Добірка наукової літератури з теми "Massives MIMO"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Massives MIMO".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Massives MIMO"
Sharma, Manmohan, Sunny Verma, and Shekhar Verma. "Optimization of Cell-Free Massive MIMO System." Journal of Physics: Conference Series 2327, no. 1 (August 1, 2022): 012056. http://dx.doi.org/10.1088/1742-6596/2327/1/012056.
Повний текст джерелаStepanets, I., and G. Fokin. "FEATURES OF MASSIVE MIMO IN 5G NETWORKS." LastMile, no. 1 (2018): 46–52. http://dx.doi.org/10.22184/2070-8963.2018.70.1.46.52.
Повний текст джерелаJang, Jeong-Uk, Jin-Hyuk Kim, and Cheol Mun. "Analysis of Massive MIMO Wireless Channel Characteristics." Journal of Korea Information and Communications Society 38B, no. 3 (March 29, 2013): 216–21. http://dx.doi.org/10.7840/kics.2013.38b.3.216.
Повний текст джерелаKim, Yongok, and Sooyong Choi. "Performance Analysis of Massive MIMO Systems According to DoF." Journal of Korean Institute of Communications and Information Sciences 40, no. 11 (November 30, 2015): 2145–47. http://dx.doi.org/10.7840/kics.2015.40.11.2145.
Повний текст джерелаJang, Seokju, Han-Bae Kong, and Inkyu Lee. "Pilot Assignment Algorithm for Uplink Massive MIMO Systems." Journal of Korean Institute of Communications and Information Sciences 40, no. 8 (August 31, 2015): 1485–91. http://dx.doi.org/10.7840/kics.2015.40.8.1485.
Повний текст джерелаKim, Dowu, Seokjae Moon, and Jang-Won Lee. "Semi-Orthogonal Random Access for mMTC in Massive MIMO Systems." Journal of Korean Institute of Communications and Information Sciences 46, no. 7 (July 31, 2021): 1164–72. http://dx.doi.org/10.7840/kics.2021.46.7.1164.
Повний текст джерелаChung, Jinjoo, Yonghee Han, and Jungwoo Lee. "Adaptive Channel Estimation Techniques for FDD Massive MIMO Systems." Journal of Korean Institute of Communications and Information Sciences 40, no. 7 (July 31, 2015): 1239–47. http://dx.doi.org/10.7840/kics.2015.40.7.1239.
Повний текст джерелаChataut, Robin, and Robert Akl. "Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction." Sensors 20, no. 10 (May 12, 2020): 2753. http://dx.doi.org/10.3390/s20102753.
Повний текст джерелаOhgane, Takeo, Toshihiko Nishimura, and Yasutaka Ogawa. "4. Massive MIMO." Journal of the Institute of Image Information and Television Engineers 70, no. 1 (2016): 17–22. http://dx.doi.org/10.3169/itej.70.17.
Повний текст джерелаHwang, Inho, Han Park, and Jeong Lee. "LDPC Coded Massive MIMO Systems." Entropy 21, no. 3 (February 27, 2019): 231. http://dx.doi.org/10.3390/e21030231.
Повний текст джерелаДисертації з теми "Massives MIMO"
Ladaycia, Abdelhamid. "Annulation d’interférences dans les systèmes MIMO et MIMO massifs (Massive MIMO)." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCD037.
Повний текст джерелаMIMO systems use sensor arrays that can be of large-scale (massive MIMO) and are seen as a potential candidate for future digital communications standards at very high throughput. A major problem of these systems is the high level of interference due to the large number of simultaneous transmitters. In such a context, ’conventional’ orthogonal pilot design solutions are expensive in terms of throughput, thus allowing for the so-called ’blind’ or ’semi-blind’ channel identification solutions to come back to the forefront as interesting solutions for identifying or deconvolving these MIMO channels. In this thesis, we started with a comparative performance analysis, based on CRB, to quantify the potential size reduction of the pilot sequences when using semi-blind methods that jointly exploit the pilots and data. Our analysis shows that, up to 95% of the pilot samples can be suppressed without affecting the channel estimation performance when such semi-blind solutions are considered. After that, we proposed new methods for semi-blind channel estimation, that allow to approach the CRB. At first, we have proposed a SB estimator, LS-DF which allows a good compromise between performance and numerical complexity. Other SB estimators have also been introduced based on the subspace technique and on the ML approach, respectively. The latter is optimized via an EM algorithm for which three reduced cost versions are proposed. In the case of a specular channel model, we considered a parametric estimation method based on times of arrival estimation combined with the DF technique
Karlsson, Marcus. "Aspects of Massive MIMO." Licentiate thesis, Linköpings universitet, Kommunikationssystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-132718.
