Добірка наукової літератури з теми "Material Electrochemistry"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Material Electrochemistry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Material Electrochemistry"

1

McCreery, Richard, Adam Bergren, Amin Morteza-Najarian, Sayed Youssef Sayed, and Haijun Yan. "Electron transport in all-carbon molecular electronic devices." Faraday Discuss. 172 (2014): 9–25. http://dx.doi.org/10.1039/c4fd00172a.

Повний текст джерела
Анотація:
Carbon has always been an important electrode material for electrochemical applications, and the relatively recent development of carbon nanotubes and graphene as electrodes has significantly increased interest in the field. Carbon solids, both sp2 and sp3 hybridized, are unique in their combination of electronic conductivity and the ability to form strong bonds to a variety of other elements and molecules. The Faraday Discussion included broad concepts and applications of carbon materials in electrochemistry, including analysis, energy storage, materials science, and solid-state electronics. This introductory paper describes some of the special properties of carbon materials useful in electrochemistry, with particular illustrations in the realm of molecular electronics. The strong bond between sp2 conducting carbon and aromatic organic molecules enables not only strong electronic interactions across the interface between the two materials, but also provides sufficient stability for practical applications. The last section of the paper discusses several factors which affect the electron transfer kinetics at highly ordered pyrolytic graphite, some of which are currently controversial. These issues bear on the general question of how the structure and electronic properties of the carbon electrode material control its utility in electrochemistry and electron transport, which are the core principles of electrochemistry using carbon electrodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ambrosi, Adriano, and Martin Pumera. "Exfoliation of layered materials using electrochemistry." Chemical Society Reviews 47, no. 19 (2018): 7213–24. http://dx.doi.org/10.1039/c7cs00811b.

Повний текст джерела
Анотація:
There is a tremendous interest towards 2D layered materials. Electrochemically-assisted exfoliation of bulk crystals represents one of the most promising methods of large production of graphene and other 2D material sheets.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xiang, Qian. "Research on Rechargeable Lithium Manganese Battery Material Electrochemical Roasting Performance Analysis." Advanced Materials Research 455-456 (January 2012): 889–94. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.889.

Повний текст джерела
Анотація:
As anode material of battery, manganese dioxide has been widely used in zinc-manganese and lithium–manganese primary battery. To meet new electrical products’ requirements on high-performance battery, research on rechargeable lithium manganese button batteries with extensive operating temperature, superior-performance comprehensive electrochemistry and low cost has drawn attention from more and more researchers. This article has analyzed physical and chemical properties of lithium manganese composite oxides synthetic material, assembled lithium button batteries by synthetic sample and lithium aluminum alloy and discussed its electrochemistry performance, based on confirmed material proportioning, discussed the influence of roasting condition on synthetic material performance from physical & chemical properties and electrochemistry properties, and confirmed best roasting temperature and roasting time.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Su, Wei, Yu Chun Li, Fei Yu, Guo Hua Lu, Yuan Chen, Qun Hui Meng, and Wei Xia Wang. "Electrochemical Research on Cl- which Destroys the Surface Passivation Film of T23 in Supercritical Water Tubes." Advanced Materials Research 413 (December 2011): 383–90. http://dx.doi.org/10.4028/www.scientific.net/amr.413.383.

