Добірка наукової літератури з теми "Matériaux composites Al"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Matériaux composites Al".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Matériaux composites Al"
Mimoun, D. "Matériaux composites." Matériaux & Techniques 82, no. 4 (1994): 12. http://dx.doi.org/10.1051/mattech/199482040012.
Повний текст джерелаTauböck, Tobias T., and Thomas Attin. "Composites «Bulk Fill»." SWISS DENTAL JOURNAL SSO – Science and Clinical Topics 126, no. 9 (September 12, 2016): 812–13. http://dx.doi.org/10.61872/sdj-2016-09-06.
Повний текст джерелаCHOUGNET, Alice. "Matériaux composites ciment/polymère." Revue Européenne de Génie Civil 10, no. 8 (September 2006): 998. http://dx.doi.org/10.1080/17747120.2006.9692879.
Повний текст джерелаCarbone, R., and J. Y. Simon. "Radômes en matériaux composites." Matériaux & Techniques 75, no. 5-6 (1987): 207–14. http://dx.doi.org/10.1051/mattech/198775050207.
Повний текст джерелаSoret, J. M., and A. A. Piroux. "Contrôle des matériaux composites." Matériaux & Techniques 75, no. 10-11 (1987): 430–31. http://dx.doi.org/10.1051/mattech/198775100430.
Повний текст джерелаVerdu, Jacques. "Matériaux composites à matrice organique." Matériaux & Techniques 83, no. 5-6 (1995): 17–30. http://dx.doi.org/10.1051/mattech/199583050017.
Повний текст джерелаBellin, Isabelle. "Des matériaux composites enfin recyclables." Pour la Science N° 560 – juin, no. 6 (May 22, 2024): 14. http://dx.doi.org/10.3917/pls.560.0014.
Повний текст джерелаYves, Clergent. "Contrôle non destructif des matériaux composites." Revue des composites et des matériaux avancés 17, no. 2 (May 25, 2007): 251–60. http://dx.doi.org/10.3166/rcma.17.251-260.
Повний текст джерелаRedjel, B., and F. X. de Charentenay. "Comportement mecanique des matériaux composites SMC." Matériaux & Techniques 75, no. 5-6 (1987): 221–28. http://dx.doi.org/10.1051/mattech/198775050221.
Повний текст джерелаLacombe, Alain. "Les matériaux composites a matrice céramique :." Matériaux & Techniques 77, no. 6 (1989): 3–10. http://dx.doi.org/10.1051/mattech/198977060003.
Повний текст джерелаДисертації з теми "Matériaux composites Al"
Mahmoud, Bassam. "Modélisation d'impacts sur des stratifiés composites unidirectionnels et hybrides." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30212.
Повний текст джерелаToday, composite materials are largely used in the manufacturing of aeronautical structures, in order to lighten their weight. Impact on composite structures is one of the most detrimental loading. The present study aims to develop a predictive modelling of impacts on thin unidirectional laminates in order to, firstly, better understand the damage mechanisms involved, and, secondly, be able to provide guidance for a strength improvement of these structures. First, an explicit finite element modelling of unidirectional laminates is developed based on the work of F Pascal dealing with impact modeling on helicopter blades. Thus, a new element that can represent the impact response of unidirectional plies is formulated. The behavior of the bundle of fibers is modeled with rod elements stabilized with specific 2D elements. The degradation is managed using damage based on experimental observations. The parameters of the proposed modelling strategy are identified on the basis of experimental tests carried out on T700/M21 and HTA7/913 composites. The results provided by the modeling are then validated by a comparison with experimental low velocity impact results. Finally, in order to improve the laminate strength, low velocity and medium velocity impacts on hybrid unidirectional/woven composite laminates are studied experimentally and with the developed modelling strategy
Leloup, Jean-Michel. "Matériaux composites conducteurs protoniques." Montpellier 2, 1993. http://www.theses.fr/1993MON20219.
Повний текст джерелаKchit, Nadir. "Piézorésistivité des matériaux composites magnétorhéologiques." Nice, 2008. http://www.theses.fr/2008NICE4075.
Повний текст джерелаWe have studied the conductivity of the composite material made of micron-sized nickel particles embedded in a silicone elastomer matrix in response to the applied pressure, temperature and magnetic field. The composite was cured at 80°C or at the ambient temperature and in the presence of an external magnetic field, in such a way that the magnetic particles formed structures aligned with the field. The samples cured at room temperature appeared to be non-conductive at zero pressure but very sensitive to the applied pressure. The resistance of these samples can vary from a few G at zero pressure to a few for a pressure ranging between 20 and 200 kPa, depending on the nature of conductive particles. For the same type of the composite, we have also obtained a very strong magnetoresistance - more than four orders of magnitude variation in resistance for a field ranging between 0 and 200 kA/m. However, the samples structured at 80°C show a low initial resistance at the end of cooling, and are much less sensitive to the applied pressure. We used these samples to study the thermoresistance: while heating, the resistance increases from a few to a few G We have developed a model to predict the behavior of these piezoresistive materials, which takes into account the surface roughness and the thickness of the oxide layer. Using this model, we characterized the residual thickness of the polymer layer between particles as well as the behaviour of such surface layer in the presence of a mechanical stress
Lesseur, Julien. "Imagerie 3D des matériaux et modélisations numériques : application aux multi-matériaux ferroélectriques." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0178/document.
Повний текст джерелаThis thesis is focused on the conception of new tunable ferroelectric/dielectric compositematerials. Dielectric granules (MgO, TiO2) obtained by spray-drying are dispersed in a ferroelectricmatrix (Ba1-xSrxTiO3). Mixing powder is then densified by Spark Plasma Sintering (SPS). An originalapproach is developed in order to determine parameters linking the microstructure to the physicalproperties for each step of the elaboration - characterization - modelling optimization procedure.The adopted strategy is based on i) specific SPS properties which provide an accurate control of theinterfaces between each components; ii) potentialities offered by X-ray microtomography to describethe internal 3D microstructure of the composite materials during the key steps of their elaboration.Associated with powerful image processing tools, it allows to obtain relevant elements guiding theoptimization and understanding of the final properties; iii) the development of a 3D numerical modelof tunability applied directly to the real geometry which has been extracted from 3Dmicrotomography images. This step is essential to understand the origin of the redistribution of theelectric field between the different phases. Numerical results are directly compared to experimentalmeasurements
Grange, François. "Matériaux composites pour antenne miniature intégrée." Phd thesis, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00601825.
Повний текст джерелаLei, Yannick Ruani. "Matériaux composites électroactifs à porosité contrôlée." Montpellier 2, 2009. http://www.theses.fr/2009MON20074.
Повний текст джерелаAmong all systems for electrical storage, electrochemical devices are interesting because they turn chemical energy into electrical energy. Supercapacitor and Li-ion battery have high power density and good energy density, respectively. The topic of the present work is the preparation of composite electrode material MnO2/C for supercapacitor, SnO2/C for Li-ion battery and synthesis of porous SiC. This could be achieved starting by the synthesis of mesoporous carbon (900m2/g) following a hard template method. At first, the evaluation of electrochemical performances of composite electrode material for supercapacitor shows two different behaviours versus the ratio of MnO2. We could observe an optimal ratio for which capacitance was maximal (900F/g). Secondly, the volumic variations occurring while charge/discharge of SnO2/C electrode materials are contained by the carbon matrix. In spite of limited electrochemical performances for pure SnO2 electrode material, the cyclability of SnO2/C electrode materials is enhanced. At last, the synthesis of porous SiC can be achieved by the thermal reduction of SiO2/C composite using Mg as reducing agent. The as-prepared material is a replica of silica template
Duong, Ngoc Tan. "Cartographie et caractérisation acoustiques des matériaux composites : application à l’évaluation du taux volumique de porosité dans un matériau composite RTM." Thesis, Le Havre, 2015. http://www.theses.fr/2015LEHA0023/document.
Повний текст джерелаThe porosity of a composite plate in carbon / epoxy of type RTM is known by used of tomography X. A method of determination of this porosity by measure of the mitigation of the longitudinal waves through the thickness of this kind of plate is proposed. These measures are made on surfaces of different sizes (from some cm2 to some mm2) and allow the obtaining of cartographies. A correspondence porosity (tomo X) - Mitigation (US wave) is deducted and analyzed according to the structure of the composite material. In every case, we estimate the quality of the obtained relations and we deduct the limits of validity of the correspondence between porosity and mitigation. First results of acoustic tomography are obtained
Ratiarisoa, Lisa Barbara. "Etude de matériaux naturels 2D : Potentialités d'utilisation comme renfort de matériaux composites." Thesis, Antilles, 2019. http://www.theses.fr/2019ANTI0393.