Повний текст джерелаDet ställs hårda krav på nästa generations cellulära trådlösa system: att simultant öka datatakten på kommunikationen och dess tillförlitlighet utan att konsumera mer resurser, oavsett om det spektrum eller energi. Massiv mimo (eng: Multiple-Input Multiple-Output) har visat, både i teori och praktik, att tekniken är redo att tackla utmaningen. Massiv mimo kan betjäna många användare samtidigt, med god service, utan att öka den utstrålade effekten jämfört med nuvarande system. Massiv mimo, där basstationerna är utrustade med hundratals antenner, skiljer sig från dagens system vilket gör att många nya problem dyker upp och nya infallsvinklar på befintliga problem krävs. Denna avhandling analyserar två problem, och hur dessa förändras i ett massiv mimo sammanhang: säkerhet för fysiska lagret och överföring av systeminformation. Särskiljt visas att en störsändare med ett stort antal antenner kan överträffa en traditionell störsändare med en enda antenn. Antalet antenner ger störsändaren möjlighet att hitta strukturer i signaler och utnyttja detta för att förbättra störningens effekt. Det stora antalet antenner visar sig vara användbart även för överföring av systeminformation, där basstationen inte har någon kanalkännedom. Antennerna ger möjligheten att tillämpa spatial kodning (eng: space-time block coding). Vi visar hur överföringen utan kanalkännedom kan göras i massiv mimo genom att använda en fix förkodningsmatris för att reducera antalet pilotsymboler. Samtidigt kodar vi spatiellt över antennerna för att tillhandahålla spatiell diversitet.
Becirovic, Ema. "On Massive MIMO for Massive Machine-Type Communications." Licentiate thesis, Linköpings universitet, Kommunikationssystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162586.
Повний текст джерелаWannas, Hussain. "Full Duplex Multiuser MIMO with Massive Arrays." Thesis, Linköpings universitet, Institutionen för systemteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105268.
Повний текст джерелаAlnajjar, Khawla. "Receiver Design for Massive MIMO." Thesis, University of Canterbury. Electrical and Computer Engineering, 2015. http://hdl.handle.net/10092/10517.
Повний текст джерелаNegrão, João Lucas. "Efficient detection : from conventional Mimo to massive Mimo communication systems." Universidade Estadual de Londrina. Centro de Tecnologia e Urbanismo. Programa de Pós-Graduação em Engenharia Elétrica, 2018. http://www.bibliotecadigital.uel.br/document/?code=vtls000218370.
Повний текст джерелаThroughout this work, problems related to communication systems equipped with multiple antennas in the transmitter and receiver (MIMO - Multiple-Input Multiple-Output) are analyzed from the point of view of classical detection, nonlinear optimization, as well as linear pre-coding, from conventional MIMO (some Tx and Rx antennas) to large-scale (massive) MIMO systems. Initially, the detection efficiency of several MIMO detectors were analyzed under the prerogative of highly correlated channels, in which situation, MIMO systems present a high loss of performance, and, in some cases, an increasing complexity. Considering this scenario, we have specifically studied the behavior in terms of compromise complexity x bit error rate (BER), for different detection techniques, such as the successive interference cancellation (SIC), lattice reduction (LR), as well as the combination of each of these with linear detection techniques. In this analysis, different uniform antenna structures with uniform linear array (ULA) and planar array array (UPA) were also considered in both transmitter and receiver side. In addition, different number of antennas and order of modulation were also considered. Next, the MIMO detection problem was studied from a nonlinear optimization perspective, specifically aiming to achieve optimum performance. The detection solution with semi-defined relaxation (SDR - it semidefinite relaxation) were analyzed. The SDR-MIMO detector is an efficient approach capable of achieving near-optimal performance, especially for low and medium modulation orders. We focused our efforts on developing a computationally efficient approach for the maximum likelihood (ML) MIMO detection algorithm based on semi-definite programming (SDP) for M-QAM constellations. Finally, we study an optimal power allocation problem aiming to maximizes the sum-rate capacity of a single cell massive MIMO broadcast channel equipped with zero-forcing beamforming (ZFBF) and regularized channel inversion (RCI) precoding at the base station (BS). Our purpose is to investigate this problem in the large-scale system limit, i.e, when the number of users, K, and antennas at the BS, M, tend to infinity with a ratio β = K/M being held constant. We first derive the signal to interference plus noise (SINR) ratio for both chosen precoders. Then we investigate optimal power allocation schemes that maximize the sum-rate per antenna under an average power constraint and we show that the problem is convex and the power allocation follows the well-known Water-Filling strategy. We also studied a problem related to an optimal power allocation at a finite group of clustered users and determine the impact of this scheme in the ergodic sum-rate capacity.
ORTEGA, ALVARO JAVIER. "SIGNAL DETECTION IN MASSIVE MIMO SYSTEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26176@1.
Повний текст джерелаCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
Este trabalho de dissertação de mestrado apresenta uma comparação de algumas das técnicas de detecção de sinais mais promissoras para a viabilização de sistemas MIMO de grande porte em termos de desempenho, taxa de erro de bit e complexidade, número médio de flops requeridos por vetor de símbolos recebido. Com este objetivo foram também consideradas as técnicas de detecção clássicas, visando assim ressaltar o desempenho das novas técnicas com relação as antigas. Além disso foram propostas e investigadas novas estruturas para detectores SIC baseados em lista (i.e., com múltiplos ramos) que resultaram em melhor desempenho com menor complexidade quando comparados aos detectores deste tipo já propostos. Na comparação dos algoritmos, foram considerados três cenários diferentes: (i ) monousuário, com ganhos de canal gaussianos complexos independentes e identicamente distribuídos, ou seja, uma propagação que só considera a presença de desvanecimento de Rayleigh; (ii ) múltiplos usuários com canais correlatados e que considera as perdas de propagação de pequena e larga escala num sistema com antena centralizada; e (iii ) múltiplos usuários com canais correlatados e que considera as perdas de propagação de pequena e larga escala num sistema com antena distribuída.
This work dissertation presents a comparison of some of the signal detection techniques most promising for the viability of large MIMO systems in terms of performance, bit error rate, and complexity, average number of flops required by transmitted symbol vector. For this purpose it was also considered classical detection techniques, thus aiming to highlight the performance of new techniques with respect the old. Also it has been proposed and investigated new structures to SIC detectors based on list (i.e., with multiple branches) resulting in better performance with less complexity compared to detectors of this kind already proposed. In the comparison of algorithms, three different scenarios were used: (i ) single user, with channel gains independent and distributed identically complex Gaussian, that is, a spread that only considers the presence of Rayleigh fading; (ii ) multiple users, with correlated channels, and considers the short and large scale path loss in a system with centralized antenna; e (iii ) multiple users, with correlated channels, and considers the short and large scale path loss in a system with distributed antenna.
Payami, Sohail. "Hybrid beamforming for massive MIMO systems." Thesis, University of Surrey, 2017. http://epubs.surrey.ac.uk/842311/.
Повний текст джерелаNgo, Hien Quoc. "Massive MIMO: Fundamentals and System Designs." Doctoral thesis, Linköpings universitet, Kommunikationssystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112780.
Повний текст джерелаMursia, Placido. "Multi-antenna methods for scalable beyond-5G access networks." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS532.
Повний текст джерелаThe exponential increase of wireless user equipments (UEs) and network services associated with current 5G deployments poses several unprecedented design challenges that need to be addressed with the advent of future beyond-5G networks and novel signal processing and transmission schemes. In this regard, massive MIMO is a well-established access technology, which allows to serve many tens of UEs using the same time-frequency resources. However, massive MIMO exhibits scalability issues in massive access scenarios where the UE population is composed of a large number of heterogeneous devices. In this thesis, we propose novel scalable multiple antenna methods for performance enhancement in several scenarios of interest. Specifically, we describe the fundamental role played by statistical channel state information (CSI) that can be leveraged for reduction of both complexity and overhead for CSI acquisition, and for multiuser interference suppression. Moreover, we exploit device-to-device communications to overcome the fundamental bottleneck of conventional multicasting. Lastly, in the context of millimiter wave communications, we explore the benefits of the recently proposed reconfigurable intelligent surfaces (RISs). Thanks to their inherently passive structure, RISs allow to control the propagation environment and effectively counteract propagation losses and substantially increase the network performance
Книги з теми "Massives MIMO"
Cheng, Xiang, Shijian Gao, and Liuqing Yang. mmWave Massive MIMO Vehicular Communications. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-97508-1.
Повний текст джерелаYang, Howard H., and Tony Q. S. Quek. Massive MIMO Meets Small Cell. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43715-6.
Повний текст джерелаLiu, Leibo, Guiqiang Peng, and Shaojun Wei. Massive MIMO Detection Algorithm and VLSI Architecture. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6362-7.
Повний текст джерелаLe-Ngoc, Tho, and Ruikai Mai. Hybrid Massive MIMO Precoding in Cloud-RAN. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02158-0.
Повний текст джерелаZhao, Long, Hui Zhao, Kan Zheng, and Wei Xiang. Massive MIMO in 5G Networks: Selected Applications. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68409-3.
Повний текст джерелаmmWave Massive MIMO. Elsevier, 2017. http://dx.doi.org/10.1016/c2015-0-01250-3.
Повний текст джерелаMassive MIMO Systems. MDPI, 2020. http://dx.doi.org/10.3390/books978-3-03936-017-8.
Повний текст джерелаHong, Yang, Erik G. Larsson, Thomas L. Marzetta, and Hien Quoc Ngo. Fundamentals of Massive MIMO. Cambridge University Press, 2016.
Знайти повний текст джерелаHong, Yang, Erik G. Larsson, Thomas L. Marzetta, and Hien Quoc Ngo. Fundamentals of Massive MIMO. Cambridge University Press, 2016.
Знайти повний текст джерелаFundamentals of Massive MIMO. University of Cambridge ESOL Examinations, 2016.
Знайти повний текст джерелаЧастини книг з теми "Massives MIMO"
Larsson, Erik G., and Emil Björnson. "Massive MIMO." In Encyclopedia of Wireless Networks, 771–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_136.
Повний текст джерелаLarsson, Erik G., and Emil Björnson. "Massive MIMO." In Encyclopedia of Wireless Networks, 1–4. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32903-1_136-1.
Повний текст джерелаNgo, Hien Quoc. "Massive MIMO." In 5G and Beyond, 101–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58197-8_4.
Повний текст джерелаVook, Frederick W., Amitava Ghosh, and Timothy A. Thomas. "Massive MIMO Communications." In Towards 5G, 342–64. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118979846.ch15.
Повний текст джерелаVan Chien, Trinh, and Emil Björnson. "Massive MIMO Communications." In 5G Mobile Communications, 77–116. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34208-5_4.
Повний текст джерелаGregorio, Fernando, Gustavo González, Christian Schmidt, and Juan Cousseau. "Massive MIMO Systems." In Signal Processing Techniques for Power Efficient Wireless Communication Systems, 193–216. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32437-7_8.
Повний текст джерелаZhao, Long, Hui Zhao, Kan Zheng, and Wei Xiang. "Massive MIMO Technology." In SpringerBriefs in Electrical and Computer Engineering, 7–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68409-3_2.
Повний текст джерелаXu, Wei, Yongming Huang, and Ming Xiao. "Millimeter Wave Massive MIMO." In Encyclopedia of Wireless Networks, 830–33. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_114.
Повний текст джерелаNgo, Hien Quoc. "Cell-Free Massive MIMO." In Encyclopedia of Wireless Networks, 165–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_137.
Повний текст джерелаYang, Jie, Shi Jin, Chao-Kai Wen, and Tao Jiang. "Massive MIMO Channel Estimation." In Encyclopedia of Wireless Networks, 779–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_145.
Повний текст джерелаТези доповідей конференцій з теми "Massives MIMO"
Lejosne, Yohan, Manijeh Bashar, Dirk Slock, and Yi Yuan-Wu. "From MU massive MISO to pathwise MU massive MIMO." In 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2014. http://dx.doi.org/10.1109/spawc.2014.6941308.
Повний текст джерелаVinogradova, Julia, Emil Bjornson, and Erik G. Larsson. "Jamming Massive MIMO using Massive MIMO: Asymptotic separability results." In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7952798.
Повний текст джерелаLiu, Liang, and Wei Yu. "Massive device connectivity with massive MIMO." In 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017. http://dx.doi.org/10.1109/isit.2017.8006693.
Повний текст джерелаKudathanthirige, Dhanushka, and Gayan Amarasuriya. "Distributed Massive MIMO Downlink." In ICC 2019 - 2019 IEEE International Conference on Communications (ICC). IEEE, 2019. http://dx.doi.org/10.1109/icc.2019.8761446.
Повний текст джерелаLarsson, Erik G. "Fundamentals of massive MIMO." In 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2015. http://dx.doi.org/10.1109/spawc.2015.7226986.
Повний текст джерелаBjornson, Emil. "Massive MIMO for 5G." In 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2015. http://dx.doi.org/10.1109/spawc.2015.7226987.
Повний текст джерелаKudathanthirige, Dhanushka, and Gayan Amarasuriya. "Massive MIMO NOMA Downlink." In GLOBECOM 2018 - 2018 IEEE Global Communications Conference. IEEE, 2018. http://dx.doi.org/10.1109/glocom.2018.8647417.
Повний текст джерела"Session TA6: Massive MIMO." In 2015 49th Asilomar Conference on Signals, Systems and Computers. IEEE, 2015. http://dx.doi.org/10.1109/acssc.2015.7421221.
Повний текст джерела"Session MA8a3: Massive MIMO." In 2016 50th Asilomar Conference on Signals, Systems and Computers. IEEE, 2016. http://dx.doi.org/10.1109/acssc.2016.7869018.
Повний текст джерелаMuller, Ralf R., Mohammad A. Sedaghat, and Georg Fischer. "Load modulated massive MIMO." In 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2014. http://dx.doi.org/10.1109/globalsip.2014.7032192.
Повний текст джерелаЗвіти організацій з теми "Massives MIMO"
VanDyke, J. P., J. L. Tomkins, and M. D. Furnish. Measures of effectiveness for BMD mid-course tracking on MIMD massively parallel computers. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/83111.
Повний текст джерела