Повний текст джерела
Анотація:
This article with the electrochemistry workstation, electrochemical noise, SEM, X-ray diffraction and atomic absorption spectrophotometer (AAS) has studied the corrosion behavior of Cl- which destroys the surface passivation film of T23 materials in supercritical water tubes. According to the experimental results and analysis, it can be concluded as followed: material was immersed in passivation solution for 7200S electrochemistry noise (ECN) testing, after 6000S, the potential and current tended to be stable. To unify ECN, Tafel curve and electrochemical impedance spectroscopy (EIS), it was considered that the material surface had formed passivation film. But the first 1500S noise potential and current fell rapidly in the 7200S erosion process, Tafel curve passivation area and EIS second arc disappeared, the potential and current was stable after 1500S. So the passivation film of material surface was destroyed, and Fe3O4 product gradually formed on the surface, finally the material corrosion entered into stable state.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tang, Yuxin, Yanyan Zhang, Wenlong Li, Bing Ma, and Xiaodong Chen. "Rational material design for ultrafast rechargeable lithium-ion batteries." Chemical Society Reviews 44, no. 17 (2015): 5926–40. http://dx.doi.org/10.1039/c4cs00442f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bao, Bin, Boris Rivkin, Farzin Akbar, Dmitriy D. Karnaushenko, Vineeth Kumar Bandari, Laura Teuerle, Christian Becker, Stefan Baunack, Daniil Karnaushenko, and Oliver G. Schmidt. "Digital Electrochemistry for On‐Chip Heterogeneous Material Integration." Advanced Materials 33, no. 26 (May 24, 2021): 2101272. http://dx.doi.org/10.1002/adma.202101272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kapałka, Agnieszka, György Fóti, and Christos Comninellis. "The importance of electrode material in environmental electrochemistry." Electrochimica Acta 54, no. 7 (February 2009): 2018–23. http://dx.doi.org/10.1016/j.electacta.2008.06.045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bao, Bin, Boris Rivkin, Farzin Akbar, Dmitriy D. Karnaushenko, Vineeth Kumar Bandari, Laura Teuerle, Christian Becker, Stefan Baunack, Daniil Karnaushenko, and Oliver G. Schmidt. "Digital Electrochemistry: Digital Electrochemistry for On‐Chip Heterogeneous Material Integration (Adv. Mater. 26/2021)." Advanced Materials 33, no. 26 (July 2021): 2170204. http://dx.doi.org/10.1002/adma.202170204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sun, Gang, Chenxiao Jia, Shuanlong Di, Jianning Zhang, Qinghua Du, and Xiujuan Qin. "The Effect of Thermal Treatment Temperature and Duration on Electrochemistry Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium-ion Batteries." Current Nanoscience 14, no. 5 (July 23, 2018): 440–47. http://dx.doi.org/10.2174/1573413714666180320145227.

Повний текст джерела
Анотація:
Background: LiNi1/3Mn1/3Co1/3O2 derived from the solid-state method suffers from the problem of significant irreversible charge-discharge behavior. To improve the electrochemical performance of LiNi1/3Mn1/3Co1/3O2, there are several important factors, such as starting raw materials, precursor, preparation method and conditions. In this work, the layered LiNi1/3Mn1/3 Co1/3O2 material was prepared by solid-state reaction. By varying the temperature and duration of synthesis thermal treatment, the greater crystallinity and well-ordered layered LiNi1/3Mn1/3Co1/3O2 cathode material has been successfully synthesized. The structural properties, morphology and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 powders have been investigated in detail. Methods: LiNi1/3Co1/3Mn1/3O2 cathode material was synthesized via a high-temperature solid-state method. Stoichiometric amounts of Ni(CH3COO)2•4H2O, Co(CH3COO)2•4H2O, Mn(CH3COO)2• 4H2O, and Li2CO3 as raw materials were homogenized mixed in a ball mill for 8 h at 240 rpm. By varying the temperature and duration of synthesis thermal treatment, LiNi1/3Co1/3Mn1/3O2 cathode materials with different electrochemistry performance were achieved. (a) The effect of the temperature of synthesis thermal treatment on electrochemistry performance of LiNi1/3Co1/3Mn1/3O2 was explored by calcining the above mixed powder at 800°C, 850°C, 900°C, 950°C, and 1000°C for 12 h in air at a rate of 5°C min-1. Then the target product was prepared at last. The obtained compound was named as N-800, N-850, N-900, N-950 and N-1000, respectively. (b) In order to explore the effect of the duration of synthesis thermal treatment on electrochemistry performance of LiNi1/3 Co1/3Mn1/3O2 cathode material, the above mixed raw materials were calcined at 900°C for 4 h, 8 h, 12 h, 16 h and 20 h in air at a rate of 5°C min-1. The obtained compound was named as N-4, N-8, N- 12, N-16 and N-20, respectively. The N-900 and N-12 are the same sample. Results: The cathode material sintered at 900°C for 12 h revealed the best electrochemical performance, with high-capacity and recyclability compared with other materials. Its initial discharge capacity attains 182.4 mAh g-1 at 0.2 C in the voltage range of 2.5-4.6 V, which can be attributed to its greater crystallinity and well-ordered layered structure. Compared with other studies on lithium-ion batteries given in literature, this work provides a sample, optimal and mild synthetic conditions to synthesize the cathode materials with great electrochemistry performance. Conclusion: A greater crystallinity and well-ordered layered LiNi1/3Mn1/3Co1/3O2 powders had been successfully synthesized by mixing raw materials under various temperatures and duration of synthesis thermal treatment. The XRD results indicated the I(003)/I(104) values of N-900 (N-12) is 1.591 larger than 1.2, which illustrates no undesirable cation mixing to be occurred. In this work, from the results of electrochemical property experiments, it can be indicated that the optimal synthesized conditions are 900°C for 12 h. When the calcination temperature is too low and the calcined time is too short, the material is poorly crystalline and has a poor layer structure. When the calcination temperature is too high and the calcined time is too long, lithium salt is evaporated completely during the calcination process resulting in a poor electrochemistry performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

HIGUCHI, Takeshi, Daiki MURAKAMI, Hidetoshi NISHIYAMA, Mitsuo SUGA, Atsushi TAKAHARA, and Hiroshi JINNAI. "Nanometer-scale Real-space Observation and Material Processing for Polymer Materials under Atmospheric Pressure: Application of Atmospheric Scanning Electron Microscopy." Electrochemistry 82, no. 5 (2014): 359–63. http://dx.doi.org/10.5796/electrochemistry.82.359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Material Electrochemistry"

1

Bolger, Paul Thomas. "The electrochemistry of silver co-ordination complexes." Thesis, Queen's University Belfast, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Siritanaratkul, Bhavin. "Enzyme-material composites for solar-driven reactions." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:55df8993-254b-4960-8ef4-fd9624206f3b.

Повний текст джерела
Анотація:
Using sunlight to drive chemical reactions has long been one of the goals in developing sustainable processes. Previous research has focused on solar fuel production in the form of H2, but this thesis demonstrates that solar-to-chemicals processes can be constructed to produce more complex compounds, using hybrid systems composed of enzymes and inorganic materials. Tetrachloroethene reductive dehalogenase (PceA), an enzyme that catalyzes the conversion of tetrachloroethene (PCE) to trichloroethene (TCE) and subsequently to cis-dichloroethene (cDCE), was shown to accept electrons from both graphite and TiO2 electrodes. Irradiation by UV light onto PceA-adsorbed TiO2 particles led to the selective production of TCE and cDCE, which was not possible without PceA as a catalyst. Ferredoxin-NADP+ reductase (FNR) is a key enzyme in photosynthesis, as it receives energetic electrons from Photosystem I and produces NADPH as an energy carrier for downstream 'Dark' reactions involving CO2 assimilation. This thesis presents the discovery of FNR activity on indium tin oxide (ITO) electrodes which led to direct electrochemical investigation of the properties of FNR, both in the absence and presence of its substrate, NADP+. The FNR-adsorbed electrode, termed 'the electrochemical leaf', rapidly interconverts NADP+/NADPH, and this was coupled to a downstream NADPH-dependent enzyme, thus demonstrating a new approach to cofactor regeneration for enzyme-catalyzed organic synthesis. The NADP+ reduction by FNR was also driven by light using a photoanode made of visible-light responsive semiconductors.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Braham, Victoria Jane. "Corrosion of aluminium in contact with cutting fluids : electrochemistry of corrosion." Thesis, University of Newcastle Upon Tyne, 1997. http://hdl.handle.net/10443/797.

Повний текст джерела
Анотація:
The work in this thesis concerns the behaviour of cutting fluids used for drilling aluminium. A cutting fluid which is useful must neither corrode nor stain aluminum unduly. The compositional factors which lead to a successful cutting fluid have been investigated using electrochenucal techniques. Linear sweep and impedance measurements were used to assess the corrosion of pure alummium and aluminium alloys in contact with aqueous solutions in the pH range 8-11 , in the presence and absence of oxygen. It was found that a low corrosion rate required that the solution pH was kept lower than 9.5. Clear and stable cutting fluids were formulated with and without the use of amines and the corrosion of aluminium in contact with these cutting fluid emulsions was studied. The corrosion rate of aluminium was found to be a factor of ten times lower when in contact with a typical emulsion compared to contact with an aqueous borax solution of the same pH. The most important factor in respect of corrosion control was the pH. The presence/absence of amines did not significantly affect the corrosion rates. In order to simulate the drilling process,a glass cell was designed with a glass frit situated at the base onto which an aluminium rotating disc electrode was lowered, and electrochemical measurements were made, in situ in this way. Abrasion of the electrode caused the anodic process on the metal to be affected to a greater extent than the cathodic process. The electrochemical techniques used in this work have readily allowed us to assess the suitability of different cutting fluid formulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jia, Jingshu. "Fabrication of high quality one material anode and cathode for water electrolysis in alkaline solution /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?EVNG%202008%20JIA.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Libot, Cecile. "The influence of cathode material on the reduction of aryl carbonyl compounds : formation of radicals." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Grosu, Cristina. "Correlation between structure and electrochemistry of LiMO2 cathode materials (M = Ni, Co)." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13355/.

Повний текст джерела
Анотація:
Technical diversity and various knowledge is required for the understanding of undoubtedly complex system such as a Lithium-ion battery. The peculiarity is to combine different techniques that allow a complete investigation while the battery is working. Nowadays, research on Li-ion batteries (LIBs) is experiencing an exponential growth in the development of new cathode materials. Accordingly, Li-rich and Ni-rich NMCs, which have similar layered structure of LiMO2 oxides, have been recently proposed. Despite the promising performance on them, still a lot of issues have to be resolved and the materials need a more in depth characterisation for further commercial applications. In this study LiMO2 material, in particular M = Co and Ni, will be presented. We have focused on the synthesis of pure LiCoO2 and LiNiO2 at first, followed by the mixed LiNi0.5Co0.5O2. Different ways of synthesis were investigated for LCO but the sol-gel-water method showed the best performances. An accurate and systematic structural characterization followed by the appropriate electrochemical tests were done. Moreover, the in situ techniques (in-situ XRD and in situ OEMS) allowed a deep investigation in the structural change and gas evolution upon the electrochemically driven processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ranganathan, Srikanth. "Preparation, modification and characterization of a novel carbon electrode material for applications in electrochemistry and molecular electronics /." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486398528558482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tan, Chuting Tan. "Radiation-Induced Material and Performance Degradation of Electrochemical Systems." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu151448116966595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Beaussant, Törne Karin. "Investigation of corrosion properties of metals for degradable implant applications." Doctoral thesis, KTH, Materialfysik, MF, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215970.

Повний текст джерела
Анотація:
Nedbrytbara metaller utgör en ny klass av biomaterial med potential attersätta permanenta material i tillfälliga applikationer. Detta för att minskarisken för långvariga biverkningar. I den pågående forskningen för att utvecklanya nedbrytbara metaller är screening av nya material genom in vitro testmetoderett attraktivt alternativ för att undvika onödiga, tidskrävande ochdyrbara djurstudier.Denna avhandling fokuserar på in vitro-testning av zink- och magnesiumbaserademetaller. Inverkan av faktorer såsom sammansättningen av testlösningen,buffersystemet, belastning samt mikrostruktur hos legeringar undersöktes.Genom att använda elektrokemiska in situ tekniker såsom impedansspektroskopi(EIS) är det möjligt att studera gränssnittet mellan metall ochlösning och karakterisera egenskaperna hos den korroderande ytan. Ex situytkaraktäriseringstekniker som svepelektronmikroskopi och infraröd spektroskopianvändes sedan för att komplettera resultaten av de elektrokemiskamätningarna.Korrosionen av zink i Ringer’s lösning fanns vara närmare in vivo korrosionän korrosionen i fosfatbuffrad saltlösning (PBS). Ringers lösning är därför denföredragna testmiljön för långsiktig utvärdering av zinkbaserade metallerDet biologiska buffersystemet (CO2/H2CO3) bör företrädesvis användasför att stabilisera pH-värdet på testlösningen vid magnesiumnedbrytning. NärHEPES användes för att stabilisera pH ökade korrosionshastigheten på grundav bildning av mindre skyddande skikt av korrosionsproduktMöjligheten att använda helblod och plasma som mer kliniskt relevantatestmiljöer utvärderades och befanns producera reproducerbara resultat.Bildning av ett korrosionsskikt bestående av både organiskt och oorganisktmaterial detekterades på zink i både plasma och helblod.När zink prover i helbod utsattes för belastning förhindrade korrosionsskiktetbildningen av mikrosprickor och förtidigt brott av provet. Det varvidare möjligt att detektera tidig sprickbildning på grund av belastning avMagnesium AZ61-legering med EIS.Adsorption av organiska species på zinkytan under anodisk polariseringökar yttäckningen av Zn-joner i helblod. Den ökade yttäckningen leder sedantill utfällningen av ett skyddande skikt av zinkfosfater och en minskadkorrosionshastighet vid högre potentialer.Korrosion av Zn-Mg och Zn-Ag legeringar i Ringers lösning befanns skevia selektiv upplösning. Lokal utfällning av korrosionsprodukter och bildningav ett poröst, mindre skyddande skikt av korrosionsprodukter hittades påZn-Mg legeringar. Den selektiva upplösningen av Zn-Ag legering orsakade enanrikning av AgZn3 vilket kan påverka biokompatibiliteten av ett implantatmed tiden.
Degradable metallic implants are a new class of biomaterials with potentialto replace permanent materials in temporary applications to reduce therisk of long term adverse effects.This thesis focuses on in vitro testing of zinc and magnesium based metals.As new degradable metals are developed screening of new materials within vitro test methods is an attractive option to avoid unnecessary, time consumingand expensive animal studies. The influence of factors such as ioniccomposition of the test solution, buffer system, strain and alloy compositionwas investigated. By employing electrochemical in situ techniques such asimpedance spectroscopy it is possible to study the metal-solution interfaceand determine the properties of the corroding surface. Ex situ surface characterizationtechniques such as scanning electron microscopy and infraredspectroscopy were then used to complement the results of the electrochemicalmeasurements.The importance of appropriate selection of the test solution is highlightedin this work. Zinc was found to corrode in Ringer’s solution by a mechanismcloser to in vivo corrosion than in a phosphate buffered saline solution(PBS).Ringer’s solution is therefore the more appropriate test environment for longterm evaluation of zinc based metals.When evaluating the corrosion of Zn-Mg and Zn-Ag alloys in Ringer’ssolution selective dissolution was found to occur for both types of alloys. Localprecipitation and formation of a porous, less protective, layer of corrosionproducts was found for Zn-Mg alloys. The selective dissolution of Zn-Agalloy caused an enrichment of AgZn3 on the surface which may affect thebiocompatibility of the alloy.The use of HEPES to maintain the pH of the test solution increasedthe corrosion rate of magnesium due to formation of a less protective layerof corrosion products. Magnesium corrosion should therefore preferably bestudied in solutions where the pH is maintained by the biological buffer systemCO2/H2CO3.In addition to saline solutions human whole blood and plasma were evaluatedas more clinically relevant in vitro environments. They were found toproduce reproducible results and to be suitable for short term experiments.Formation of a corrosion product layer comprised of both organic and inorganicmaterial was detected on zinc in both plasma and whole blood.During anodic polarization the adsorption of organic species on the zincsurface was found to increase the surface coverage of Zn ions in whole blood.The increased surface coverage then allowed for precipitation of a protectivelayer of Zn5(PO4)3 and a subsequent decrease in corrosion rate at higherpotentials.When subjecting zinc samples to strain the organic/inorganic corrosionproduct formed in whole blood was observed by impedance spectroscopy toprevent micro cracking and premature failure.The cracking of magnesium alloy samples under applied strain was alsocharacterized by impedance. Changes in surface properties due to crack initiation

QC 20171019

Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sobkowiak, Adam. "LiFeSO4F as a Cathode Material for Lithium-Ion Batteries : Synthesis, Structure, and Function." Doctoral thesis, Uppsala universitet, Institutionen för kemi - Ångström, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262715.

Повний текст джерела
Анотація:
In this thesis, two recently discovered polymorphs of LiFeSO4F, adopting a tavorite- and triplite-type structure, were investigated as potential candidates for use as cathode materials in Li-ion batteries. The studies aimed at enriching the fundamental understanding of the synthetic preparations, structural properties, and electrochemical functionality of these materials. By in situ synchrotron X-ray diffraction (XRD), the formation mechanism of the tavorite-type LiFeSO4F was followed starting from two different sets of precursors, FeSO4∙H2O + LiF, and Li2SO4 + FeF2. The results indicated that the formation of LiFeSO4F is possible only through the structurally related FeSO4∙H2O, in line with the generally recognized topotactic reaction mechanism. Moreover, an in-house solvothermal preparation of this polymorph was optimized with the combined use of XRD and Mössbauer spectroscopy (MS) to render phase pure and well-ordered samples. Additionally, the triplite-type LiFeSO4F was prepared using a facile high-energy ball milling procedure. The electrochemical performance of as-prepared tavorite LiFeSO4F was found to be severely restricted due to residual traces of the reaction medium (tetraethylene glycol (TEG)) on the surface of the synthesized particles. A significantly enhanced performance could be achieved by removing the TEG residues by thorough washing, and a subsequent application of an electronically conducting surface coating of p-doped PEDOT. The conducting polymer layer assisted the formation of a percolating network for efficient electron transport throughout the electrode, resulting in optimal redox behavior with low polarization and high capacity. In the preparation of cast electrodes suitable for use in commercial cells, reducing the electrode porosity was found to be a key parameter to obtain high-quality electrochemical performance. The triplite-type LiFeSO4F showed similar improvements upon PEDOT coating as the tavorite-type polymorph, but with lower capacity and less stable long-term cycling due to intrinsically sluggish kinetics and unfavorable particle morphology. Finally, the Li+-insertion/extraction process in tavorite LiFeSO4F was investigated. By thorough ex situ characterization of chemically and electrochemically prepared LixFeSO4F compositions (0≤x≤1), the formation of an intermediate phase, Li1/2FeSO4F, was identified for the first time. These findings helped redefine the (de)lithiation mechanism which occurs through two subsequent biphasic reactions, in contrast to a previously established single biphasic process.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Material Electrochemistry"

1

Billingham, Michael A. Electrochemistry of a thick-film electrochromic display material. Manchester: UMIST, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Electrochemistry of porous materials. Boca Raton: Taylor & Francis, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Eftekhari, Ali. Nanostructured materials in electrochemistry. Edited by Wiley online library. Weinheim: Wiley-VCH, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

David, Pye L., Montenero Angelo, and Joseph Innocent, eds. Properties of glass-forming melts. Boca Raton: Taylor & Francis, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

International Society of Electrochemistry. Meeting. Electrochemical approach to selected corrosion and corrosion control studies: Papers from 50th ISE Meeting, Pavia, September 1999. London: Published for the European Federation of Corrosion by IOM Communications, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gary, Hodes, ed. Electrochemistry of nanomaterials. Weinheim: Wiley-VCH, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jacek, Lipkowski, and Ross Philip N, eds. The Electrochemistry of novel materials. New York, N.Y: VCH, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

R, Lindström, European Federation of Corrosion, and Institute of Materials, Minerals, and Mining., eds. The use of electrochemical scanning tunnelling microscopy (EC-STM) in corrosion analysis: Reference material and procedural guidelines. Cambridge, England: Woodhead, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

P, Stradyn' Ya, ed. Aleksandr Naumovich Frumkin: Ocherki, vospominaniya, materialy. Moskva: Nauka, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

M, Baizer Manuel, ed. The electrochemistry of biomass and derived materials. Washington, D.C: American Chemical Society, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Material Electrochemistry"

1

Britz, Dieter. "Electronic Supplementary Material." In Digital Simulation in Electrochemistry, 330. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11009375_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yokokawa, Toshio, Katsuyuki Kawamura, and Keita Suzumura. "Electrochemistry of Silicate Melts." In Dynamic Processes of Material Transport and Transformation in the Earth’s Interior, 83–96. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3314-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ju, Wen, Alexander Bagger, Nathaniel Leonard, Xingli Wang, Jan Rossmeisl, and Peter Strasser. "Chapter 4. Nanostructures for CO2 Reduction: From Theoretical Insight to Material Design." In Carbon Dioxide Electrochemistry, 151–96. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788015844-00151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Panizza, Marco. "Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants." In Electrochemistry for the Environment, 25–54. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-68318-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Gyoung-Ja, and Su-Il Pyun. "Synthesis and Characterization of Nanoporous Carbon and its Electrochemical Application to Electrode Material for Supercapacitors." In Modern Aspects of Electrochemistry, 139–95. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-46108-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kelly, James J., and S. H. Goods. "X-ray Lithography Techniques, LIGA-Based Microsystem Manufacturing: The Electrochemistry of Through-Mold Deposition and Material Properties." In Electrochemistry at the Nanoscale, 79–138. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-73582-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Freiesleben Hansen, Per. "Electrochemistry." In The Science of Construction Materials, 196–235. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70898-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Plascencia, Gabriel, and David Jaramillo. "Electrochemistry." In Basic Thermochemistry in Materials Processing, 65–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53815-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Weber, G., N. Jakubowski, and D. Stuewer. "Speciation of platinum in plant material. A combination of chromatography, elemental mass spectrometry and electrochemistry." In Anthropogenic Platinum-Group Element Emissions, 183–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59678-0_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Adarakatti, Prashanth Shivappa, and Samrat Devaramani. "2D materials for sensing applications." In Electrochemistry, 44–83. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788017039-00044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Material Electrochemistry"

1

Pei, Qibing, Gang Yu, Chi Zhang, Yang Yang, and Alan J. Heeger. "Polymer Light-Emitting Electrochemical Cells." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.thc.2.

Повний текст джерела
Анотація:
Electrochemistry provides a convenient means of reversibly doping conjugated polymers n-type (electron carriers) or p-type (hole carriers). When such charge carriers are introduced by electrochemical doping, they are compensated by counter-ions from the electrolyte. At high doping levels, the material becomes metallic, leading to low resistance contacts and easy charge injection (both n-type and p-type, respectively).1-5
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ando, Yuji, and Tadayoshi Tanaka. "Proposal of Simultaneous Production Method of Hydrogen and Hydrogen Peroxide From Water Using Solar Photo-Electrochemistry." In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44203.

Повний текст джерела
Анотація:
Authors have proposed a new hydrogen production system that simultaneously synthesizes hydrogen and hydrogen peroxide from water by electrochemical reaction. Experimental apparatus of this system is composed of a hydrogen electrode with platinum mesh, a hydrogen peroxide electrode with carbon material and an electrolyte with Nafion®. In this paper, the superiority of this system is outlined. In addition, the experimental results of electrolytic synthesis of hydrogen and hydrogen peroxide from water are reported. Furthermore, the possibility of the system that synthesizes hydrogen and hydrogen peroxide from water by the photochemical reaction using solar radiation is also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Genevey, Daniel B., Michael R. von Spakovsky, Michael W. Ellis, Douglas J. Nelson, Benoiˆt Olsommer, Fre´de´ric Topin, and Nathan Siegel. "Transient Model of Heat, Mass, and Charge Transfer as Well as Electrochemistry in the Cathode Catalyst Layer of a PEMFC." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33322.

