we developped a tool which permits to optimize architectured structures for a defined bill of specifications
Cherchour, Nabila. "Synthèse électrochimique et caractérisation du dioxyde de manganèse nanostructuré : application au stockage d'énergie et comme capteur pH." Paris 6, 2012. http://www.theses.fr/2012PA066370.
Повний текст джерелаIn a first part, the synthesis of MnO2 powders was carried out by CP at 80 ° C on a titanium electrode in an aqueous solution containing MnSO4 and H2SO4. The ε-MnO2 powders obtained are nanostructured. The electrochemical behavior of such MnO2 powders in alkaline KOH (1 M) was investigated by EIS after aging of these powders by CV and EIS using the CME. The results showed that i) the reduction of MnO2 in this medium occurs in parallel with the reduction of dissolved oxygen and ii) that its reactivity is influenced by the aging of these powders produced by CV or function of immersion time. In a second part, an electrodeposition method based on chronoamperometry was used to develop a highly reproducible and fast elaboration method of adherent manganese dioxide thin films on a glassy carbon electrode from aqueous solutions containing MnSO4 and H2SO4. The resulting films were found to have a nanostructured character presumably due rather to birnessite (-MnO2) than to -MnO2, as suggested by their Raman and XRD signatures. They lead to modified electrodes that present an obvious although complex pH dependent potentiometric response when used in open circuit conditions. This sensor indeed showed a single slope non-Nernstian behaviour over the 1. 5-12 pH range for increasing pH direction (“trace”) whereas a two slope Nernstian behaviour was observed for decreasing pH direction (“re-trace”). EIS experiments carried out at a pH value of 1. 8 reveal a sensitivity mechanism based on a proton insertion process at least at highly acidic pH values. This mechanism is not altered by the presence of the studied interferents (K+, Ca2+, Cl- and Li+) with the exception of Fe2+
Lopez, Jérôme. "Nouveaux matériaux graphite/sel pour le stockage d'énergie à haute température : étude des propriétés de changement de phase." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2007. http://tel.archives-ouvertes.fr/tel-00276277.
Повний текст джерела1) Il apporte une base de données importante (propriétés de changement de phase solide-liquide) sur six sels et les composites correspondants grâce à l'analyse calorimétrique effectuée.
2) Des modélisations rigoureuses de la fusion de sels en milieu confiné dans plusieurs géométries ont été proposées pour comprendre pourquoi lors de la première fusion des composites mis en forme par compression, des problèmes de fuite de sel ont été observés. Ces modèles montrent que la morphologie de ces matériaux sont à l'origine de ces phénomènes : la matrice de graphite contraint l'expansion volumique du sel lors de la fusion : le sel fond sous pression ce qui aboutit à une fusion sur une large gamme de température et à une perte de densité énergétique. L'analyse de sensibilité aux divers paramètres (géométriques et physiques) montre que le module de rigidité de la matrice est le paramètre sur lequel il faut agir lors de l'élaboration des matériaux pour estomper ce phénomène.
3) Enfin ce travail propose une formulation thermodynamique des phénomènes de surface/interface et de présence d'impuretés dissoutes pouvant aboutir à un abaissement de la température de fusion. Il semble que les avancements de fusion observés (~5°C) soient essentiellement dus à la présence d'impuretés dissoutes (apportées par le graphite) dans le liquide, un effet Gibbs-Thomson pouvant aussi s'ajouter (~1°C, lié à la taille des amas de cristaux).
Difi, Siham. "Phosphates de type NASICON comme matériaux d'électrode pour batteries sodium-ion à haute densité d'énergie." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT212/document.
Повний текст джерелаThis thesis is devoted to the study of phosphate based composites with NASICON type structure, that are used as electrode materials for sodium-ion batteries: Na1+xFexTi2-x (PO4)3/C et Na1+xFexSn2-x(PO4)3/C with 0 ≤ x ≤ 1. These composites were synthesized by solid state route followed by a pyrolysis reaction with sucrose. They consist of particles having high porosity and coated with carbon giving to the electrode good ionic and electronic conductivity. The reaction mechanisms occurring during charge-discharge cycles were analyzed in operando mode, by X-ray diffraction, 57Fe and 119Sn Mössbauer spectroscopies and X-ray absorption spectroscopy. For the iron-titanium composites, the mechanisms are essentially based on the diffusion of Na+ in the channels of the crystalline phases with changes of transition metal oxidation state. For iron-tin composites, the mechanisms are more complex including insertion, conversion leading to the destruction of the NASICON phases and then reversible formation of NaxSn alloys. The best electrochemical performances were obtained for Na1,5Fe0,5Ti1,5(PO4)3/C with an operating potential of 2.2 V vs. Na+/Na0. Although these two types of materials can be used at lower potential, the performances must be improved to consider their application as the negative electrode
Книги з теми "Matériaux de stockage d'énergie"
International Organization for Standardization. Technical Committee 42. Photography. Imaging materials - optical disc media: Storage practices = Matériaux pour l'image - milieu pour disque optique : pratiques de stockage. Geneva: ISO, 2002.
Знайти повний текст джерелаenvironnementale, Agence canadienne d'évaluation. Une évaluation de l'Étude d'impact environnemental concernant le concept d'Énergie Atomique du Canada Limitée de stockage permanent des déchets de combustible nucléaire du Canada. Hull, Qué: Agence canadienne d'évaluation environnementale, 1995.
Знайти повний текст джерелаenvironnementale, Agence canadienne d'évaluation. Une évaluation de l'Étude d'impact environnemental concernant le concept d'Énergie atomique du Canada limitée de stockage permanent des déchets de combustible nucléaire du Canada: Addendum au rapport du Groupe d'examen scientifique. Hull, Qué: Agence canadienne d'évaluation environnementale, 1996.
Знайти повний текст джерелаFrançois, Béguin, and Frackowiak Elzbieta, eds. Carbons for electrochemical energy storage and conversion systems. Boca Raton: Taylor & Francis, 2010.
Знайти повний текст джерела1952-, Andrews David L., ed. Energy harvesting materials. Singapore: World Scientific Pub. Co., 2005.
Знайти повний текст джерелаGreen Building Challenge '98 (1998 Vancouver, B.C.). Green Building Challenge '98: An international conference on the performance assessment of buildings, October 1998, Vancouver, Canada. [Ottawa: Natural Resources Canada, 1999.
Знайти повний текст джерелаDaṿid, Kahen, ed. Fundamentals of materials for energy and environmental sustainability. Cambridge: Cambridge University Press, 2012.
Знайти повний текст джерелаD, Walsh, ed. Lectures on the electrical properties of materials. 5th ed. Oxford: Oxford University Press, 1993.
Знайти повний текст джерелаKENFAUI, Driss, Moussa GOMINA, and Jacques G. NOUDEM. Céramiques Ca3Co4O9 texturées pour la conversion d'énergie: Étude des propriétés mécaniques et thermoélectriques des matériaux Ca3Co4O9 texturés pour ... d'énergie. Omniscriptum, 2011.
Знайти повний текст джерелаPower Harvesting Via Smart Materials. SPIE, 2017.
Знайти повний текст джерелаЧастини книг з теми "Matériaux de stockage d'énergie"
TOUZO, Aubin, Quentin FALCOZ, and Gilles FLAMANT. "Stockage thermique." In Le solaire à concentration, 253–83. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9079.ch8.
Повний текст джерелаTRIBET, Magaly. "Les verres de stockage." In Les matériaux du nucléaire sous irradiation, 155–83. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9148.ch5.
Повний текст джерелаDUQUESNE, Marie, and Wahbi JOMAA. "Systèmes de stockage par chaleur latente : concepts et applications." In Stockage de la chaleur et du froid 1, 117–59. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9133.ch6.
Повний текст джерелаN’TSOUKPOE, Kokouvi Edem. "Matériaux pour le stockage thermochimique et par sorption." In Stockage de la chaleur et du froid 2, 5–97. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9134.ch1.
Повний текст джерелаLAZARO, Ana, and Erwin FRANQUET. "Stockage latent : bases fondamentales et matériaux usuels." In Stockage de la chaleur et du froid 1, 53–75. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9133.ch4.
Повний текст джерелаGABAUDAN, Vincent, Moulay Tahar SOUGRATI, Lorenzo STIEVANO, and Laure MONCONDUIT. "Électrodes négatives non carbonées pour batteries au sodium." In Les batteries Na-ion, 175–236. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9013.ch4.
Повний текст джерелаOLIVÈS, Régis. "Stockage de chaleur sensible : généralités." In Stockage de la chaleur et du froid 1, 5–16. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9133.ch1.
Повний текст джерелаOLIVÈS, Régis. "Centrales solaires thermodynamiques et stockage." In Stockage de la chaleur et du froid 1, 217–87. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9133.ch8.
Повний текст джерелаNguyễn, Minh Phương, Sylvie Fanchette та Hoàng Vinh Bạch. "Chapitre 12. Croissance industrielle et stockage des matériaux recyclables". У Collecter et recycler les déchets à Hà Nội, 231–38. IRD Éditions, 2023. http://dx.doi.org/10.4000/books.irdeditions.47798.
Повний текст джерелаDOPPIU, Stefania, and Elena PALOMO DEL BARRIO. "Ingénierie des matériaux à changement de phase pour améliorer leur performance." In Stockage de la chaleur et du froid 1, 77–116. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9133.ch5.
Повний текст джерелаТези доповідей конференцій з теми "Matériaux de stockage d'énergie"
Aukauloo, Ally. "S'inspirer de la nature pour produire de l'énergie. Photosynthèse artificielle à l'Université Paris-Saclay." In MOlecules and Materials for the ENergy of TOMorrow. MSH Paris-Saclay Éditions, 2021. http://dx.doi.org/10.52983/nova3845.
Повний текст джерелаSchumacher, S., X. Bourbon, D. Crusset, and N. Michau. "Les matériaux ouvragés de Cigéo : nature, localisation, fonctions et performances." In Les matériaux pour le stockage géologique des déchets. Les Ulis, France: EDP Sciences, 2016. http://dx.doi.org/10.1051/jtsfen/2016les05.
Повний текст джерелаGatabin, C., F. Plas, and N. Michau. "Les matériaux argileux gonflants des ouvrages de fermeture de Cigéo." In Les matériaux pour le stockage géologique des déchets. Les Ulis, France: EDP Sciences, 2016. http://dx.doi.org/10.1051/jtsfen/2016les06.
Повний текст джерелаSchumacher, S., N. Caron, C. Lamouroux, and L. Le Tarnec. "Les matrices de conditionnement des déchets de Cigéo : nature et problématiques associées." In Les matériaux pour le stockage géologique des déchets. Les Ulis, France: EDP Sciences, 2016. http://dx.doi.org/10.1051/jtsfen/2016les01.
Повний текст джерелаRibet, I., C. Martin, and A. Rodrigues. "Le comportement à long terme des colis de déchets vitrifiés." In Les matériaux pour le stockage géologique des déchets. Les Ulis, France: EDP Sciences, 2016. http://dx.doi.org/10.1051/jtsfen/2016les02.
Повний текст джерелаJourda, P., A. Rodrigues, M. Ferrand, I. Rupp, A. Carrau, D. Ricard, and A. Coppalle. "Comportement des enrobés de boues bitumées conditionnés en colis de stockage en situation d’incendie dans un scénario accidentel en phase d’exploitation de Cigéo." In Les matériaux pour le stockage géologique des déchets. Les Ulis, France: EDP Sciences, 2016. http://dx.doi.org/10.1051/jtsfen/2016les03.
Повний текст джерелаCau dit Coumes, C., F. Frizon, D. Lambertin, A. Poulesquen, D. Damidot, S. Delpech, and S. Rossignol. "Des nouveaux liants aux potentialités prometteuses pour la cimentation des déchets." In Les matériaux pour le stockage géologique des déchets. Les Ulis, France: EDP Sciences, 2016. http://dx.doi.org/10.1051/jtsfen/2016les04.
Повний текст джерелаBourbon, X., J. Verdier, Th Leung, and A. Sellier. "Les matériaux cimentaires : spécificités des bétons pour les scellements : galeries, alvéoles et liaisons surface/fond." In Les matériaux pour le stockage géologique des déchets. Les Ulis, France: EDP Sciences, 2016. http://dx.doi.org/10.1051/jtsfen/2016les07.
Повний текст джерелаCrusset, D., V. Deydier, S. Necib, D. Féron, and J. M. Gras. "La corrosion des composants métalliques de l’alvéole Haute Activité : surconteneurs et chemisages." In Les matériaux pour le stockage géologique des déchets. Les Ulis, France: EDP Sciences, 2016. http://dx.doi.org/10.1051/jtsfen/2016les08.
Повний текст джерелаDillmann, P., D. Neff, and D. Crusset. "Apport des analogues archéologiques à la prédiction de l’altération des matériaux sur le très long terme." In Les matériaux pour le stockage géologique des déchets. Les Ulis, France: EDP Sciences, 2016. http://dx.doi.org/10.1051/jtsfen/2016les09.
Повний текст джерелаЗвіти організацій з теми "Matériaux de stockage d'énergie"
FONTECAVE, Marc, Sébastien CANDEL, and Thierry POINSOT. L'hydrogène aujourd'hui et demain. Académie des sciences, April 2024. http://dx.doi.org/10.62686/5.
Повний текст джерела