Повний текст джерелаFacing the worldwide environmental, social and economic crisis awareness, the possibility ofreinforcing composites by a lignocellulosic textile reinforcement, the coconut leaf sheaths fromCocos nucifera L. was assessed in this work. The exploratory phase of sheaths characterizationhas shown that this resource forms a two-way textile made up of cellulose mostly. In contrast toclassic vegetable reinforcements, it is less hygroscopic, lighter with best tensile mechanicalproperties in preferential fibers directions. About the experimental campaign on the treatmentseffect, xylanase and laccase treated sheaths show a slight surface chemical change. Pyrolysedfibers are more hydrophobic but less resistant translating a damaging of them. Lime treatedsheaths show a higher thermal stability. Thus, raw sheaths were retained to reinforceparticleboards, the temperature of panels manufacture being lower than the start degradationtemperature of the raw sheaths. The two-faces panel covered with raw sheaths top part forms themost promising candidate to develop thermal eco-insulator. Some of its mechanical and physicalproperties fulfill american and european standards. Its thermal properties are similar to the onesnoticed in the bibliography for low density lignocellulosic particleboards
Senghor, Fiacre Djonkone. "Identification des propriétés anisotropes des matériaux complexes : application aux matériaux composites stratifiés." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4002/document.
Повний текст джерелаThe works presented in this thesis focuses on the identification of anisotropic electrical properties of complex composite materials. They aim to contribute to a better control of the impact of manufacturing process parameters, different architectures, formulations and fibres filling rate, etc., on the electrical behaviour of these composite materials. They inscribe themselves in the frame of the FUI ACCEA research project funded in part by the region Pays de la Loire. This project aims to produce a multi-functional composite material of a new type of thermoplastic matrix loaded with carbon graphite which would see its electrical and thermal properties improved without degrading the mechanical properties. From then one of the main difficulties of the designer is to find innovative implementation tools, to improve the thermal and electrical properties of these composites non-intrusive and non-destructive to their mechanical properties with less cost. It is in this logic that this PhD work is interested in modelling and experimental measurement of the electrical conductivity tensor of this composites to provide an help to the decision on the choice of matrix, of the weave, the implemented method, etc. The comparison between the simulation and experimental results gives a good concordance
Leroux, Julien. "Modélisation numérique du contact pour matériaux composites." Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00961209.
Повний текст джерелаКниги з теми "Matériaux composites Al"
Roucou, J. Contrôles non destructifs des matériaux composites. 2nd ed. Pessac: Institut de matériaux composites, 1987.
Знайти повний текст джерелаJ, Reinhart Theodore, Dostal Cyril A, and ASM Handbook Committee., eds. Composites. Metals Park, Ohio: ASM International, 1987.
Знайти повний текст джерелаBerthelot, J. M. Matériaux composites: Comportement mécanique et analyse des structures. Paris: Masson, 1992.
Знайти повний текст джерелаMotro, René. Matériaux composites souples: En architecture, construction et intérieurs. Basel: Birkhäuser, 2013.
Знайти повний текст джерела(Firm), Knovel, ed. Fatigue life prediction of composites and composite structures. Oxford: Woodhead Publishing, 2010.
Знайти повний текст джерелаInternational Conference on Composites and Nanocomposites (1st : 2011 : Kottayam, India), ed. Composites and nanocomposites. Toronto: Apple Academic Press, 2013.
Знайти повний текст джерелаChemin, Isabelle. Terminologie des matériaux composites: Anglais/français & français/anglais / par Isabelle Chemin. Paris: Maison du dictionnaire, 1992.
Знайти повний текст джерелаSaid, Jahanmir, Ramulu M, and Koshy Philip, eds. Machining of ceramics and composites. New York: Marcel Dekker, 1999.
Знайти повний текст джерелаF, Brinson H., Reinhart Theodore J, and ASM International. Handbook Committee, eds. Engineered materials handbook. Metals Park, Ohio: ASM International, 1987.
Знайти повний текст джерелаEngineers, Society of Automotive, ed. Engineered tribological composites: The art of friction material development. Warrendale, PA: SAE International, 2011.
Знайти повний текст джерелаЧастини книг з теми "Matériaux composites Al"
Jetteur, Philippe, Michael Bruyneel, and Jean-Charles Craveur. "Chapitre 2. Théorie des laminés." In Structures en matériaux composites, 9–52. Dunod, 2019. http://dx.doi.org/10.3917/dunod.bruyn.2019.01.0009.
Повний текст джерелаJetteur, Philippe, Michael Bruyneel, and Jean-Charles Craveur. "Chapitre 1. Introduction." In Structures en matériaux composites, 1–7. Dunod, 2019. http://dx.doi.org/10.3917/dunod.bruyn.2019.01.0001.
Повний текст джерелаJetteur, Philippe, Michael Bruyneel, and Jean-Charles Craveur. "Chapitre 6. Modélisation du délaminage (1)." In Structures en matériaux composites, 149–71. Dunod, 2019. http://dx.doi.org/10.3917/dunod.bruyn.2019.01.0149.
Повний текст джерелаJetteur, Philippe, Michael Bruyneel, and Jean-Charles Craveur. "Chapitre 9. Effets thermiques." In Structures en matériaux composites, 237–68. Dunod, 2019. http://dx.doi.org/10.3917/dunod.bruyn.2019.01.0237.
Повний текст джерелаJetteur, Philippe, Michael Bruyneel, and Jean-Charles Craveur. "Chapitre 7. Modélisation du délaminage (2)." In Structures en matériaux composites, 173–203. Dunod, 2019. http://dx.doi.org/10.3917/dunod.bruyn.2019.01.0173.
Повний текст джерелаJetteur, Philippe, Michael Bruyneel, and Jean-Charles Craveur. "Chapitre 8. Modélisation du pli." In Structures en matériaux composites, 205–35. Dunod, 2019. http://dx.doi.org/10.3917/dunod.bruyn.2019.01.0205.
Повний текст джерелаJetteur, Philippe, Michael Bruyneel, and Jean-Charles Craveur. "Chapitre 10. Compléments." In Structures en matériaux composites, 269–94. Dunod, 2019. http://dx.doi.org/10.3917/dunod.bruyn.2019.01.0269.
Повний текст джерелаJetteur, Philippe, Michael Bruyneel, and Jean-Charles Craveur. "Chapitre 3. La méthode des éléments finis." In Structures en matériaux composites, 53–81. Dunod, 2019. http://dx.doi.org/10.3917/dunod.bruyn.2019.01.0053.
Повний текст джерелаJetteur, Philippe, Michael Bruyneel, and Jean-Charles Craveur. "Chapitre 5. Structures sandwiches." In Structures en matériaux composites, 109–47. Dunod, 2019. http://dx.doi.org/10.3917/dunod.bruyn.2019.01.0109.
Повний текст джерелаJetteur, Philippe, Michael Bruyneel, and Jean-Charles Craveur. "Chapitre 4. Les éléments." In Structures en matériaux composites, 83–108. Dunod, 2019. http://dx.doi.org/10.3917/dunod.bruyn.2019.01.0083.
Повний текст джерелаТези доповідей конференцій з теми "Matériaux composites Al"
Kahina, Bouguerrouma, Rashit Abdulkhakovich Latypov, and Valery Strizheus. "ÉTUDE DES MATÉRIAUX POLYMÈRES ET COMPOSITES POUR LA FABRICATION DE LA BAGUE UAZ "PATRIOT" PAR LA MÉTHODE DE SURFAÇAGE COUCHE PAR COUCHE." In Themed collection of papers from Foreign International Scientific Conference «Science and innovation in the framework of the strategic partnership between Algeria and Russia» by HNRI «National development» in cooperation with the University of Science and Technology Houari Boumediene. April 2024. Crossref, 2024. http://dx.doi.org/10.37539/240425.2024.70.21.009.
Повний текст джерелаLe Toulouzan, J. N., and D. Wysoczanski. "Diffusion multiple de la lumière : application à l'orientation de fibres dans des matériaux composites." In Optique instrumentale. Les Ulis, France: EDP Sciences, 1997. http://dx.doi.org/10.1051/sfo/1997009.
Повний текст джерелаTavares, Fábio Júlio, and Elias Márcio Tavares. "ESTUDO DA DESTINAÇÃO DOS RESÍDUOS DE ORIGEM ANIMAL EM PROPRIEDADES RURAIS PARA A PRODUÇÃO DE FERTILIZANTES ORGANOMINERAIS." In I Congresso Nacional On-line de Conservação e Educação Ambiental. Revista Multidisciplinar de Educação e Meio Ambiente, 2021. http://dx.doi.org/10.51189/rema/1695.
Повний текст джерела