Повний текст джерела
Анотація:
A transient model of the cathode catalyst layer of a proton exchange membrane fuel cell is presented. The catalyst layer structure can be described as a superposition of the polymer membrane, the backing layer, and some additional platinum particles. The model, which incorporates some of the features of the pseudo-homogeneous models currently present in the literature, considers the kinetics of the electrochemical reaction taking place at the platinum surface, the proton transport through the polymer agglomerates, and the oxygen and water transport within the pores as well as the membrane material of the catalyst layer. Due to the lower porosity of this region and the higher liquid water content, the catalyst layer can be current limiting in the fuel cell. Furthermore, since the cost of the catalyst material is critical, it is important to have a model predicting the effective utilization of this catalyst layer as well as one, which gives insights into how it might be improved. Equations are presented for the mass conservation of reactants and products, the electrical and ionic currents, and the conservation of energy. A discussion of a number of the closure relations such as the Butler-Volmer equation employed is included as is a discussion of the initial and boundary conditions applied. The mathematical model is solved using a finite elements approach developed at I.U.S.T.I.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chiu, W. K. S., A. V. Virkar, K. L. Reifsnider, F. Rabbi, and Q. Liu. "HeteroFoaMs: Electrode Modeling in Nano-Structured Heterogeneous Materials for Energy Systems." In ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54950.

Повний текст джерела
Анотація:
Heterogeneous Functional Materials, e.g., “HeteroFoaMs” are at the heart of countless energy systems, including (from left to right below) heat storage materials (a), batteries (b), solid oxide fuel cells (c), and polymer electrolyte fuel cells (d). HeteroFoaMs are generally nano-structured and porous to accommodate transport of gasses or fluids, and must be multi-functional (i.e., active operators on mass, momentum, energy or charge, in combinations). This paper will discuss several aspects of modeling the relationships between the constituents and microstructure of these material systems and their device functionalities. Technical advances based on these relationships will also be identified and discussed. Three major elements of the general problem of how to model HeteroFoaM electrodes will be addressed. Modeling approaches for ionic charge transfer with electrochemistry in the nano-structured porosity of the electrode will be discussed. Second, the effect of morphology and space charge on conduction through porous doped ceria particle assemblies, and their role in electrode processes will be modeled and described. And third, the effect of local heterogeneity and morphology on charge distributions and polarization in porous dielectric electrode materials will be analyzed using multi-physics field equations set on the details of local morphology. Several new analysis methods and results, as well as experimental data relating to these approaches will be presented. The value, capabilities, and limitations of the approaches will be evaluated.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ladpli, Purim, Raphael Nardari, Raunaq Rewari, Hongjian Liu, Michael Slater, Keith Kepler, Yinan Wang, Fotis Kopsaftopoulos, and Fu-Kuo Chang. "Multifunctional Energy Storage Composites: Design, Fabrication, and Experimental Characterization." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59416.

Повний текст джерела
Анотація:
We propose the concept of Multifunctional-Energy-Storage Composites (MES Composites) which highlights a unique integration technique for embedding lithium-ion battery materials in structural carbon-fiber-reinforced-polymers (CFRP). Unlike standard lithium-ion pouch cells, the MES Composites maximizes material utilization by using CFRP facesheets to house the electrochemistry. Through-thickness polymer reinforcements are implemented to allow load transfer between the two facesheets, analogous to the sandwich structure construction. In this work, the design rationale, materials and fabrication techniques, experimental evaluation, and performance of the first-generation MES Composites will be presented. MES Composite cells with a nominal capacity of approximately 4 Ah, with various reinforcements-array configurations, were fabricated and first tested through a series of electrochemical reference performance tests (RPT) under a strain-free condition. The MES Composite cells then underwent a mechanical-electrical-coupling test, where a quasi-static three-point-bending load was applied at increasing increments. Mechanical testing was interrupted after each increment to perform a sequential RPT to quantify any non-catastrophic degradation in the electrochemical performance. The obtained results verify the feasibility of the concept showing that the electrochemical performance of the MES Composites can be maintained at the same level as the regular lithium-ion battery. The reinforcement architecture of the MES Composite constrains the relative motion of the battery electrodes and increases the bending rigidity, resulting in a higher load carrying capacity and inhibiting non-fatal injury of the cell under mechanical loads. This multifunctional material system can also be scaled up and ultimately provide considerable weight and volume saving at the system level.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stamps, Michael A., and Hsiao-Ying Shadow Huang. "Mixed Modes Fracture and Fatigue Evaluation for Lithium-Ion Batteries." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88037.

Повний текст джерела
Анотація:
Lithium ion batteries have become a widely known commodity for satisfying the world’s mobile energy storage needs. But these needs are becoming increasingly important, especially in the transportation industry, as concern for rising oil prices and environmental impact from fossil fuels are pushing for deployment of more electric vehicles (EV) or plug in hybrid-electric vehicles (PHEV) and renewable energy sources. The objective of this research is to obtain a fundamental understanding of degradation mechanisms and rate-capacity loss in lithium-ion batteries through fracture mechanics and fatigue analysis approaches. In this study we follow empirical observations that mechanical stresses accumulate on electrode materials during the cycling process. Crack induced fracturing will then follow in the material which electrical contact surface area is degraded and over capacitance of the battery reduces. A fatigue analysis simulation is applied using ANSYS finite element software coupled with analytical models to alleviate these parameters that play the most pivotal roles in affecting the rate-capacity and cycle life of the lithium-ion battery. Our results have potential to provide new models and simulation tools for clarifying the interplay of structure mechanics and electrochemistry while offering an increased understanding of fatigue degradation mechanisms in rechargeable battery materials. These models can aid manufacturers in the optimization of battery materials to ensure longer electrochemical cycling life with high-rate capacity for improved consumer electronics, electric vehicles, and many other military or space applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Subramanian, A., J. P. Sullivan, J. Y. Huang, N. Hudak, Y. Zhan, J. Lou, and C. M. Wang. "On-chip electrochemistry: A nanofabricated platform for single nanowire battery electrochemistry." In 2010 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2010. http://dx.doi.org/10.1109/nmdc.2010.5651972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Andersson, Martin, Jinliang Yuan, Bengt Sunde´n, Ting Shuai Li, and Wei Guo Wang. "Modeling Validation and Simulation of an Anode Supported SOFC Including Mass and Heat Transport, Fluid Flow and Chemical Reactions." In ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54006.

Повний текст джерела
Анотація:
Fuel cells are electrochemical devices that directly transform chemical energy into electricity, which are promising for future energy systems, since they are energy efficient and, when hydrogen is used as fuel, there are no direct emissions of greenhouse gases. The cell performance depends strongly on the material characteristics, the operating conditions and the chemical reactions that occur inside the cell. The chemical- and electrochemical reaction rates depend on temperature, material structure, catalytic activity, degradation and the partial pressures for the different species components. There is a lack of information, within the open literature, concerning the fundamentals behind these reactions. Experimental as well as modeling studies are needed to reduce this gap. In this study experimental data collected from an intermediate temperature standard SOFC with H2/H2O in the fuel stream are used to validate a previously developed computational fluid dynamics model based on the finite element method. The developed model is based on the governing equations of heat and mass transport and fluid flow, which are solved together with kinetic expressions for internal reforming reactions of hydrocarbon fuels and electrochemistry. This model is further updated to describe the experimental environment concerning cell design. Discussion on available active area for electrochemical reactions and average ionic transport distance from the anodic- to the cathodic three-phase boundary (TPB) are presented. The fuel inlet mole fractions are changed for the validated model to simulate a H2/H2O mixture and 30% pre-reformed natural gas.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Patrício, S. G., A. I. B. Rondão, A. Jamale, N. Martins, and F. M. B. Marques. "CO2 separation membranes: innovative combination of known materials." In 2nd International Seminar on Industrial Innovation in Electrochemistry. São Paulo: Editora Blucher, 2016. http://dx.doi.org/10.5151/chempro-s3ie2016-07.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Doyeon, and Kwang J. Kim. "Electrochemistry of ionic polymer-metal composite." In Smart Structures and Materials, edited by Yoseph Bar-Cohen. SPIE, 2005. http://dx.doi.org/10.1117/12.592054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Material Electrochemistry"

1

Kelly, James J., and Steven Howard Goods. LIGA-based microsystem manufacturing:the electrochemistry of through-mold depostion and material properties. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/876336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Martin, C. R., M. J. Tierney, I. F. Cheng, L. S. Van Dyke, Z. Cai, J. R. McBride, and C. J. Brumlik. Nano- and Microstructures in Chemistry, Electrochemistry, and Materials Science. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada206296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Barnett, Scott, Ken Poeppelmeier, Tom Mason, Lawrence Marks, and Peter Voorhees. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1320742.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії