Добірка наукової літератури з теми "Mass transfer"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mass transfer".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Mass transfer":

1

Gekas, Vassilis. "Mass transfer modeling." Journal of Food Engineering 49, no. 2-3 (August 2001): 97–102. http://dx.doi.org/10.1016/s0260-8774(00)00223-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wesselingh, J. A. "Multicomponent Mass Transfer." Chemical Engineering Journal and the Biochemical Engineering Journal 60, no. 1-3 (December 1995): 177–79. http://dx.doi.org/10.1016/0923-0467(96)80015-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Garofalo, Paolo S. "Mass transfer during gold precipitation within a vertically extensive vein network (Sigma deposit - Abitibi greenstone belt - Canada). Part II. Mass transfer calculations." European Journal of Mineralogy 16, no. 5 (October 18, 2004): 761–76. http://dx.doi.org/10.1127/0935-1221/2004/0016-0761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nakhman, A. D., and Yu V. Rodionov. "Generalized Solution of the Heat and Mass Transfer Problem." Advanced Materials & Technologies, no. 4 (2017): 056–63. http://dx.doi.org/10.17277/amt.2017.04.pp.056-063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hosovkyi, Roman, Diana Kindzera, and Volodymyr Atamanyuk. "Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks." Chemistry & Chemical Technology 10, no. 4 (September 15, 2016): 459–63. http://dx.doi.org/10.23939/chcht10.04.459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Diffusive mass transfer has been studied during drying of grinded sunflower stalks to produce fuel briquettes. Theoretical aspects of diffusive processes during filtration drying have been analyzed. The process of diffusive mass transfer during drying of grinded sunflower stalks particles of prismatic shape has been mathematically described. The temperature effect on effective diffusion coefficient has been examined.
6

Wogelius, Roy A., Peter M. Morris, Michael A. Kertesz, Emmanuelle Chardon, Alexander I. R. Stark, Michele Warren, and James R. Brydie. "Mineral surface reactivity and mass transfer in environmental mineralogy." European Journal of Mineralogy 19, no. 3 (July 2, 2007): 297–307. http://dx.doi.org/10.1127/0935-1221/2007/0019-1727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Coulson, J. M., J. F. Richardson, J. R. Backhurst, and J. H. Harker. "Fluid flow, heat transfer and mass transfer." Filtration & Separation 33, no. 2 (February 1996): 102. http://dx.doi.org/10.1016/s0015-1882(96)90353-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Kinwah. "Mass Transfer in Low Mass Close Binaries." International Astronomical Union Colloquium 163 (1997): 283–88. http://dx.doi.org/10.1017/s0252921100042755.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe mass transfer process in low mass close binaries is reviewed. The driving mechanisms and the stability properties are discussed by means of general, simple formulations. A model in terms of mass transfer instabilities is suggested to explain the outbursts of GRO J1655–40 in 1994.
9

Kobayashi, Takeshi. "Immobilization and mass transfer." Japan journal of water pollution research 9, no. 11 (1986): 696–98. http://dx.doi.org/10.2965/jswe1978.9.696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

COLLINS II, G. W., J. C. BROWN, and J. P. CASSINELLI. "Dynamical mass-transfer paradox." Nature 347, no. 6292 (October 1990): 433. http://dx.doi.org/10.1038/347433a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Mass transfer":

1

Springer, Pieter Ariaan Martijn. "Mass transfer effects in distillation." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/88084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McAleavey, Gervase. "Mass transfer studies in fermentation." Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356899.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Erasmus, Andre Brink. "Mass transfer in structured packing." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (PhD)--University of Stellenbosch, 2004.
ENGLISH ABSTRACT: Structured packing is a popular column internal for both distillation and absorption unit operations. This is due to the excellent mass transfer characteristics and low pressure drop that it offers compared to random packing or trays. The main disadvantage is the lack in reliable models to describe the mass transfer characteristics of this type of packing. The recent development of the non-equilibrium model or rate based modelling approach has also emphasized the need for accurate hydraulic and efficiency models for sheet metal structured packing. The main focus of this study was to develop an accurate model for the mass transfer efficiency of Flexipac 350Y using a number of experimental and modelling techniques. Efficiency is however closely related to hydraulic capacity. Before attempting to measure and model the efficiency of Flexipac 350Y, the ability of existing published models to accurately describe the hydraulic capacity of this packing was tested. Holdup and pressure drop were measured using air/water and air/heavy paraffin as test systems. All experiments were performed on pilot plant scale 200mm ID glass columns. Satisfactory results were obtained with most of the models for determining the loading point and pressure drop for the air/water test system. All of the models tested predicted a conservative dependency of capacity on liquid viscosity for the air/paraffin test system. Efficiency and pressure drop were measured using the chlorobenzene/ethylbenzene test systems under conditions of total reflux in a 200mm ID glass column. Widely differing results were however obtained with the different models for the efficiency of Flexipac 350Y. Experiments were subsequently designed and performed to measure and correlate the vapour phase mass transfer coefficient and the effective surface area of Flexipac 350Y independently. The vapour phase mass transfer coefficient was measured and correlated by subliming naphthalene into air from coatings applied to specially fabricated 350Y gauze structured packing. The use of computational fluid dynamics (CFD) to model the vapour phase mass transfer coefficient is also demonstrated. The effective surface area for vapour phase mass transfer was measured with the chemical technique. The specific absorption rate of CO2 into monoethanolamine (MEA) using n-propanol as solvent was determined in a wetted-wall column and used to determine the effective surface area of Flexipac 350Y on pilot plant scale (200mm ID glass column). The efficiency of Flexipac 350Y could be modelled within an accuracy of 9% when using the correlations developed in this study and ignoringliquid phase resistance to mass transfer for the chlorobenzene/ethylbenzene test system under conditions of total reflux. The capacity and efficiency of the new generation high capacity packing Flexipac 350Y HC was also measured and compared with that of the normal capacity packing Flexipac 350Y. An increase in capacity of 20% was observed for the HC packing for the air/water system and 4% for the air/heavy paraffin system compared with the normal packing. For the binary total reflux distillation the increase in capacity varied between 8% and 15% depending on the column pressure. The gain in capacity was at the expense of a loss in efficiency of around 3% in the preloading region.
AFRIKAANSE OPSOMMING: Gestruktureerde pakking is 'n populêre pakkingsmateriaal en word algemeen gebruik in distillasie en absorpsie kolomme. Dit is hoofsaaklik as gevolg van die goeie massa-oordragseienskappe en lae drukval wat dit bied in vergelyking met 'random' pakking en plate. The hoof nadeel is egter die tekort aan akkurate modelle om die massa-oordrags eienskappe te bepaal. Om modelle te kan gebruik waar die massaoordragstempo direk gebruik word om gepakte hoogte te bepaal, word akkurate kapasiteits- en effektiwiteitsmodelle vir gestruktureerde plaatmetaalpakking benodig. Die hoof doelwit van hierdie studie was om 'n akkurate model te ontwikkel vir die massa-oordragseffektiwiteit van die plaat metaal pakking Flexipac 350Y deur gebruik te maak van verskillende eksperimentele- en modelleringstegnieke. Effektiwiteit is egter direk gekoppel aan hidroliese kapasiteit. Bestaande modelle in die literatuur is eers getoets om te bepaal of hulle die hidroliese kapasitiet van Flexipac 350Y akkuraat kan voorspel. Vir die doel is vloeistofterughou en drukval gemeet deur gebruik te maak van die sisteme lug/water en lug/swaar parafien. Alle eksperimente is in loodsaanlegskaal 200mm ID glaskolomme uitgevoer. Meeste van die modelle was relatief akkuraat in hulle berekening van die ladingspunt en die drukval vir die lug/water toets sisteem, maar was konsertief in voorspellings van die groothede vir die lug/swaar parafien sisteem. Effektiwiteit en drukval was gemeet deur gebruik te maak van die binêre toetssisteem chlorobenseen/etielbenseen onder totale terugvloei kondisies in 'n 200mm ID glaskolom. Daar is 'n groot verskil in die effektiwiteitsvoorspelling deur die verskillende modelle. Vervolgens is eksperimente ontwerp en uitgevoer om die dampfase massaoordragskoeffisiënt en die effektiewe oppervlakarea vir Flexipac 350Y onafhanklik te meet en te korreleer. Die dampfase massaoordragskoeffisient is gemeet en gekorreleer deur naftaleen te sublimeer vanaf spesiaal vervaardigde 350Y gestruktureerde pakking van metaalgaas. Die gebruik van numeriese vloeimeganika (CFD) om die dampfase massaoordragskoeffisient te bereken word gedemonstreer. Die effektiewe oppervlakarea vir dampfase massaoordrag is bepaal deur van 'n chemiese metode gebruik te maak. Die spesifieke absorpsietempo van CO2 in monoetanolamien (MEA) met n-propanol as oplosmiddel is gemeet in a benatte wand kolom en gebruik om die effektiewe oppervlakarea van Flexipac 350Y te bepaal op loodsaanlegskaal (200mm ID). Die effektiwiteit van Flexipac 350Y kon met 'n akkuraatheid van binne 9%gemodelleer word deur vloeistoffaseweerstand te ignoreer en van die korrelasies gebruik te maak wat in hierdie studie ontwikkel is. Die effektiwiteit en kapasiteit van die nuwe generasie hoë kapasiteit pakking Flexipac 350Y HC is ook gemeet en vergelyk met die normale kapasiteit pakking Flexipac 350Y. 'n Verhoging in kapsiteit van 20% is gemeet vir die HC pakking in vergelyking met die normale kapasiteit pakking vir die lug/water sisteem en 'n 4% verhoging in kapasiteit vir die lug/swaar parafien sisteem. Die verhoging in kapasiteit het gevarieër tussen 8% en 14% in die binêre totale terugvloei distillasie toetse en was afhanklik van die kolom druk. Die verhoging in kapasiteit was ten koste van 'n verlaging in effektiwiteit van ongeveer 3% onderkant die ladingspunt.
4

Zhao, Xiaomin. "Formaldehyde mass-transfer properties study." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/51597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Formaldehyde, an important feedstock in industrial processes and manufacture, is widely present in numerous consumer products. Emitted by many types of consumer products and indoor materials, indoor air can contain high concentrations of formaldehyde. Exposure to formaldehyde is hazardous to human health. Thus knowledge of formaldehyde mass-transfer properties is critical to efforts to reduce formaldehyde emissions and establish related standards and regulations. The primary objectives of this project include: 1) documenting and validating procedures and methods for analyzing and measuring formaldehyde mass-transfer characteristics; 2) evaluating and comparing formaldehyde mass-transfer properties in different materials using micro-balance sorption/desorption tests; 3) investigating observed formaldehyde mass-transfer irreversibility and the recently developed formaldehyde polymerization theory. The procedures and methods for analyzing and measuring formaldehyde mass-transfer characteristics were developed in an effort to minimize experimental variability and were strictly followed during the research. The formaldehyde mass-transfer properties of five polymer materials (polycarbonate, polystyrene, poly(methyl methacrylate), polyethylene and polypropylene) were measured through sorption/desorption testing. Results indicated that formaldehyde solubility was highest in polyethylene while the rate of diffusion was the highest in polypropylene. Results also showed that the diffusion process in the selected polymer materials was irreversible in all cases. Furthermore, additional testing showed no detectable polyformaldehyde formation on polymer surfaces after exposure to formaldehyde. The causes of observed mass-transfer irreversibility need further study.
Master of Science
5

Xu, Feishi. "Bubble hydrodynamics and mass transfer in complex media." Thesis, Toulouse, INSA, 2019. http://www.theses.fr/2019ISAT0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La connaissance du comportement hydrodynamique et du transfert de matière de la bulle est importante car elle fournira des indications pour la sélection des conditions de fonctionnement et la conception du réacteur dans de tels processus. Cette thèse a réalisé une étude expérimentale pour les bulles d’air isolées en ascension dans diverses solutions de polymères (Breox, Polyacrylamide (PAAm) and Xanthan gum) qui peuvent simuler les propriétés des eaux usées. Les travaux sont divisés en trois parties: Tout d’abord, en dressant l’état de l'art sur les techniques de visualisation pour le transfert de matière, trois techniques ont été testées pour les bulles d’air (diamètre équivalent ≈ 1 mm) en ascension dans l'eau, notamment la fluorescence induite par plan laser (PLIF, fluorophore: résorufine fluorescente), la PLIF avec inhibition (fluorophore: complexe de ruthénium) et techniques colorimétriques (colorant: résorufine rose), respectivement. Par la suite, sur la base des images capturées par une caméra haute vitesse, le comportement hydrodynamique des bulles d'air (diamètres équivalents: 0,7 à 7 mm) s'élevant dans les solutions de polymères (PAAm et Xanthan) a été étudiée, notamment la vitesse, la trajectoire et la forme de la bulle. Enfin, appliquant la technique PLIF-I, les phénomènes de transfert de matière et de diffusion dans le sillage de bulles d'air (diamètre équivalent 1 ≈ mm) dans différentes solutions aqueuses de polymères (PAAm et Breox) ont été étudiés
The knowledge on the hydrodynamic property and mass transfer of bubbles is important since it will give guidelines for selecting the operation condition and for reactor design in such processes. For this purpose, this PhD manuscript has implemented an experimental investigation of single air bubbles rising in various polymer solutions (Breox, Polyacrylamide (PAAm) and Xanthan gum) which can simulate the property of the sewage. The works can divided into three parts: Firstly, with a review of the current visualization techniques for mass transfer, three techniques have been tested for air bubble (equivalent diameter ≈ 1 mm) rising in water including traditional Planar Laser Induced Fluorescent (PLIF, dye: fluorescent resorufin), Fluorescent quenching technique (PLIF with Inhibition, dye: ruthenium complex) and colorimetric techniques (dye: pink resorufin), respectively. Secondly, based on images captured by a high speed camera, the hydrodynamics of the bubble single air bubbles (equivalent diameters: 0.7-7 mm) rising in the polymer solutions (PAAm and Xanthan) have been investigated including the bubble velocity, trajectory and bubble shape. Finally, based on PLIF-I technique, the mass transfer and diffusion phenomena in the wake of single air bubbles (equivalent diameter ≈ 1 mm) rising in various aqueous polymer solutions (PAAm and Breox) are investigated
6

Raison, Christian E. "Mass transfer in aerated vibrated beds." Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03032009-040719/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vasan, S. S. "Analysis of mass transfer in ultrafiltration." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hanif, Mohammed. "Mass transfer studies in solvent extraction." Thesis, Teesside University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

DUARTE, LUIZ GUSTAVO DA CRUZ. "MASS TRANSFER TO SWIRL IMPINGING JETS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1994. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24868@1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
O presente trabalho é um estudo experimental das características de troca de calor e massa de um jato de ar incidindo ortogonalmente sobre uma placa. o estudo tem por objetivo avaliar a influência nos coeficientes de troca da presença de um componente circunferencial na velocidade do jato. Durante os experimentos foram investigadas a influência do número de Reynolds do jato, da distância jato/placa e da intensidade do escoamento espiralado (número de swirl). Os coeficientes de troca foram determinados utilizando-se a técnica de sublimação de naftaleno em conjunto com a analogia entre os provessos de transferência de calor e massa. Coeficientes de troca de massa locais foram determinados utilizando-se uma mesa de coordenadas computadorizada especialmente construída, que permitiu a obtenção de medidas detalhadas tanto na região de estagnação do jato quanto na região mais externa. Coeficientes globais de troca de massa foram obtidos independentemente dos locais através de pesagem. Os resultados demonstraram uma diminuição nos coeficientes de troca de massa do jato com o aumento da intensidade do escoamento espiralado. Visualizações do escoamento junto à placa foram realizadas, utilizando-se a técnica de óleo com o negro de fumo. Os resultados das visualizações demonstraram a existência de regiões de separação junto à fronteira da zona de estagnação. Para altos valores do número de swirl foram verificadas fortes reversões do escoamento na região de estagnação.
The present work is an experimental study of the mass transfer characteristics of a swirling jet impinging on a flat plate. The main objective of the investigation was to determine the influence of a circumferential velocity component (the swirl component) on the local and average mass transfer coefficients at the plate surface. The dimensionless parameters investigated were the jet Reynolds number, the jet-to-plate distance, and the strength of the swirl flow given by the swirl number. Mass transfer coefficients were obtained utilizing the naphthalene sublimation technique. The local coefficients were determined employing a computerized coodinate table which allowed a detailed study of the effects of the presence of the swirl component. Average coefficients were determined independently through precision weighing, and displayed excellent agreement with the integrated local coefficients. The results demonstrated that the presence of the swirl component decreases the mass transfer coefficients, when compared with the non-swirl case. Flow visualization experiments were conducted utilizing the oil-lamp black technique. The results revealed regions of reverse flow at the stagnation zone for high values of the swirl number.
10

Kumar, Anil. "Hydrodynamics and mass transfer in Kühni extractor /." [S.l.] : [s.n.], 1985. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=7806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Mass transfer":

1

Mills, Anthony F. Mass transfer. Upper Saddle River, N.J: Prentice Hall, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wesselingh, J. A. Mass transfer. New York: E. Horwood, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Skelland, A. H. P. Diffusional mass transfer. Malabar, Fla: R.E. Krieger Pub. Co., 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Taylor, Ross. Multicomponent mass transfer. New York: Wiley, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Treybal, Robert Ewald. Mass-transfer operations. 3rd ed. New York: McGraw-Hill, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mills, Anthony. Heat and Mass Transfer. London: Taylor and Francis, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baehr, Hans Dieter, and Karl Stephan. Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-29527-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Karwa, Rajendra. Heat and Mass Transfer. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3988-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baehr, Hans Dieter, and Karl Stephan. Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20021-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Karwa, Rajendra. Heat and Mass Transfer. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-1557-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Mass transfer":

1

Lichtner, Peter C. "Mass Transfer." In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_68-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lichtner, Peter C. "Mass Transfer." In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_68-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lichtner, Peter C. "Mass Transfer." In Encyclopedia of Earth Sciences Series, 892–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_68.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nielsen, Jens, John Villadsen, and Gunnar Lidén. "Mass Transfer." In Bioreaction Engineering Principles, 423–75. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0767-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Karwa, Rajendra. "Mass Transfer." In Heat and Mass Transfer, 929–48. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1557-1_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brenn, Günter. "Mass Transfer." In Mathematical Engineering, 239–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-51423-8_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smith, P. G. "Mass Transfer." In Food Science Text Series, 193–219. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7662-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wright, Dennis. "Mass Transfer." In Basic Programs for Chemical Engineers, 96–135. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4121-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zohuri, Bahman, and Nima Fathi. "Mass Transfer." In Thermal-Hydraulic Analysis of Nuclear Reactors, 311–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17434-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Karwa, Rajendra. "Mass Transfer." In Heat and Mass Transfer, 1041–66. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3988-6_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Mass transfer":

1

Gabitto, Jorge F. "Matrix-Fracture Mass Transfer." In SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 1998. http://dx.doi.org/10.2118/39702-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Goldstein, Richard J. "Mass Transfer Systems for Simulating Heat Transfer Processes." In Advanced Course in Measurement Techniques in Heat and MassTransfer. Connecticut: Begellhouse, 1985. http://dx.doi.org/10.1615/ichmt.1985.advcoursemeastechheatmasstransf.180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Loomis, G. G. "CORE THERMAL RESPONSE AND MASS DISTRIBUTION DURING VESSEL MASS DEPLETION ASSOCIATED WITH A SBLOCA." In International Heat Transfer Conference 8. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.3400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Jiayi, Bingqing Luo, and Zhaojun Liu. "Micro-LED Mass Transfer Technologies." In 2020 21st International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2020. http://dx.doi.org/10.1109/icept50128.2020.9201923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Semiat, R. "DESALINATION: HEAT VERSUS MASS TRANSFER." In Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p30.250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"Thermo-solutal convection, Mass transfer." In CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bobrick, Alexey. "Mass transfer in compact binaries." In Gamma-Ray Bursts 2012 Conference. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.152.0111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cavanagh, L., Y. Li, T. Evans, John Lucas, and Geoffrey M. Evans. "Heat Transfer Modelling of Submerged Gas Injection into a Molten Metal Bath." In Heat and Mass Transfer Australasia. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/978-1-56700-099-3.430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Parpais, Sylvain, Jean Pierre Bertoglio, and Andre Laporta. "A Spectral Model for Inhomogeneous Turbulence Applied to the Prediction of Turbulent Heat Flux and Temperature Spectra." In Heat and Mass Transfer Australasia. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/978-1-56700-099-3.580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ozmen, L., Timothy A. G. Langrish, and E. M. Gipps. "SPRAY DRYING PHARMACEUTICAL PRODUCTS FOR NASAL DELIVERY: The Effects of Feed Solution Properties and Operating Conditions on Particle Size and Density." In Heat and Mass Transfer Australasia. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/978-1-56700-099-3.500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Mass transfer":

1

Pigford, T. H., and P. L. Chambre. Mass transfer in a salt repository. Office of Scientific and Technical Information (OSTI), May 1985. http://dx.doi.org/10.2172/6381376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Singh, Rajesh K., Jie Bao, Chao Wang, and Zhijie Xu. Device-scale CFD study for mass transfer coefficient and effective mass transfer area in packed column. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1492447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chesna, J. C. Mass Transfer in 12-CM Centrifugal Contactors. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/782822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Watson, Thomas B. Proton Transfer Time-of-Flight Mass Spectrometer. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1251396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sutija, D. P. Micro-scale mass-transfer variations during electrodeposition. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5208259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Day-Lewis, Frederick, Kamini Singha, Roy Haggerty, Tim Johnson, Andrew Binley, and John Lane. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1114652.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zyvoloski, G., Z. Dash, and S. Kelkar. FEHM: finite element heat and mass transfer code. Office of Scientific and Technical Information (OSTI), March 1988. http://dx.doi.org/10.2172/5495517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Day-Lewis, Frederick David, Kamini Singha, Timothy C. Johnson, Roy Haggerty, Andrew Binley, and John W. Lane. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1164392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chambre, P. L., T. H. Pigford, W. W. L. Lee, J. Ahn, S. Kajiwara, C. L. Kim, H. Kimura, H. Lung, W. J. Williams, and S. J. Zavoshy. Mass transfer and transport in a geologic environment. Office of Scientific and Technical Information (OSTI), April 1985. http://dx.doi.org/10.2172/5161610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bell, J., and L. Hand. Calculation of Mass Transfer Coefficients in a Crystal Growth Chamber through Heat Transfer Measurements. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/918405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії